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ON CERTAIN GROUP RING PROBLEMS

G. KARPILOVSKY

Recent developments on the isomorphism and other group ring
problems are amply reviewed in Sehgal's book, Topics in group
rings. The aim of this expository paper is to complement the
content of Sehgal's book. Our main emphasis is the presentation
of some results due to Saksonov which are published in Russian
and do not seem well-known to the English reader. We also draw

the reader's attention to some unpublished results of Higman.

Introduction

Let KG Ybe a group ring of a finite group G over a commutative ring
K with unit. There has been a considerable amount of work over the years
dedicated to the following problem: To what extent does KG determine the
group G ? A favourite gambit of group ring theorists has been to impose
some conditions on the ring K 1in the expectation that KG determines G
up to isomorphism. There is a striking example of Dade [19] of two
nonisomorphic metabelian groups G and H such that for all choices of
the field X , KG and KXH are isomorphic.

Therefore, generally speaking, a field is not a suitable candidate for
K . The rings K for which the group ring XG yields the most
information on the structure of G are integral domains of characteristic

0 in which no rational prime divisor of the order of (G is invertible.
Typical examples of such rings are as follows:

The ring R of algebraic integers in some finite extension of the
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rationals (in particular, the ring 2 of rational integers), the ring
Z(G) ={a/p | a, b €2, (b, |G]) =1} and, in the case when G is a

p-group, the ring Op of p-adic integers.

Before we embark on our exposition proper, a historical note is worth

inserting.

The study of the isomorphism problem was pioneered by Higman in 1940.
Some of his significant results, regrettably never published (except in an
Oxford D.Phil. Thesis, "Units in group rings") were virtually unknown. One
of these results states that if (¢ is metabelian and hilpotent then any
group of normalised units of finite order in RG 1is isomorphic to a
subgroup of G . It took 25 years to re-discover a special case of this
result. Namely, in 1965 Passman [33] proved that a nilpotent group ( of
class 2 1is determined by RG .

One of the most important results so far achieved is due to Whitcomb
[35]1. 1In 1968 Whitcomb proved that a metabelian group is determined by its
integral group ring. It is interesting to note that Whitcomb's result can
be easily deduced from the proof of Theorem 14 of Higman's unpublished

thesis.

We also remark that Conjecture II.1.5 of [52] for the case when (G is
a finite group was first established by Saksonov [44] and that Sehgal was
probably unfamiliar with it. We present this result of Saksonov in the
first part of the article (§2). 1In the second part (§3) we show how
Whitcomb's result can be easily deduced from Theorem 14 of Higman's
unpublished thesis. In the third part (§§4, 5), we discuss conjugacy of
group bases and normal subgroup correspondence of groups having isomorphic

group rings.

1. The setting

In this section we shall describe the notation, recall the definitions
and record some elementary properties of group rings. Throughout we shall

use the following notation:

RG  the group ring of a finite group G over HA where
R is an integral domain of characteristic O in

which no rational prime divisor of the order of G
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is invertible.
C the complex numbers.
Q the rational numbers

Zig) = {a/b | a, b € 2, (b, |G]) =1}

Z(G) the centre of G .
Ib(G mod G') the subgroup of G generated by all elements of
G some pth power of which is in G' .

Let G be a group and let X be an associative ring with unit. We
denote by KG the group ring of G over K ; this ring is a free
K-module with basis indexed by the elements of G , and most of the time we
identify this basis with G . Each element x of KG can then be

uniquely written in the form

x:zx ,-’X.’EK,
gic 90 g

vhere only finitely many xg are distinct from 0 and multiplication in
KG extends that in G .

A homomorphism from the group ring KGl to the group ring KG2 is a

ring homomorphism which is also a K-module homomorphism. The augmentation
ideal I(X, G) 1is the kernel of the homomorphism from the group ring KG
to K induced by collapsing G to the unit group. Explicitly, I(X, @)

consists of all

z= ) xg, x €K, for vhich €lx) = ¥y =z =0 .
gec;gg g géc 9

We shall write I(G) instead of I(K, G) when there is no danger of
confusion. A unit u in KG 1is called trivial (respectively normalised)
if u = ugg for some unit ug € XK and some g € G (respectively if

e(u) =1).

A normalised group basis of KG 1is a group basis consisting of
normalised units. We shall write KG = KH for H %being a normalised

group basis of KG . Note that if H1 is another group basis of KG then
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KG = KH where H = {e(t-l]t [t € Hl}
Therefore the isomorphism problem may be stated as follows:

Does KG =KH imply G = H ?
Suppose that H 1is a normalised group basis of XG and let €' be a
homomorphism from XG to K induced by collapsing H to the unit group.
Then for any

x =Y xk z, €K,
wey PR

e(x) > @, = g'(x) ; that is g =¢' .

hed

Consequently I(G) = I(H) and every unit normalised with respect to (G is
also normalised with respect to H . For J an ideal of KG the
multiplicative kernel of the map G = KG/J is G n (14J) and G + J will

stand for the image of (¢ under this map. In other words,
G+J={g+ | g €G}

and G n (1+J) consists of all g in G for which g -1 is in J .
Note that

(1.1) for N=Gn (1+J) , G/N=G+J .

Let A : ¢+ H be a group epimorphism and let A : KG +~ KH be the group
ring epimorphism which is the extension of A by X-linearity. Then
Ker A = KG*I(N) where N = Ker A and therefore

(1.2) G n (1+KG-I(W)) =W .

If x € KG then the equality =z = e(x) + (x-e(x)) implies
KG = K ® I(G) (direct sum of K-modules).

Hence

(1.3) KG-I(N) = I(N) + I(G)-I(N) .

We now record the following identities:
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(1.4) ab -1 = {a-1)(b-1) + (a-1) + (b-1) , a, b in KG ,

(1.5) [a, b] - 1 = a3 [(a-1)(b-1)-(b-1)(a-1)] , a, b in U(KG)

Note also that for any natural number m dividing the order of (G the
mapping

Zgy > Em2

alb »aB)Y, @=a+mz, b=b+mi,

is a ring epimorphism with kernel mZ( and therefore

G)
.6 Z mZ >~ Z/mZ .
We conclude this section by recording the following standard number
theoretic properties:

(i) Let e, ..., €, be mth roots of unity over @ and let

1
el+...+e
a = ———7;——11 . If o is an algebraic integer then either o = 0 or
(1.7) €& TE, 7 =€,
(ii)
(1.8) o /o0 =z/pz .
p'P p =P

2. Saksonov's result

The main purpose of this section is to prove Theorem 2.1 due to

Saksonov and to make some observations which will be used in §3.

The reader should note that Theorems 2.1, 2.2 and 2.3 of this section
for the case when R 1is the ring of algebraic integers were first

established by Higman [27].

We start by recording the following simple observation, which is valid

for K =12 and, in the case when G 1is a p-group also, for K =0

(63 p
(see (1.6) and (1.8)).

LEMMA 2.1. Let m be the exponent of G/G' and let K be a ring
with 1 such that K/mK = Z/mZ . Then for any t € I(K, G) there exists
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g € G such that t =g - 1 (mod I(K, 0)2]

Proof. It follows from (1.4) and (1.5) that ¢ : ¢ > I(X, G)/I(K, G)2
where ¢(g) = (g-1) + I(X, 0)2 is a homomorphism with G' < Ker ¢ . Since
gm € G' for any.g € G, I(X, 0)2 = ¢(gm) = md(g) = m(g-1) + I(X, 6)2
and therefore mk(g-1) € I(X, G)2 for any k € K . Since a typical
element of K is k = t-1 + mkl vhere kl €K and ¢t € {0, 1, ..., m1},
then ¢(gt) = k(g-1) + I(X, 0)2 . This shows that ¢ 1is an epimorphism,
and completes the proof. )

The following lemma is due to Saksonov [44, p. 190].

LEMMA 2.2. Let o be an algebraic nwnber and let n be a natural
number such that na 1is an algebraic integer. If {al =q, O ..., at}

18 the set of all Q-conjugates of a then either a 1is an algebraic

integer or in the ring Z[cxl, Ops wees at] at least one rational prime
divisor of n 1is invertible.

Proof. Suppose that o is not an algebraic integer. Then there
exists an elementary symmetric function f of £ variables such that

f(cxl, gy ey at) $ Z . Since no is an algebraic integer
f(al, Ups vens at) =a/b for some a, b € Z ,

such that (a, b) =1 , b > 1 and all the prime divisors of b are
divisors of n . If p 1is one of these divisors then because of

{(a, p) =1 there exist ¢, d € Z such that ac +dp =1 . It is clear

that
f'(al, @y ens at) € Z[al, L at]
and hence
alp € ZEml, Oys vees at] .
But then
1/p = (ac+dp)/p = (a/p)c +d € ZE:l, Gy vens at]
as desired. 8]
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We are now ready to prove the following:

THEOREM 2.1 (Saksonov [44, p. 1911). If u = X:ugg is a unit of
g

fintte order in RG with u, #0 then u = wrl . In particular, all

central units of finite order in RG are trivial.

Proof. Let 2 = Z: zgg be a central unit of finite order. Then
geG

zt #0 for some t € G and therefore u = zt—l is a unit of finite order

with ul = zt # 0 . Hence it suffices to show that if um =1 and u1 #£ 0

then u = u1°l .

To prove this assertion, let tr(x) be the trace of x € RG in the

regular representation of ARG . Then the matrix of u 1is conjugate to
diag(sl, . ElGI] and
tr(u) = ul-IGI SE tEyt e

where €. (£ =1, 2, ..., |G]) is an mth root of unity (belonging to a

sufficiently large field containing R ). By looking at the tr(ur) where
(r, m) =1 we conclude that the set {Bl = Up, 62, ceas Bs} of all

@-conjugates to u, belongs to R and therefore Z[Bl, 82, ey Bs] cR.

1

Since |G|ul is an algebraic integer, Lemma 2.2 may be employed to infer

that wu is also an algebraic integer. The desired assertion is now a

1
consequence of (1.7). (]

Note that in Theorem 2.1 we cannot relax the conditions imposed on the

integral domain R (namely,
(*) char R = 0 and
(**) no rational prime dividing the order of G is invertible).

This becomes clear if we look at the following two examples, the second of

which is due to Saksonov [44].

EXAMPLE 1. Condition {*) is not satisfied.
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Let ¢ ©be a (finite) abelian p-group and let R = Z/pZ . Then each
element in RG which has augmentation 1 is a central unit of finite

order, that is, a central unit of finite order need not be trivial.

EXAMPLE 2. Condition (#*¥*) is not satisfied.

Let G = {1, a, a®, a3} and let R = 2[%, <] . Then
b = [(l-i)a+(l+i)a3) /2 is a nontrivial central unit of order 2 .
The next result parallels Lemma 3.1 of [17] (see also [44]).

THEOREM 2.2. Let H be a torsion group of normalised units in RG .

Then H 1is a linearly independent set and, in particular, H is a finite

group.
n
Proof. We carry out the proof by contradiction. Let z a.h, =0

where hi €H, o €rR, 42 €{1, 2, ..., n} and let aj # 0 for some
Jj €{1, 2, ..., n} . Then

.l =~ 3 a.{h.h'.l)

J iz e
and if we express the elements hih;l , T #J , in terms of the elements

of G then at least one of them, say hkh;l , kK # J , has a non-zero
coefficient of 1 . Now the argument used in the proof of Theorem 2.1 may
be employed to infer that hkhgl = 0a*1 for some o € R . Since

e(r,) = s(hj) =1 it follows that % =4, . This gives the desired
contradiction, and completes the proof of the theorem. ]

We shall now make some observations which will be used in §4. Let
T : RG + RG . G = G/N 'be a canonical homomorphism and let RG = RH .
Then, by Theorem 2.2, H , the image of H in RG , is a linearly
independent set in RG whence RC = RH . Moreover, since T can be
regarded as the extension of the epimorphism # - 7 (whose kernel is
¥* = g n (1+RG+I(N)) ) by R-linearity, then Ker ™ = RG+I(N) = RH+I(N*)

Moreover because of

le/nl = |¢l = |A| = |a/w*|
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the groups N and N* are of the same order. Consequently
(2.1) RG = RH implies RG = RH , RG*I(N) = RG-I(N*) and |N| = |N*|

Let ¢ : G+ H Yve an isomorphism of G onto H and let 2ZG = ZH
Suppose that I' is an irredicuble matrix representation of the complex

group algebra (G and denote by oy and oy the irreducible matrix

representations of G defined by al(g) = T(g) , aylg) = T(¢(g)) for any
g in G . Then

(2.2) if o is a faithful representation then so is aq

1 2"

To prove (2.2) we first observe that (G = CH and that if Ker a, # 1

then 1 # N* ={h ¢ # | T(h) =1} . Since CG+I(N*) < Ker I' then, by
(2.1), CG-I(N) € Ker T for some N <G such that |N| = |N*|

Consequently it may be inferred that N C Ker o from which (2.2)

l b
follows.

The theorem which follows, is very useful in its application to the

isomorphism problem.

THEOREM 2.3. Let S be a subgroup of G . Then, for
I(¢) = I(R, 6) and I(S) = I(R, S) ,

G n (1+1(6)-1(8)) = s’ .

Proof. We first consider the special case when S = (G ., By taking
the case #n = 2 in Theorem 2.1 of [48] we see that S n (1+I(S)2) =g’
whenever Zb(S mod §') = § for all primes p for which p°R = pe+lR for
some non-negative integer ¢ . It is clear that

Zb(S mod S') = S' whenever pf|S]| .

+
e*1p for some e then pf(1pz) = 0

If p is a prime such that p°R = p
for some x € R and since R has no zero divisors, p is a unit in R .
This shows that pI|S| and completes the proof of the special case. To

prove the general case, let T be a transversal of S in (G containing

1 and let g = ts be a typical element of G (¢t € T, s € §)

Consider the R-linear map
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¢ : RG + RS

which is the R-linear extension of g +s . Then ¢{x) =z for any
x € I(5) and the equality

¢l(g-1) (8;-1) | = (s-1)(s;-1) , s, €5,

shows that ¢(I(G)-I(S)) = I(S)2 . Consequently

7(6)-1(8) n I(s) = I1(5)° .

Now (1.2) may be employed to infer that

¢ n (141(6)-I(S)) =6 n (1+1(5)3) ,

thus completing the proof by applying the special case proved above. 0o

3. The isomorphism problem and Higman's thesis

Whether the integral grcoup ring 2G of a finite group G determines
G up to isomorphism is a question which has been open for nearly 4O years.
Since the problem seems so intractible one needs to impose more hypotheses
to make any progress. The list of groups which are determined by their
integral group rings includes Sn’ An {both are determined by their

character table), groups of order 2 , n=7T (see [26]) and finite
circle groups (see [44]). The best result, due to Whitcomb [55], is the
following.

THEOREM 3.1 (Whitcomb [551). If G <is metabelian and ZG = ZH
then G 1is isomorphic to H .

In this section we shall show how Whitcomb's result can be easily
deduced from the proof of Theorem 14 of Higman's unpublished thesis. We
first note that perusal of the proof of the mentioned theorem easily shows

that the following assertion is valid.

Let 242G = ZH and let u be a normalised unit of finite order in
ZG . Then there exists g € ¢ such that

(3.1) u = g(mod I(6)+I(G"))

Proof of Theorem 3.1. We first note that ZG-I(G') is the smallest

ideal L such that 2ZG/L is commutative whence Z4C = ZH implies
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ZG*I(G') = ZH-I(H') . Multiplying both sides of this equality by

I{G) = I(H) we get I(G)*I(G') = I(H)-I(H') = J . It follows from (3.1)
that # + J € G + J and since the elements of (¢ are normalised units
with respect to H , the same argument shows that G + J € 4 + J , that is,
G+J=H+J . Now (1.1) and Theorem 2.3 may be employed to infer that
G/G" = H/H" . Hence if G" =1 then G =H/H" and since |G| = |H#] ,

G =H as desired. o

Note that if (3.1) holds with R instead of Z then replacing Z by
R in the above argument we get G/G" = H/H" and, in particular, if
G" =1 then G<=H.

We shall now show that (3.1) holds in a more general context, namely
if we replace Z by a ring R such that R/mR = Z/mZ for m equal to
the exponent of G'/G" . The rings R which satisfy this condition
include Z(G) and, wvhen G is a p-group, the ring of 0p of p-adic

integers. From what we have said above it follows that G/G" is

determined by the group ring Z( )G (49] and that, if G 1is a p-group,

G
then G/G" 1is determined by OpG £513].

REMARK, Recently Roggenkamp [40] proved that if G" =1 then
RG = RH implies G = H .

To prove (3.1) in a more general context, let G = G/G' and let =z
be the image of x € RG wunder the canonical homomorphism KRG + RG . Then
U is a normalised central unit of finite order in KG and therefore
thanks to Theorem 2.1, u = 5' for some g € G . Hence
g(mod RG*I(G')) and by (1.3), u=g + t(mod I(G)'I(G')) for some

t € I(G') . By Lemma 2.1 there exists a € ¢' such that

123

t = a - 1(moa I(G')2) . Hence
uz g+ (a-1) = (1-g)la-1) + ga = ga mod(I(G)-I(G’)) ,
as desired. O

It would be interesting to know whether Whitcomb's result is valid for
nilpotent groups. In [24] Jackson states that this is the case. However
his proof is incomplete since it is based on the following false argument.
Let G be a nilpotent group and let u be a normalised unit of finite

order in ZG . Then he claims that
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u =1(mod 1(G)-1(G')) implies u =1 .
The following provides a counterexample to this claim. Let (G be a
nilpotent group which is not metabelian and let 1 # g € G” . Then
g -1 €160 c1(6) 106"

We shall close this section with the observation which will be used in
§4. Let 26 =7ZH and let G"=1. For g in G let ¢(g) bde the
¢(g) (mod 1(q)-1(G"))

It follows from what we have said above that g > ¢(g) determines an

unique element in A which is determined by g

isomorphism of ¢ onto A . On the other hand, by Theorem 2.1,
2(G) = zZ(H) whence ¢(g) = g whenever g € Z(G) . Consequently the map

(3.2) {G > H is an isomorphism of G onto H which is also an
g > ¢(g)

identity mapping on 2z(¢) = Z(H)

4. Conjugacy of group bases
Let Z2G = ZH where (G 1is a finite group and let G~ H . It is

natural to ask whether there is a unit u# in ZG such that H = u_lGu . That
this is not always the case was first proved in 1966 by Berman and Rossa

(C71]). The following example can be found in [17].

Let G = {a, b | ah = b°

where

=1, b-lab = a-l} and let H ={a', b")

3

-a+22a” -b -ab + a2b + a3b )

al

b' = —a + a3 -ab + a2b + a3b .

Then %G = ZH but G and H are not conjugate in U(2ZG) . Incidentally,
G and H are conjugate in U(Z(2)G] where Z(2) is the ring of

2-integral rationals. Indeed, let u =1 - Db +ab . Then it is easy to

check that u is a unit in 2(2)0 and that
uwla'u = a . Wb =b .

Note also that a result of Weller [54] implies that any normalised group
basis of 2G (G is dihedral of order 8 ) is conjugate in U(Z(e)G) to
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We next remark that Sn is determined up to isomorphism by an
since Sn is determined by its character table. Hence the application of
a result due to Peterson [38] implies that, in QSn . Sn is conjugate to
any normalised group basis of an . It is not known, however, whether any
normalised group basis in ZSn is conjugate in ZSn to Sn . That any
normalised group basis of ZS3 is conjugate in 253 to 53 is a result

due to Hughes and Pearson [23]. It is interesting to note that there is an
intimate connection between the conjugacy of group bases and the isomorphism
problem. Indeed as it was pointed out by Whitcomb [55] if G is a
p-group of class 2 and if every normalised group basis in 26 is

conjugate in OpG to G (Op is the ring of p-adic integers), then any

p-group of class less than or equal to 5 1is determined by its integral
group ring. The following classical result is very useful in the study of

Aut{RG) . This is a convenient place to record it for future reference.

THEOREM 4.2 [12]. Let K be a field and let A be a semisimple
finite dimensional K-algebra. If © is an automorphism of A which is
the identity mapping on the centre of A then 8 is an imner

automorphism.

There is one piece of reasoning, relevant to the conjugacy of group
bases, which is likely to be encountered in other contexts. We therefore
isolate it in the following lemma, in which ¢ stands for the field of

complex numbers.

LEMMA 4.2. Let G be a finite group, and let 2G =Z2H . If G and
H are conjugate in U(CG) then they are conjugate in U(QG) .

Proof. By hypothesis, there exists an element u € U(CG) such that
u_lGu = H and therefore the mapping ¢ : G + H defined by ¢{g) = u_lgu
is an isomorphism of G onto H . Let ¢ be an automorphism of QG
which is the extension of the map ¢ by @-linearity. Since ¢ is the

identity mapping on the centre of QG then, by Theorem 4.2, ¢ 1is an

inner automorphism of @G . Consequently, there exists an element

v € U(QG) such that Y(z) = v ey for any x € QG . Because
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WG =H , view =& , as desired. O

REMARK. A similar proof shows that Lemma 4.2 is valid if we replace
Z by R and C by the algebraic closure of the quotient field of R .

We close this section with the simple proof of the following result

which is essentially a restatement of Theorem 9 of [55] (see also [52]).

THEOREM 4.3. Let G be a finite nilpotent group of class 2 . Then
any normalised group basis H of IG <is conjugate to G in U(QG) .

Before we embark on our proof it is convenient to recall some basic

facts about group representations.

Let G be a finite group and let

IA

I.:¢¢6+M (¢), 1=si{=<pr,
1 n.

1

be the distinet irreducible matrix representations of the group algebra

CG . Denote by X, (x) =Tr T,(x) , z €(C . The family (T,) defines an

isomorphism

r
r:cc~»7Tm (C)
=1 7

r
where [(xz) = (T.(z), T (x), ..., T (x)) , x €CG , and where | | M_(C)
! 2 r i=1 %

stands for the product of matrix algebras Mh (C) . The set
i
{pl, Pos +ns pr} where pi(g) = Ti(g) for any g € G is a full set of

nonequivalent irreducible complex representations of G . Using the bar

convention for the homomorphic images, consider the canonical homomorphism
CG + CG

where G = G/N and N = Ker p; - Then
CG-I(N) C Ker T,

and therefore the mapping

(4.4) T : CE->Mn (c)
7
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defined by T(z) = Fi(x) ,  €CG , is an irreducible matrix

representation of the group algebra cG . Suppose that 2z € Z2(G) . Then

by Schur's lemma,

pi(z) =

€

where € is a root of 1 in C . Therefore if =z = [a, b] for some a

and b in G then eXi(a) = Xi(a) . This shows that if G is nilpotent

of class 2 and if pi is faithful then

(L4.5) Xi(g) =0 for all g ¢ 2(G)

Finally, let 2G = Z2H and let G" =1 . We recall that by (3.2) the map
¢ : ¢G> H , where ¢(g) =h if g h(mod I(G)-I(G')) , is both an
isomorphism and the identity map on 2(G) = Z2(H) . With these preliminary

remarks, we now prove Theorem 4.3.

Proof of Theorem 4.3. Preserving the above notation, we argue first

that it suffices to prove that, for any < € {1, 2, ..., r} ,

(4.6) Xi(g) = Xi(h) whenever g = h mod(I(G)-I(G'U

Indeed, if this is the case, then the irreducible matrix representations

@ end a, of G defined by a (g) =T (g) and aylg) =I‘i(¢(g)) are

equivalent; that is, there exists a non-singular matrix Bi such that

B;lri(g)Bi = Fi(¢(g)) for all g in G . This forces G and H to be

conjugate in U(CG) and thanks to Lemma 4.2, G and H are conjugate in
U(QG) , as asserted. To prove (4.6), suppose that g = h{mod I(6)-1(G"))
with 2 in H . By passing to the canonical homomorphism ZG + ZG where

G =G/N and N = Ker a, we therefore derive g = EImod I(E)-I(E’H

Because of (2.1), 2G = ZH and therefore (L.4) and induction on |G| may

be employed to conclude that Xi(g) = Xi(h) whenever Ker o # 1.,

Finally, if o, 1is a faithful representation then so is a, (see (2.2)).

1
Since by (3.2), g =h if g € Z(G) , the application of (4.5) yields the
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desired assertion, thus completing the proof. 0

REMARK. A similar proof shows that Theorem 4.3 is valid, if we

replace Z by R and € Dby the quotient field of R where R = Z(G)

or, in the case when G is a p-group, R = Op .

5. Normal subgroup correspondence

Suppose that G and H are groups with isomorphic group algebras XG
and KH over the ring K of integers in some finite algebraic extension
of the rationals. In [33] Passman established a bijective correspondence
between the set of normal subgroups of G and that of H which preserves
many natural operations and properties defined on these sets. Some of

Passman's results, however, depend on nilpotency conditions.

In this section we state generalisations of Passman's result in two
directions. Namely, we remove the nilpotency condition and replace K by
R . Note also that the result presented in this section is sharper than
that in [52].

Elements of particular interest in KRG are the class sums. These are
the sum of all the group elements in any given class of G . That RG = RH
implies existence of a bijective correspondence between the conjugacy
classes of G and those of H such that the corresponding classes have
identical class sums was proved by Saksonov [44]. Note also that Berman
[2] proved this result for the case R =2 , and for the case R = K the
same result was proved by Glauberman (see [33]), Poljak [39] and Saksonov
[423.

Our result is as follows.

THEOREM [27). Let RG = RH . Then there exists an isomorphism
between the lattice of normal subgroups G and that of H which preserves
the following:

(a) the commutation of any two normal subgroups;

(b) normal abelian sections and the isomorphism class of normal

abelian sections;
(¢) the order and period of normal sections.

In fact, the corresponding normal sections have the same number of
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elements of any given order.
COROLLARY. The above isomorphism preserves the following:

(I) Nilpotency, solvability, class of nilpotency and the
derived length of N , N being an arbitrary normal
subgroup of G ; 1in particular the Fitting subgroup of
N .

(II) A central series of N consisting of normal subgroups of
G and the isomorphism class of corresponding factors; 1in
particular, the upper central series and the lower central

series of N and any central series of G .

(III}) The derived series of N , the chief series of G and the

isomorphism class of corresponding factors.

(IV) The group CHN) gemerated by all nth powers of
elements of N and the group Cn(N) generated by all

elements of N whose order divides n .

The special case of (a) and (b) when R = Z was proved by Whitcomb
[55] (see also [47]). When R 1is the ring K of algebraic integers in a
finite extension of the rationals, Passman [33] proved part of (e¢) and,
when G is nilpotent, he has obtained (a) and part of (b). Obayashi [31]
proved part of (b) for R = K . For other various special cases of the
above theorem and corollary refer to [17], [31], [33], [42], [44] and [51].
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