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Abstract

Suppose that E and E′ denote real Banach spaces with dimension at least 2 and that D ⊂ E and D′ ⊂ E′

are domains. Let ϕ : [0,∞)→ [0,∞) be a homeomorphism with ϕ(t) ≥ t. We say that a homeomorphism
f : D→ D′ is ϕ-FQC if for every subdomain D1 ⊂ D, we have ϕ−1(kD(x, y)) ≤ kD′ ( f (x), f (y)) ≤ ϕ(kD(x, y))
holds for all x, y ∈ D1. In this paper, we establish, in terms of the jD metric, a necessary and sufficient
condition for a homeomorphism f : E → E′ to be FQC. Moreover, we give, in terms of the jD metric, a
sufficient condition for a homeomorphism f : D→ D′ to be FQC. On the other hand, we show that this
condition is not necessary.
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1. Introduction and main results

During the past few decades, modern mapping theory and the geometric theory of
quasiconformal maps have been studied from several points of view. These studies
include Heinonen’s work on metric measure spaces [5], Koskela’s study of maps
with finite distortion [7] and Väisälä’s work about quasiconformality in infinite-
dimensional Banach spaces [15–19]. Our study is motivated by Väisälä’s theory of
freely quasiconformal maps in the setup of Banach spaces [15–17]. The basic tools
in Väisälä’s theory are metrics and the notion of uniform continuity between metric
spaces; in particular, the norm metric, the quasihyperbolic metric and the distance
ratio metric are used. We begin with some basic definitions and the statements of our
results.
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Throughout the paper, we always assume that E and E′ denote real Banach spaces
with dimension at least 2, and that D ⊂ E and D′ ⊂ E′ are domains. The norm of
a vector z in E is written as |z| and, for each pair of points z1, z2 in E, the distance
between them is denoted by |z1 − z2|. The distance from z ∈ D to the boundary ∂D of
D is denoted by dD(z).

For each pair of points z1, z2 in D, the distance ratio metric jD(z1, z2) between z1
and z2 is defined by

jD(z1, z2) = log
(
1 +

|z1 − z2|

min{dD(z1), dD(z2)}

)
.

The quasihyperbolic length of a rectifiable arc or a path α in the norm metric in D
is the number (compare with [2, 3, 15])

`k(α) =

∫
α

|dz|
dD(z)

.

For each pair of points z1, z2 in D, the quasihyperbolic distance kD(z1, z2) between
z1 and z2 is defined in the usual way:

kD(z1, z2) = inf `k(α),

where the infimum is taken over all rectifiable arcs α joining z1 to z2 in D. Gehring and
Palka [3] introduced the quasihyperbolic metric of a domain in Rn. Many of the basic
properties of this metric may be found in [15]. We remark that the quasihyperbolic
metric has been recently studied by many people (compare with [4, 6, 8–12]).

Definition 1.1. Let D ( E and D′ ( E′ be domains, and let ϕ : [0,∞) → [0,∞)
be a growth function, that is, a homeomorphism with ϕ(t) ≥ t. We say that a
homeomorphism f : D→ D′ is ϕ-semisolid if

kD′( f (x), f (y)) ≤ ϕ(kD(x, y))

for all x, y ∈ D, and ϕ-solid if both f and f −1 satisfy this condition.

The special case ϕ(t) = Mt (M > 1) gives the M-quasihyperbolic maps, or briefly
M-QH. More precisely, f is called M-QH if

kD(x, y)
M

≤ kD′( f (x), f (y)) ≤ MkD(x, y)

for all x and y in D.
We say that f is fully ϕ-semisolid (respectively fully ϕ-solid) if f is ϕ-semisolid

(respectively ϕ-solid) on every subdomain of D. In particular, when D = E, the
subdomains are taken to be proper ones in D. Fully ϕ-solid mappings are also called
freely ϕ-quasiconformal mappings, or briefly ϕ-FQC mappings.

If E = E′ = Rn, then f is FQC if and only if f is quasiconformal (compare with
[15]). See [1, 14, 21] for definitions and properties of K-quasiconformal mappings, or
briefly K-QC mappings.
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It is well known that for all z1, z2 in D, we have (compare with [15])

jD(z1, z2) ≤ inf
α∈Γ

log
(
1 +

`(α)
min{dD(z1), dD(z2)}

)
≤ inf

α∈Γ
`k(α) = kD(z1, z2), (1.1)

where Γ is the class of all rectifiable arcs joining z1 and z2 in D. Hence, in the study of
FQC maps, it is natural to ask whether we could use the jD metric to describe FQC or
not. In fact, we get the following conditions for a homeomorphism to be FQC.

Theorem 1.2. A homeomorphism f : E → E′ is ϕ1-FQC if and only if for every proper
subdomain D ⊂ E

ϕ−1
2 ( jD(x, y)) ≤ jD′( f (x), f (y)) ≤ ϕ2( jD(x, y)) (1.2)

for all x, y ∈ D, where ϕ1 and ϕ2 are self-homeomorphisms of [0,∞) with ϕi(t) ≥ t
(i = 1, 2) for all t, and ϕ1, ϕ2 depend only on each other.

Theorem 1.3. Let ϕ : [0,∞)→ [0,∞) be a homeomorphism with ϕ(t) ≥ t for all t, and
let f : D  E → D′  E′ be a homeomorphism. If, for every subdomain D1 ⊂ D,

ϕ−1( jD1 (x, y)) ≤ jD′1 ( f (x), f (y)) ≤ ϕ( jD1 (x, y)) (1.3)

for all x, y ∈ D1, then f is ϕ1-FQC with ϕ1 = ϕ1(ϕ). Moreover, if D1 = D and ϕ(t) = Mt
(M ≥ 1), then f is M-QH.

Theorem 1.4. The converse of Theorem 1.3 is not true.

The proofs of Theorems 1.2–1.4 will be given in the next section.

2. The proofs of Theorems 1.2–1.4
For convenience, in what follows, we always assume that x, y, z, . . . denote points in

D and x′, y′, z′, . . . denote the images in D′ of x, y, z, . . . under f , respectively.
Before the proofs of our main results, we list a series of results which are critical to

our proofs.

Definition 2.1 [15, Definition 3.6]. Suppose that f : D→ D′ is a homeomorphism
with D ( E, D′ ( E′. Let 0 < t0 < 1 and let θ : [0, t0)→ [0,∞) be an embedding with
θ(0) = 0. We say that f is (θ, t0)-relative if

|x′ − y′|
dD′(x′)

≤ θ
(
|x − y|
dD(x)

)
whenever x, y ∈ D and |x − y| < t0dD(x). If t0 = 1, we simply say that f is θ-relative.

Theorem A [15, Corollary 3.8]. For a homeomorphism f : D→ D′, the following
conditions are quantitatively equivalent:

(1) f and f −1 are θ-relative;
(2) f and f −1 are (θ, t0)-relative;
(3) f is ϕ-solid.

Definition 2.2 [13, 15]. Let X and Y be two metric spaces, and let η : [0,∞)→ [0,∞)
be a homeomorphism. An embedding f : X → Y is said to be η-quasisymmetric, or
briefly η-QS , if |x′ − y′|/|x′ − z′| ≤ η(|x − y|/|x − z|) for all x, y, z in X.
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Theorem B [15, Theorem 5.13]. Suppose that f : E → D′ ⊂ E′ is fully ϕ-semisolid.
Then:

(1) D′ = E′;
(2) f is ψ-FQC with ψ = ψϕ;
(3) f is η-quasisymmetric with η = ηϕ.

Theorem C [15, Theorem 4.6]. Let f : D→ D′ be a homeomorphism with D ( E,
D′ ( E′. Then f is M-QH if and only if

L(x, f )dD(x)
dD′(x′)

≤ M and
L(x′, f −1)dD′(x′)

dD(x)
=

dD′(x′)
l(x, f )dD(x)

≤ M

for all x ∈ D, where

L(x, f ) = lim sup
y→x

|x′ − y′|
|x − y|

, l(x, f ) = lim inf
y→x

|x′ − y′|
|x − y|

.

Lemma 2.3. Let ϕ : [0,∞)→ [0,∞) be a homeomorphism with ϕ(t) ≥ t for all t, and
let f : D  E → D′  E′ be a homeomorphism. If, for every x, y ∈ D,

jD′( f (x), f (y)) ≤ ϕ( jD(x, y)),

then f is (θ, s)-relative, where θ(t) = eϕ2(log(1+t/(1−s))) − 1 and s ∈ (0, 1) is a constant.

Proof. Let 0 < s < 1 and x, y ∈ D with |x − y|/dD(x) = t < s. Then

dD(y) ≥ dD(x) − |x − y| > (1 − s)dD(x),

whence
|x − y|

min{dD(x), dD(y)}
≤

|x − y|
(1 − s)dD(x)

,

and therefore

|x′ − y′|
dD′(x′)

≤ e jD′ (x′,y′) − 1 ≤ eϕ( jD(x,y)) − 1 ≤ eϕ(log(1+t/(1−s))) − 1 = θ(t),

which shows that Lemma 2.3 holds. �

2.1. The proof of Theorem 1.2. We first prove the sufficient part and we assume
that f : E→ E′ is ϕ1-FQC. By Theorem B, we know that f is η-quasisymmetric, where
η = ηϕ1 . Let D be a proper subdomain in E. For x, y ∈ D, by symmetry, to prove (1.2)
we only need to prove the right-hand-side inequality. Without loss of generality, we
may assume that dD′(x′) ≤ dD′(y′). Choose a point z ∈ ∂D such that |x′ − z′| ≤ 2dD′(x′).
Now

|x′ − y′|
dD′(x′)

≤ 2
|x′ − y′|
|x′ − z′|

≤ 2η
(
|x − y|
|x − z|

)
≤ 2η

(
|x − y|
dD(x)

)
,
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whence

jD′(x′, y′) = log
(
1 +
|x′ − y′|
dD′(x′)

)
≤ log

(
1 + 2η

(
|x − y|
dD(x)

))
≤ ϕ( jD(x, y)),

where ϕ(t) = log(1 + 2η(et − 1)).
In the following, we prove the necessary part. Let D be a proper subdomain of E.

By the assumption, we know that there is a self-homeomorphism ϕ2 such that (1.2)
holds for every x, y ∈ D. Then Lemma 2.3 shows that f : D→ D′ is (θ, s)-relative with
θ(t) = eϕ2(log(1+t/(1−s))) − 1. Hence, by Theorem A, we know that f : D→ D′ is ϕ-solid
with ϕ = ϕϕ2 . By the arbitrariness of D, we get that f is ϕ-FQC. �

2.2. The proof of Theorem 1.3. We first prove the first part. Let D1 be a subdomain
of D. By the assumption, we know that there is a self-homeomorphism ϕ such that
(1.2) holds for every x, y ∈ D1. Then we get from Lemma 2.3 that f : D1→ D′1 is (θ, s)-
relative with θ(t) = eϕ(log(1+t/(1−s))) − 1 and s ∈ (0, 1) is a constant. Hence, Theorem A
shows that f : D1 → D′1 is ϕ1-solid with ϕ1 depending on ϕ. By the arbitrariness of
D1, we get that f is ϕ1-FQC.

Now we are going to prove the second part of Theorem 1.3. By Theorem C, it
suffices to show that

L(x, f )dD(x)
dD′(x′)

≤ M (2.1)

for each x ∈ D. Let 0 < s < 1 and let θ(t) be as in Lemma 2.3 for 0 < t < s. Now

θ(t) =

(
1 +

t
(1 − s)

)M
− 1,

whence θ′(0) = M/(1 − s). Let x, y ∈ D be points with |x − y|/dD(x) = t. By
Lemma 2.3,

|x′ − y′|dD(x)
|y − x|dD′(x′)

≤
θ(t)

t
→

M
1 − s

as t→ 0. As s > 0 is arbitrary, this implies (2.1). �

2.3. The proof of Theorem 1.4. We prove this theorem by presenting two examples.

Example 2.4. Let E = R2 � C and f be a conformal mapping of the unit disc B(0, 1) =

{z : |z| < 1} (= D) onto D′ = B(0, 1) \ [0, 1). There is no self-homeomorphism ϕ of
[0,∞) such that (1.3) holds.

Proof. By [2, Theorem 3], we know that conformal mapping is an M-QH mapping for
some constant M ≥ 1. Hence, f is ϕ0-FQC with ϕ0(t) = Mt. Therefore, for each pair
of points x, y ∈ D,

kD(x, y)
M

≤ kD′(x′, y′) ≤ MkD(x, y). (2.2)
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1

f

Figure 1. γ′ is a rectifiable arc joining x′0 and y′0 in D′.

Take x′0, y′0 ∈ D′ with x′0 = ( 1
2 , t) and y′0 = ( 1

2 ,−t) (see Figure 1). Let Γ be the class
of all rectifiable arcs joining x′0 and y′0 in D′. Then, by (1.1),

kD′(x′0, y
′
0) ≥ inf

γ′∈Γ
log

(
1 +

`(γ′)
dD′(x′0)

)
≥ log

(
1 +

1
t

)
and

jD′(x′0, y
′
0) = log

(
1 +

|x′0 − y′0|
min{dD′(x′0), dD′(y′0)}

)
= log 3.

But, by [21, page 35] and (2.2),

jD(x0, y0) ≥
1
2

kD(x0, y0) ≥
1

2M
kD′(x′0, y

′
0)

≥
1

2M
log

(
1 +

1
t

)
→∞ as t→ 0.

Hence, there is no self-homeomorphism ϕ of [0,∞) such that (1.3) holds. The proof
of Example 2.4 is complete. �

Example 2.5. Let E be an infinite-dimensional separable real Hilbert space with an
orthonormal basis (e j) j∈Z. Setting γ′j = [e j−1, e j], we obtain the infinite broken line
γ′ = ∪{γ′j : j ∈ Z}. Let γ denote the line spanned by e1, let D = γ + B(r) with r ≤ 1

10
and let f be a locally M-bilipschitz homeomorphism from D onto a neighbourhood
D′ of γ′ (for a detailed explanation, we refer the reader to [15, Section 4.12] or [20]).
There is no self-homeomorphism ϕ of [0,∞) such that (1.3) holds.

Proof. By [15, Theorem 4.8], we obtain that f is M2-QH. Let m ≥ 2 be an integer and
let x, y ∈ D with x =

√
2e1, y = m

√
2e1. Then dD(x) = dD(y) = r. Because f is locally

M-bilipschitz,
dD′(x′) ≥

r
M

and dD′(y′) ≥
r
M
.

Since D′ ⊂ B(0, 2),

jD′(x′, y′) = log
(
1 +

|x′ − y′|
min{dD′(x′), dD′(y′)}

)
≤ log

(
1 +

4M
r

)
,
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but

jD(x, y) = log
(
1 +

|x − y|
min{dD(x), dD(y)}

)
= log

(
1 +

√
2(m − 1)

r

)
→∞

as m→∞. Hence, (1.3) does not hold. �

Remark 2.6. In support of Theorem 1.4, we include here another simple planar
example which is indeed similar to Example 2.4. Let D be the semi unit disc
D = {z ∈ B(0, 1) : | arg z| < π/2} and let z = reiϕ ∈ D (0 < r < 1) in polar coordinates.
Then f (r, ϕ) = (r, 2ϕ) defines a locally 2-bilipschitz homeomorphism of D onto D′ =

B(0, 1) \ (−1, 0]. For 0 < t < π/4, let x = (1/2, π/2 − t), y = (1/2,−π/2 + t) in polar
coordinates. Then jD(x, y) = log(1 + 2 cot t)→∞ as t→ 0, while jD′(x′, y′) = log 3
for all t, whence there is no self-homeomorphism ϕ of [0,∞) such that (1.3) holds.
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[20] J. Väisälä, ‘Broken tubes in Hilbert spaces’, Analysis 24 (2004), 227–238.
[21] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Notes in Mathematics,

1319 (Springer, Berlin, 1988).

YAXIANG LI, College of Science,
Central South University of Forestry and Technology,
Changsha, Hunan 410004, PR China
e-mail: yaxiangli@163.com

SAMINATHAN PONNUSAMY, Indian Statistical Institute (ISI) Chennai Centre,
SETS (Society for Electronic Transactions and Security),
MGR Knowledge City, CIT Campus,
Taramani, Chennai 600 113, India
e-mail: samy@isichennai.res.in, samy@iitm.ac.in

MATTI VUORINEN, Department of Mathematics and Statistics,
University of Turku, FIN-20014 Turku, Finland
e-mail: vuorinen@utu.fi

https://doi.org/10.1017/S1446788714000329 Published online by Cambridge University Press

mailto:yaxiangli@163.com
mailto:samy@isichennai.res.in
mailto:samy@iitm.ac.in
mailto:vuorinen@utu.fi
https://doi.org/10.1017/S1446788714000329

	Introduction and main results
	The proofs of Theorems 1.2–1.4
	The proof of Theorem 1.2
	The proof of Theorem 1.3
	The proof of Theorem 1.4

	References

