DENJOY-BOCHNER ALMOST PERIODIC FUNCTIONS

B. K. PAL and S. N. MUKHOPADHYAY

(Received 15 July 1981)

Communicated by E. Strzelecki

Abstract

The special Denjoy-Bochner integral (the D*B-integral) which are generalisations of Lebesgue-Bochner integral are discussed in [7, 6, 5]. Just as the concept of numerical almost periodicity was extended by Burkill [3] to numerically valued D*- or D-integrable function, we extend the concept of almost periodicity for Banach valued function to Banach valued D*B-integrable function. For this purpose we introduce as in [3] a distance in the space of all D*B-integrable functions with respect to which the D*B-almost periodicity is defined. It is shown that the D*B-almost periodicity shares many of the known properties of the almost periodic Banach valued function [1, 4].

1. Definitions and terminology

For the definition of almost periodicity for numerical valued and Banach valued functions we refer to [2] and [1, 4] respectively. Throughout the paper \(\mathbb{R} \) and \(\mathbb{C} \) will denote the real line and the complex plane and \(X \) will denote a fixed complex Banach space with norm \(\| \cdot \| \). For a function \(f \) defined on \(\mathbb{R} \), \(f_\eta \) will denote the translation of \(f \) by the number \(\eta \); that is, \(f_\eta(x) = f(x + \eta) \).

Definition 1.1 [3]. Let \(\mathcal{D}^* \) be the class of all functions \(f: \mathbb{R} \to \mathbb{C} \) such that \(f \) is D*-integrable on each closed interval \([a, b] \subset \mathbb{R} \). For \(f, g \in \mathcal{D}^* \) the D* distance
between \(f \) and \(g \) is defined to be
\[
\rho_{D^*}(f, g) = \sup_{0 < h \leq 1} \left| (D^*) \int_x^{x+h} \{ f(t) - g(t) \} \, dt \right|.
\]

A function \(f \in \mathcal{D}^* \) is almost periodic in the sense of the \(D^* \) distance (or simply \(D^* \) a.p.) if, given \(\varepsilon > 0 \) there is a relatively dense set \(\{\tau\} \) such that
\[
\rho_{D^*}(f, f_\tau) < \varepsilon
\]
for all \(\tau \in \{\tau\} \).

DEFINITION 1.2 [7, 6, 5]. A function \(f: [a, b] \to X \) is said to be special Denjoy-Bochner integrable or \(D^*B \)-integrable in \([a, b]\) if there is a function \(F: [a, b] \to X \) such that \(F \) is strongly \(AC_{g*} \) on \([a, b]\) and \(AD_\delta F = f \) almost everywhere in \([a, b]\) where \(AD_\delta F \) stands for the strong approximate derivative of \(F \). The function \(F \) is then called an indefinite \(D^*B \)-integral of \(f \) on \([a, b]\) and \(F(b) - F(a) \) is called its definite \(D^*B \)-integral on \([a, b]\) and is denoted by
\[
(D^*B) \int_a^b f(\xi) \, d\xi.
\]

DEFINITION 1.3. Let \(\mathcal{D}^* \mathcal{B} \) be the class of all functions \(f: \mathbb{R} \to X \) such that \(f \) is \(D^*B \)-integrable on each closed interval \([a, b] \subseteq \mathbb{R} \). For \(f, g \in \mathcal{D}^* \mathcal{B} \) the \(D^*B \) distance between \(f \) and \(g \) is defined to be
\[
\rho_{D^*B}(f, g) = \sup_{0 < h \leq 1} \left\| (D^*B) \int_x^{x+h} \{ f(t) - g(t) \} \, dt \right\|.
\]

A function \(f \in \mathcal{D}^* \mathcal{B} \) is said to be almost periodic in the sense of the \(D^*B \)-distance (or, simply \(D^*B \) a.p.) if, given \(\varepsilon > 0 \) there is a relatively dense set \(\{\tau\} = \{\tau; f, \varepsilon\} \) such that
\[
\rho_{D^*B}(f_\tau, f) < \varepsilon
\]
for all \(\tau \in \{\tau\} \). Clearly every almost periodic function \(f: \mathbb{R} \to X \) is \(D^*B \) a.p.

REMARK. This definition of the \(D^*B \)-distance, of course, does not guarantee that
\[
\rho_{D^*B}(f, g) < \infty
\]
for all \(f, g \in \mathcal{D}^* \mathcal{B} \). We shall, however, prove that every \(D^*B \) a.p. function \(f \) is \(D^*B \)-bounded, that is
\[
\rho_{D^*B}(f) = \rho_{D^*B}(f, \theta) < \infty
\]
from which it will follow that for all $\mathbb{D}^*\mathbb{B}$ a.p. functions f and g

$$
\rho_{\mathbb{D}^*\mathbb{B}}(f, g) < \infty.
$$

Definition 1.4. A continuous function $\phi: \mathbb{R} \times [0, 1] \to X$ is called *almost periodic in $x \in \mathbb{R}$ uniformly with respect to $h \in [0, 1]$* if to arbitrary $\varepsilon > 0$ corresponds a relatively dense set $\{\tau\}$ such that

$$
\sup_{0 \leq h \leq 1, -\infty < x < \infty} ||\phi(x + \tau, h) - \phi(x, h)|| < \varepsilon
$$

for all $\tau \in \{\tau\}$.

The following result for integration by parts for the $\mathbb{D}^*\mathbb{B}$-integral, which will be needed later, is proved in [5].

Theorem 1.5. Let $f: [a, b] \to X$ be $\mathbb{D}^*\mathbb{B}$-integrable and

$$
F(\xi) = \int_a^\xi f(t) \, dt.
$$

Let $g: [a, b] \to \mathbb{R}$ be L-integrable and let

$$
G(\xi) = \int_a^\xi g(t) \, dt.
$$

Then fG is $\mathbb{D}^*\mathbb{B}$-integrable over $[a, b]$ and

$$
\int_a^b fG = [FG]_b^a - \int_a^b Fg.
$$

2. Properties of $\mathbb{D}^*\mathbb{B}$ a.p. functions

Theorem 2.1. If a function f is $\mathbb{D}^*\mathbb{B}$ a.p. then

$$
F(x) = \int_0^x f(t) \, dt
$$

is uniformly continuous.

Since the $\mathbb{D}^*\mathbb{B}$-integral,

$$
F(x) = \int_0^x f(t) \, dt,
$$

is continuous and since a continuous Banach valued function is uniformly continuous on a closed interval the theorem can be proved by the usual process.

Theorem 2.2. If f is $\mathbb{D}^*\mathbb{B}$ a.p. then the function $\phi: \mathbb{R} \times [0, 1] \to X$ defined by

$$
\phi(x, h) = \int_x^{x+h} f(t) \, dt
$$

is almost periodic in $x \in \mathbb{R}$, uniformly with respect to $h \in [0, 1]$.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 11 Nov 2018 at 12:00:28, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788700022047
PROOF. We first show that the function ϕ is continuous. Let $\epsilon > 0$ be arbitrary. Since by Theorem 2.1 $F(x) = \int_0^x f(t) \, dt$ is uniformly continuous, there is a $\delta > 0$ such that $\|F(x_1) - F(x_2)\| < \epsilon/2$ whenever $|x_1 - x_2| < \delta$ for all $x_1, x_2 \in \mathbb{R}$. Now, let $(x_0, h_0) \in \mathbb{R} \times [0, 1]$ be arbitrary. Then

$$
\|\phi(x_0, h_0) - \phi(x, h)\| = \left\| \int_{x_0}^{x_0+h_0} f(t) \, dt - \int_x^{x+h} f(t) \, dt \right\|
$$

$$
= \left\| F(x_0 + h_0) - F(x_0) - F(x + h) + F(x) \right\|
$$

$$
\leq \left\| F(x_0 + h_0) - F(x + h) \right\| + \left\| F(x) - F(x_0) \right\|
$$

$$
< \frac{\epsilon}{2} + \frac{\epsilon}{2}
$$

whenever $|x - x_0| < \delta/2$, $|h - h_0| < \delta/2$. Hence $\phi(x, h)$ is continuous on $\mathbb{R} \times [0, 1]$.

Now, since f is $D*B$ a.p., corresponding to $\epsilon > 0$ there is a relatively dense set $\{\tau\}$ such that $\rho_{D*B}(f, \tau) < \epsilon$ for all $\tau \in \{\tau\}$. Hence

$$
\sup_{0 \leq h \leq 1} \left\| \int_x^{x+h} f(t + \tau) \, dt - \int_x^{x+h} f(t) \, dt \right\| < \epsilon,
$$

which completes the proof.

Lemma 2.3. Let $C_X[0, 1]$ be the Banach space of all continuous functions $y: [0, 1] \to X$ with norm

$$
\|y\|_{C_X} = \sup_{0 \leq h \leq 1} \|y(h)\|
$$

and let $\phi: \mathbb{R} \times [0, 1] \to X$ be a continuous function. Then the function $\Phi: \mathbb{R} \to C_X[0, 1]$ defined by

$$
\Phi(x) = \phi(x, \cdot)
$$

is almost periodic if and only if the function ϕ is almost periodic in $x \in \mathbb{R}$, uniformly with respect to $h \in [0, 1]$.

PROOF. Since \(\|\Phi(x)\|_{c_x} = \sup_{0 \leq h \leq 1} \|\Phi(x, h)\| \) we have
\[
\|\Phi(x + \tau) - \Phi(x)\|_{c_x} = \sup_{0 \leq h \leq 1} \|\phi(x + \tau, h) - \phi(x, h)\|
\]
and so the result follows.

Lemma 2.4. If the continuous functions \(\phi: \mathbb{R} \times [0, 1] \to \mathbb{X} \) and \(\psi: \mathbb{R} \times [0, 1] \to \mathbb{X} \) are almost periodic in \(x \in \mathbb{R} \) uniformly with respect to \(h \in [0, 1] \) then \(\phi + \psi \) is so.

Proof. Let \(\mathcal{C}_{X}[0, 1] \) be as in Lemma 2.3 and let \(\Phi: \mathbb{R} \to \mathcal{C}_{X}[0, 1] \) and \(\Psi: \mathbb{R} \to \mathcal{C}_{X}[0, 1] \) be defined by
\[
\Phi(x) = \phi(x, \cdot), \quad \Psi(x) = \psi(x, \cdot).
\]
Then by Lemma 2.3, \(\Phi \) and \(\Psi \) are almost periodic and so is the sum \(\Phi + \Psi \), and hence by Lemma 2.3, \(\phi + \psi \) is almost periodic in \(x \in \mathbb{R} \) uniformly with respect to \(h \in [0, 1] \).

Theorem 2.5. If \(f \) and \(g \) are \(D^*B \) a.p. then so is \(f + g \).

Proof. By Theorem 2.2, the functions \(\phi(x, h) = \int_{x}^{x+h} f(t) \, dt \) and \(\psi(x, h) = \int_{x}^{x+h} g(t) \, dt \) are almost periodic in \(x \in \mathbb{R} \) uniformly with respect to \(h \in [0, 1] \). Hence by Lemma 2.4, \(\phi(x, h) + \psi(x, h) \) is almost periodic in \(x \in \mathbb{R} \) uniformly with respect to \(h \in [0, 1] \). So, given \(\varepsilon > 0 \), there is a relatively dense set \(\{\tau\} \) such that
\[
\sup_{-\infty < x < \infty} \|\phi(x + \tau, h) + \psi(x + \tau, h) - \phi(x, h) - \psi(x, h)\| < \varepsilon
\]
for all \(\tau \in \{\tau\} \). Hence
\[
\sup_{-\infty < x < \infty} \left\| \int_{x+\tau}^{x+h} \{ f(t) + g(t) \} \, dt - \int_{x}^{x+h} \{ f(t) + g(t) \} \, dt \right\| < \varepsilon,
\]
that is,
\[
\sup_{-\infty < x < \infty} \left\| \int_{x}^{x+h} \left[\{ f(t + \tau) + g(t + \tau) \} - \{ f(t) + g(t) \} \right] \, dt \right\| < \varepsilon,
\]
that is,
\[
\rho_{D^*B}(f + g, f + g) < \varepsilon
\]
for all \(\tau \in \{\tau\} \). Hence \(f + g \) is \(D^*B \) a.p.

Theorem 2.6. If \(f \) is \(D^*B \) a.p. then \(f \) is \(D^*B \) bounded, that is,
\[
\rho_{D^*B}[f] = \rho_{D^*B}(f, \theta) < \infty.
\]
PROOF. Letting \(\phi(x, h) = \int_x^{x+h} f(t) \, dt \) and constructing the function \(\Phi: \mathbb{R} \to \mathbb{C} \times [0, 1] \) as in Lemma 2.3 we see \(\Phi \) is almost periodic. Then by [1, page 5, property IV], the range of \(\Phi \) is relatively compact and hence

\[
\sup_{-\infty < x < \infty} \| \Phi(x) \|_{\mathbb{C} \times [0, 1]} < \infty.
\]

Hence by the definition of \(\| \cdot \|_{\mathbb{C} \times [0, 1]} \)

\[
\sup_{0 \leq h \leq 1} \| \phi(x, h) \| < \infty,
\]

that is,

\[
\sup_{0 \leq h \leq 1} \left\| \int_x^{x+h} f(t) \, dt \right\| < \infty,
\]

that is,

\[
\rho_{D*B}(f, \theta) < \infty.
\]

Theorem 2.7. If \(f \) is \(D*B \) a.p. then \(f \) is uniformly continuous with respect to the metric \(\rho_{D*B} \); that is, for every \(\varepsilon > 0 \) there is \(\delta > 0 \) such that

\[
\rho_{D*B}(f, \eta) < \varepsilon
\]

for all \(\eta \) satisfying \(|\eta| < \delta \).

Proof. Since \(f \) is \(D*B \) a.p. by Theorem 2.2 and Lemma 2.3 the function \(\Phi: \mathbb{R} \to \mathbb{C} \times [0, 1] \) defined by \(\Phi(x) = \phi(x, \cdot) \) is almost periodic, where \(\phi(x, h) = \int_x^{x+h} f(t) \, dt \). By [1, page 5, property III], \(\Phi \) is uniformly continuous. So, for arbitrary \(\varepsilon > 0 \) there is \(\delta > 0 \) such that

\[
\sup_{-\infty < x < \infty} \| \Phi(x + \eta) - \Phi(x) \|_{\mathbb{C} \times [0, 1]} < \varepsilon
\]

for all \(\eta \) satisfying \(|\eta| < \delta \). That is,

\[
\sup_{0 \leq h \leq 1} \| \phi(x + \eta, h) - \phi(x, h) \| < \varepsilon,
\]

that is,

\[
\sup_{0 \leq h \leq 1} \left\| \int_x^{x+h} \{ f(t + \eta) - f(t) \} \, dt \right\| < \varepsilon,
\]
that is,
\[\rho_{D^*B}(f_\eta, f) < \epsilon \]
whenever \(|\eta| < \delta\).

Theorem 2.8. If \(\{f_n\} \) is a sequence of \(D^*B \) a.p. functions such that \(f_n \to f \) with respect to the metric \(\rho_{D^*B} \) then \(f \) is \(D^*B \) a.p.

Proof. Let \(\epsilon > 0 \) be arbitrary. Then there is \(N \) such that \(\rho_{D^*B}(f_n, f) < \epsilon/3 \) for all \(n \geq N \). Since \(f_N \) is \(D^*B \) a.p. so there is a relatively dense set \(\{\tau\} \) for which \(\rho_{D^*B}(f_N, f_N) < \epsilon/3 \). Hence
\[
\rho_{D^*B}(f_\tau, f) \leq \rho_{D^*B}(f_\tau, (f_N)_\tau) + \rho_{D^*B}((f_N)_\tau, f_N) + \rho_{D^*B}(f_N, f) \\
= \rho_{D^*B}(f, f_N) + \rho_{D^*B}((f_N)_\tau, f_N) + \rho_{D^*B}(f_N, f) \\
< \epsilon.
\]
Thus \(f \) is \(D^*B \) a.p.

Theorem 2.9. If \(f \) is \(D^*B \) a.p. and \(u(x) \) is almost periodic numerical valued function with its derivative \(u'(x) \) uniformly continuous then \(f(x)u(x) \) is \(D^*B \) a.p.

The proof of the theorem is similar to that of the corresponding theorem of [3]. In fact all the arguments of [3] will apply in this case taking into account the fact that the integration by parts formula for integral is given in Theorem 1.5.

Lemma 2.10. If \(f \) is \(D^*B \) a.p. then \(x*f \) is \(D^* \) a.p. for every \(x^* \in X^* \), where \(X^* \) is the conjugate space of the Banach space \(X \).

Proof. Take any \(x^* \in X^* \) and \(\epsilon > 0 \). Then there corresponds a relatively dense set \(\{\tau\} = \{\tau; f, \epsilon(||x^*|| + 1)^{-1}\} \) such that
\[
\sup_{0 < h \leq \infty \leq \infty} \left\| \int_x^{x+h} \{ f(t + \tau) - f(t) \} \, dt \right\| < \epsilon(||x^*|| + 1)^{-1}
\]
for all \(\tau \in \{\tau\} \). Now since \(f \) is \(D^*B \) a.p., \(f \) is \(D^*B \)-integrable on each closed interval \([a, b]\) and so by a result of [5] \(x^*f \) is \(D^* \)-integrable on each \([a, b]\) and therefore \(x^*f \in D^* \). Moreover
\[
x^* \int_x^{x+h} f(t) \, dt = \int_x^{x+h} x^*f(t) \, dt
\]
for all $x \in \mathbb{R}$ and $h \in [0, 1]$. Hence for all $\tau \in \{\tau\}$

$$
\sup_{0 \leq h \leq 1} \left| \int_{-\infty}^{x+h} \{x^* f(t + \tau) - x^* f(t)\} \, dt \right|
= \sup_{0 \leq h \leq 1} \left| \int_{-\infty}^{x+h} x^* \{f(t + \tau) - f(t)\} \, dt \right|
= \sup_{0 \leq h \leq 1} \left| x^* \int_{-\infty}^{x+h} \{f(t + \tau) - f(t)\} \, dt \right|
\leq \sup_{0 \leq h \leq 1} \|x^*\| \left\| \int_{-\infty}^{x+h} \{f(t + \tau) - f(t)\} \, dt \right\|
= \|x^*\| \sup_{0 \leq h \leq 1} \left\| \int_{-\infty}^{x+h} \{f(t + \tau) - f(t)\} \, dt \right\|
< \|x^*\|e(||x^*|| + 1)^{-1} < \epsilon.
$$

This completes the proof of the lemma.

Lemma 2.11. If $x^* f$ is D^* a.p. for all $x^* \in X^*$ and if

$$
F(t) = \int f(x) \, dx
$$

is bounded then F is weakly almost periodic (that is, $x^* F$ is almost periodic for all $x^* \in X^*$).

Proof. The function $F(t)$ being bounded $x^* F(t)$ is also bounded for all $x^* \in X^*$ and since

$$
x^* F(t) = (D^*) \int_0^t x^* f(x) \, dx,
$$

$x^* F$ is almost periodic by [3], that is, F is weakly almost periodic.

Theorem 2.12. If f is $D^* B$ a.p. and if

$$
F(t) = \int f(x) \, dx
$$

is such that the range of F is relatively compact then F is almost periodic.

Proof. By Lemma 2.10, $x^* f$ is D^* a.p. for all $x^* \in X^*$. The range of F being relatively compact (that is, its closure being compact) F is bounded. Hence by Lemma 2.11, F is weakly almost periodic. So by [1, page 45, property X] F is almost periodic.
THEOREM 2.13. The class of all D*B a.p. functions is identical with the D*B-closure of the set of all trigonometric polynomials

\[P(t) = \sum_{r=1}^{n} a_r e^{i\lambda_r t} \]

where \(a_r \in \mathbb{X}, \lambda_r \in \mathbb{R} \).

The theorem can be proved in the same way as the corresponding theorem of D a.p. functions of [3].

THEOREM 2.14. If \(f \) is D*B a.p. and is uniformly continuous then \(f \) is almost periodic.

PROOF. Let \(\phi: \mathbb{R} \to \mathbb{R} \) be a nonnegative function with support \([0, 1]\) having continuous derivative \(\phi' \) such that \(\int_0^1 \phi(t) \, dt = 1 \). For a fixed \(n \) let \(\phi_n(x) = n \phi(nx) \). Then \(\phi_n \) is a nonnegative function with support \([0, 1/n]\) having continuous derivative \(\phi'_n \) and \(\int_0^{1/n} \phi_n(t) \, dt = 1 \). Let

\[f_n(x) = \int_0^{1/n} f(t + x) \phi_n(t) \, dt. \]

Then we shall show that \(f_n \) is almost periodic for each \(n \). Let \(n \) be fixed and let \(\epsilon > 0 \) be arbitrary. Let

\[M = \sup_{0 \leq x \leq 1} |\phi_n(x)|, \quad M' = \sup_{0 \leq x \leq 1} |\phi'_n(x)|. \]

Since \(f \) is D*B a.p. there is a relatively dense set \(\{\tau\} \) such that

\[\rho_{D*B}(f, f) < \epsilon(M + M')^{-1} \]

for all \(\tau \in \{\tau\} \). Let \(\tau \in \{\tau\} \). Then writing \(F(x) = \int_0^x f(t) \, dt \) and \(\psi(x) = F(x + \tau) - F(x) \) we have employing Theorem 1.5

\[\|f_n(x + \tau) - f_n(x)\| \]

\[= \left\| \int_0^{1/n} \{f(t + x + \tau) - f(t + x)\} \phi_n(t) \, dt \right\| \]

\[= \left\| \left[\phi_n(t) \{F(t + x + \tau) - F(t + x)\} \right]_{t=0}^{1/n} \right\| \]

\[= \left\| \int_0^{1/n} \{F(t + x + \tau) - F(t + x)\} \phi'_n(t) \, dt \right\| \]

\[= \left\| \left[\phi_n(t) \psi(x + t) \right]_{t=0}^{1/n} - \int_0^{1/n} \psi(x + t) \phi'_n(t) \, dt \right\| \]

\[= \left\| \left[\phi_n(t) \{\psi(x + t) - \psi(x)\} \right]_{t=0}^{1/n} - \int_0^{1/n} \{\psi(x + t) - \psi(x)\} \phi'_n(t) \, dt \right\| \]

\[= \left\| \left[\phi_n \left(\frac{1}{n} \right) \left\{ \psi \left(x + \frac{1}{n} \right) - \psi(x) \right\} \right]_{t=0}^{1/n} - \int_0^{1/n} \{\psi(x + t) - \psi(x)\} \phi'_n(t) \, dt \right\|. \]
Now let $t \in [0, 1/n]$. Then from (2.1)
\[\|\psi(x + t) - \psi(x)\| = \left\| \int_x^{x+t} (f(\xi + t) - f(\xi)) \, d\xi \right\| \leq \rho_{D*B}(f, _) < \epsilon (M + M')^{-1}. \]

Hence from (2.2)
\[\|f_n(x + \tau) - f_n(x)\| < Me(M + M')^{-1} + M'e(M + M')^{-1} = \epsilon. \]
Since $\tau \in \{\tau\}$ is arbitrary, f_n is almost periodic for each n.

Now since f is uniformly continuous, for every $\epsilon > 0$ there is $\delta > 0$ such that
\[\|f(t + x) - f(x)\| < \epsilon \]
whenever $|t| < \delta$. Choose N such that $1/N < \delta$. Then when $n \geq N$ we have
\[\|f_n(x) - f(x)\| = \left\| \int_0^{1/n} f(t + x)\phi_n(t) \, dt - \int_0^{1/n} f(x)\phi_n(t) \, dt \right\| \]
\[= \left\| \int_0^{1/n} \{f(t + x) - f(x)\}\phi_n(t) \, dt \right\| \leq \int_0^{1/n} \|f(t + x) - f(x)\|\phi_n(t) \, dt < \epsilon. \]
Thus $\{f_n\}$ converges uniformly to f. Since each f_n is almost periodic, by [1, page 6, property V] f is almost periodic.

3. Mean values and Fourier series

Theorem 3.1. If f is $D*B$ a.p. then the mean value
\[\lim_{T \to \infty} \frac{1}{T} \int_0^T f(t) \, dt = M(f) \]
exists; further
\[\lim_{T \to \infty} \frac{1}{T} \int_a^{a+T} f(t) \, dt = M(f) \]
uniformly with respect to $a \in \mathbb{R}$.

Proof. Since
\[\frac{1}{T} \int_a^{a+T} e^{i\lambda t} \, dt = \begin{cases} 1 \\ \frac{1}{i\lambda T} [e^{i\lambda(a+T)} - e^{i\lambda a}] \end{cases} \]
if $\lambda = 0$, if $\lambda \neq 0$,
it is clear that
\[
\lim_{T \to \infty} \frac{1}{T} \int_{a}^{a+T} e^{i\lambda t} \, dt = \begin{cases}
1 & \text{if } \lambda = 0, \\
0 & \text{if } \lambda \neq 0
\end{cases}
\]
uniformly with respect to \(a \in \mathbb{R}\) and hence for any trigonometric polynomial \(P\),
\[
P(t) = \sum_{r=1}^{n} a_r e^{i\lambda_r t} \quad (a_r \in X, \lambda_r \in \mathbb{R}),
\]
\[
\lim_{T \to \infty} \frac{1}{T} \int_{a}^{a+T} P(t) \, dt = M(P)
\]
exists uniformly with respect to \(a \in \mathbb{R}\). Let \(\varepsilon > 0\) be arbitrary. By Theorem 2.13 there is a trigonometric polynomial \(P\) such that \(\rho_{D,B}(f, P) < \varepsilon\). Hence
\[
(3.1) \quad \sup_{-\infty < x < \infty} \left\| \int_{x}^{x+h} \{f(t) - P(t)\} \, dt \right\| < \varepsilon.
\]
Now corresponding to \(\varepsilon\) there is \(T_\varepsilon\) which is independent of \(a\), such that
\[
(3.2) \quad \left\| \frac{1}{T'} \int_{a}^{a+T'} P(t) \, dt - \frac{1}{T''} \int_{a}^{a+T''} P(t) \, dt \right\| < \varepsilon
\]
for all \(T', T'' > T_\varepsilon\).

Set \(T_0 = \max\{T_\varepsilon, 2\}\) and let \(T_1, T_2 > T_0\). Then there is a positive integer \(N\) such that \(N - 1 < T_1 \leq N\). Putting \(h = T_1/N\), since \(N > 2\), we have \(\frac{1}{2} < h \leq 1\). Now by (3.1) we have
\[
(3.3) \quad \left\| \frac{1}{T_1} \int_{a}^{a+T_1} \{f(t) - P(t)\} \, dt \right\| = \left\| \frac{1}{Nh} \int_{a}^{a+Nh} \{f(t) - P(t)\} \, dt \right\|
\]
\[
= \left\| \frac{1}{Nh} \sum_{n=1}^{N} \int_{a+(n-1)h}^{a+nh} \{f(t) - P(t)\} \, dt \right\|
\]
\[
\leq \frac{1}{Nh} \sum_{n=1}^{N} \left\| \int_{a+(n-1)h}^{a+nh} \{f(t) - P(t)\} \, dt \right\|
\]
\[
< \frac{1}{Nh} Ne
\]
\[
< 2\varepsilon
\]
since \(1/h < 2\). Similarly for \(T_2 > T_0\),
\[
(3.4) \quad \left\| \frac{1}{T_2} \int_{a}^{a+T_2} \{f(t) - P(t)\} \, dt \right\| < 2\varepsilon.
\]
Since \(T_0 \geq T_\varepsilon \) we have from (3.2), (3.3) and (3.4) when \(T_1, T_2 > T_0 \),

\[
\left\| \frac{1}{T_1} \int_a^{a+T_1} f(t) \, dt - \frac{1}{T_2} \int_a^{a+T_2} f(t) \, dt \right\| \\
\leq \left\| \frac{1}{T_1} \int_a^{a+T_1} f(t) \, dt - \frac{1}{T_1} \int_a^{a+T_1} P(t) \, dt \right\| \\
+ \left\| \frac{1}{T_1} \int_a^{a+T_1} P(t) \, dt - \frac{1}{T_2} \int_a^{a+T_2} P(t) \, dt \right\| \\
+ \left\| \frac{1}{T_2} \int_a^{a+T_2} f(t) \, dt - \frac{1}{T_2} \int_a^{a+T_2} P(t) \, dt \right\| \\
< 5\varepsilon.
\]

Thus since \(X \) is complete and since \(T_0 \) is independent of \(a \),

\[
\lim_{T \to \infty} \frac{1}{T} \int_a^{a+T} f(t) \, dt = M(f)
\]

exists uniformly with respect to \(a \in \mathbb{R} \), completing the proof.

Now if \(f \) is D*B a.p. then since \(u(x) = e^{-i\lambda x} \) is numerically valued almost periodic function and \(u'(x) \) is uniformly continuous, by Theorem 2.9 \(f(x)e^{-i\lambda x} \) is D*B a.p. for all \(\lambda \in \mathbb{R} \) and consequently

\[
M\{ f(x)e^{-i\lambda x} \} = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(x)e^{-i\lambda x} \, dx
\]

exists for every \(\lambda \in \mathbb{R} \). For a D*B a.p. function \(f \) we shall write

\[
a(\lambda) = a(\lambda; f) = M\{ f(x)e^{-i\lambda x} \}.
\]

Theorem 3.2. If \(f \) is D*B a.p. then \(a(\lambda; f) \) differs from the zero element \(\theta \) of \(X \) for only an enumerable set of values of \(\lambda \).

Proof. Let

\[
F(x) = \int_0^x f(t) \, dt.
\]

Then for a given \(h \in [0, 1] \) we have, by integrating by parts by Theorem 1.5.

\[
(3.5) \quad \frac{1}{T} \int_0^T (f(x + h) - f(x)) e^{-i\lambda x} \, dx = \frac{1}{T} \left[\{F(x + h) - F(x)\} e^{-i\lambda x} \right]_0^T \\
+ i\lambda \int_0^T \{F(x + h) - F(x)\} e^{-i\lambda x} \, dx.
\]
Also

\begin{equation}
(3.6) \quad \frac{1}{T} \int_0^T \{ f(x + h) - f(x) \} e^{-i\lambda x} \, dx
\end{equation}

\[= \frac{1}{T} \left[e^{i\lambda h} \int_h^{T+h} f(t) e^{-i\lambda t} \, dt - \int_T^T f(t) e^{-i\lambda t} \, dt \right]. \]

Now by Theorem 2.2 the function \(F(x + h) - F(x) \) is almost periodic. Let its Fourier coefficients be \(a_h(\lambda) \). Then applying Theorem 3.1 we get from (3.5) and (3.6), by letting \(T \to \infty \) since \(F(x + h) - F(x) \) is bounded,

\begin{equation}
(3.7) \quad (e^{i\lambda h} - 1) a(\lambda; f) = i\lambda a_h(\lambda).
\end{equation}

So, if \(\lambda \neq 2n\pi, n = 0, \pm 1, \pm 2, \ldots \)

\[a(\lambda; f) = \frac{i\lambda}{e^{i\lambda h} - 1} a_h(\lambda). \]

Since \(a_h(\lambda) \neq \theta \) for at most enumerable number of \(\lambda \), \(a(\lambda) \neq \theta \) for these enumerable \(\lambda \) and probably for \(\lambda = 2n\pi, n = 0, \pm 1, \pm 2, \ldots \). Thus \(a(\lambda) \) differs from \(\theta \) for at most an enumerable set of values of \(\lambda \). This completes the proof of the theorem.

Let \(\{\lambda_n\} \) be the enumerable set such that \(a(\lambda_n) \neq \theta \). Putting \(a_n = a(\lambda_n) \) we say that \(\sum a_n e^{i\lambda_n x} \) is the Fourier series of \(f \) and write

\[f \sim \sum_n a_n e^{i\lambda_n x}. \]

Lemma 3.3. If \(f \) is \(\text{D}^*\text{B} \) a.p. and \(x^* \in X^* \) then

\[x^* a(\lambda; f) = a(\lambda; x^* f). \]

Proof.

\[x^* a(\lambda; f) = x^* M\{ f(x) e^{-i\lambda x} \} \]

\[= x^* \lim_{T \to \infty} \frac{1}{T} (\text{D}^*\text{B}) \int_0^T f(x) e^{-i\lambda x} \, dx \]

\[= \lim_{T \to \infty} \frac{1}{T} x^* (\text{D}^*\text{B}) \int_0^T f(x) e^{-i\lambda x} \, dx \]

since \(x^* \) is continuous. Now since a Denjoy-Bochner integrable function is Denjoy-Pettis integrable with integrals equal [5], we have

\[x^* (\text{D}^*\text{B}) \int_0^T f(x) e^{-i\lambda x} \, dx = (\text{D}^*) \int_0^T x^* f(x) e^{-i\lambda x} \, dx \]

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 11 Nov 2018 at 12:00:28, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788700022047
and hence
\[x^*a(\lambda; f) = \lim_{T \to \infty} \frac{1}{T} \int_0^T x^*f(x)e^{-i\lambda x} \, dx \]
\[= M\{x^*f(x)e^{-i\lambda x}\} \]
\[= a(\lambda; x^*f). \]

THEOREM 3.4 (Uniqueness Theorem). If two D*B a.p. functions \(f \) and \(g \) have same Fourier series then

\[\rho_{D*B}(f, g) = 0. \]

PROOF. Let \(x^* \in X^* \) be arbitrarily chosen. By Lemma 2.10 \(x^*f \) and \(x^*g \) are D* a.p. scalar functions and by Lemma 3.3 they have same Fourier series. As the corresponding theorem of [3] it can be shown that \(\rho_{D*}(x^*f, x^*g) = 0 \), that is,

\[\sup_{0 \leq h \leq 1} \left| (D^*) \int_x^{x+h} \{x^*f(t) - x^*g(t)\} \, dt \right| = 0. \]

Now by our previous remark

\[x^*(D*B) \int_x^{x+h} \{f(t) - g(t)\} \, dt = (D^*) \int_x^{x+h} x^*\{f(t) - g(t)\} \, dt \]

and hence

\[\sup_{0 \leq h \leq 1} \left| x^*(D*B) \int_x^{x+h} \{f(t) - g(t)\} \, dt \right| = 0. \]

Therefore,

\[x^*(D*B) \int_x^{x+h} \{f(t) - g(t)\} \, dt = 0 \]

for all \(x \in \mathbb{R} \) and \(h \in [0, 1] \). Since \(x^* \) is arbitrary, by Hahn-Banach Theorem

\[(D*B) \int_x^{x+h} \{f(t) - g(t)\} \, dt = 0 \]

for all \(x \in \mathbb{R} \) and \(h \in [0, 1] \). Therefore

\[\sup_{0 \leq h \leq 1} \left\| \int_x^{x+h} \{f(t) - g(t)\} \, dt \right\| = 0, \]

that is,

\[\rho_{D*B}(f, g) = 0. \]
4. Bochner-Fejer summability of Fourier series

We shall show that if \(f \) be \(D^*B \) a.p. then the Fourier series of \(f \) is Bochner-Fejer summable to \(f \) with respect to the metric \(\rho_{D^*B} \) defined on the space of all \(D^*B \) a.p. functions. For this purpose we shall use the ‘Bochner-Fejer Kernel’ and the ‘Bochner-Fejer Polynomials’ the details of which are discussed in [2, pages 46-50], [1, page 26] and [4, page 153].

Let \(f \) be \(D^*B \) a.p. and let \(f(t) \sim \sum a_k e^{i\lambda_k t} \). Let \(\beta_1, \beta_2, \ldots \) be a basis of the sequence \(\{\lambda_k\} \) of the Fourier exponents of \(f \). For each positive integer \(m \) we consider the Bochner-Fejer Kernel

\[
K_m(t) = \sum \left(1 - \frac{|v_1|}{(m!)^2} \right) \cdots \left(1 - \frac{|v_m|}{(m!)^2} \right) \exp \left(- \frac{it}{m!} \sum_{k=1}^{m} v_k \beta_k \right)
\]

and the Bochner-Fejer polynomial for \(f \)

\[
\sigma_m(t) = \sigma_m(t; f) = \sum \left(1 - \frac{|v_1|}{(m!)^2} \right) \cdots \left(1 - \frac{|v_m|}{(m!)^2} \right) \times a \left(\frac{1}{m!} \sum_{k=1}^{m} v_k \beta_k; f \right) \exp \left(\frac{it}{m!} \sum_{k=1}^{m} v_k \beta_k \right),
\]

where the first summations in (4.1) and (4.2) extend to all \(v_j, \ |v_j| \leq (m!)^2, \ j = 1, 2, \ldots, m \), and \(a(\lambda; f) \) in (4.2) is defined by

\[
a(\lambda; f) = M\{ fe^{-i\lambda x} \}.
\]

If, however, the basis contains a finite number of elements \(\beta_1, \beta_2, \ldots, \beta_p \) then we take

\[
\sigma_m(t) = \sum \left(1 - \frac{|v_1|}{(m!)^2} \right) \cdots \left(1 - \frac{|v_p|}{(m!)^2} \right) \times a \left(\frac{1}{m!} \sum_{k=1}^{p} v_k \beta_k; f \right) \exp \left(\frac{it}{m!} \sum_{k=1}^{p} v_k \beta_k \right),
\]

the summation being extended to \(|v_j| \leq (m!)^2, \ j = 1, 2 \cdots p \) with similar modification for \(K_m(t) \). It can be verified that

\[
\sigma_m(t; f) = \lim_{T \to \infty} \int_0^T K_m(u) f(u + t) \, du.
\]

In what follows we need the function

\[
\phi(x, h) = \int_x^{x+h} f(t) \, dt, \quad x \in \mathbb{R}, \ h \in [0, 1].
\]
For fixed $h \in [0, 1]$ this is a function of x alone which is almost periodic by Theorem 2.2. Therefore for arbitrary but fixed $h \in [0, 1]$, the $\sigma_m(x; \phi)$ will have the same meaning as given in (4.2).

Theorem 4.1. Let f be D^*B a.p. and let

$$f(t) \sim \sum a_k e^{i\lambda_k t}.$$

Then the sequence of trigonometric polynomials $\{\sigma_m(t; f)\}$ converges to f with respect to the metric ρ_{D^*B} as $m \to \infty$.

We shall complete the proof of the theorem in three lemmas.

Lemma 4.2. If f is D^*B a.p. then

$$\sigma_m(x; \phi) \to \phi(x, h)$$

as $m \to \infty$ uniformly with respect to $x \in \mathbb{R}$ and $h \in [0, 1]$ where $\phi(x, h) = \int_{x + h} f(t) \, dt$.

Proof. By Theorem 2.2 $\phi(x, h)$ is almost periodic in $x \in \mathbb{R}$ uniformly with respect to $h \in [0, 1]$. Hence by Lemma 2.3 the Banach valued function $\Phi: \mathbb{R} \to \mathbb{C}_x[0, 1]$ defined by $\Phi(t) = \phi(t, \cdot)$ is almost periodic. If

$$\Phi(t) \sim \sum b_n e^{i\lambda_n t}$$

then $b_n \in \mathbb{C}_x[0, 1]$ and

(4.3) $$b_n = \lim_{T \to \infty} \frac{1}{T} \int_a^{a+T} \Phi(t) e^{-i\lambda_n t} \, dt$$

uniformly with respect to a (see [4, page 146]). By the definition of Φ we can write

$$\Phi(t) e^{-i\lambda_n t} = \phi(t, \cdot) e^{-i\lambda_n t}$$

and so

$$\frac{1}{T} \int_a^{a+T} \Phi(t) e^{-i\lambda_n t} \, dt = \frac{1}{T} \int_a^{a+T} \phi(t, \cdot) e^{-i\lambda_n t} \, dt. $$

Hence from (4.3)

$$\lim_{T \to \infty} \left\| \frac{1}{T} \int_a^{a+T} \Phi(t) e^{-i\lambda_n t} \, dt - b_n \right\|_{\mathbb{C}_x} = 0$$

uniformly with respect to a. That is

$$\lim_{T \to \infty} \sup_{0 \leq h \leq 1} \left\| \frac{1}{T} \int_a^{a+T} \phi(t, h) e^{-i\lambda_n t} \, dt - b_n(h) \right\| = 0$$
uniformly with respect to \(a \). Hence
\[
\lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \phi(t, h) e^{-i \lambda_n t} \, dt = b_n(h)
\]
uniformly with respect to \(a \) and \(h \). So, \(b_n(h) \) are the Fourier coefficients of \(\phi(t, h) \) and the Fourier exponents of \(\Phi(t) \) and \(\phi(t, h) \) will remain the same. Now it is proved in [1, page 26] that
\[
\lim_{m \to \infty} \sigma_m(t; \Phi) = \Phi(t)
\]
uniformly with respect to \(t \), where \(\sigma_m(t; \Phi) \) is defined as in (4.2) and the limit in (4.4) is taken with respect to the Banach space in which \(\Phi(t) \) lies and so (4.4) becomes
\[
\| \sigma_m(t; \Phi) - \Phi(t) \|_{C_x} \to 0
\]
as \(m \to \infty \) uniformly with respect to \(t \). That is
\[
\sup_{0 \leq h \leq 1} \| \sigma_m(t; \phi) - \phi(t, h) \| \to 0
\]
as \(m \to \infty \) uniformly with respect to \(t \). Thus
\[
\sigma_m(t; \phi) \to \phi(t, h)
\]
as \(m \to \infty \) uniformly with respect to \(t \) and \(h \).

Lemma 4.3. If \(f \) is D* B a.p. then for each \(h \in [0, 1] \)
\[
\int_{x}^{x+h} \sigma_m(t; f) \, dt = \sigma_m(x; \phi).
\]

Integrating (4.2) and using (3.7) the proof can be completed.

Lemma 4.4. If \(f \) is D* B a.p. then \(\sigma_m(t; f) \to f(t) \) as \(m \to \infty \) with respect to the metric \(\rho_{D*B} \).

Proof. Let \(\phi(x, h) = \int_{x}^{x+h} f(t) \, dt \). Then by Lemma 4.2
\[
\sigma_m(x; \phi) \to \phi(x, h)
\]
as \(m \to \infty \) uniformly with respect to \(x \in \mathbb{R} \) and \(h \in [0, 1] \). So,
\[
\sup_{-\infty < x < \infty} \sup_{0 \leq h \leq 1} \| \sigma_m(x; \phi) - \phi(x, h) \| \to 0
\]
as \(m \to \infty \). Hence by Lemma 4.3
\[
\sup_{-\infty < x < \infty} \left\| \int_{x}^{x+h} \sigma_m(t; f) \, dt - \int_{x}^{x+h} f(t) \, dt \right\| \to 0
\]
as $m \to \infty$. So,

$$\sup_{-\infty < x < \infty} \left\| \int_{x}^{x+h} \{ \sigma_m(t; f) - f(t) \} \, dt \right\| \to 0,$$

that is,

$$\rho_{DB}(\sigma_m(t; f), f) \to 0$$

as $m \to \infty$. This completes the proof of Theorem 4.1.

References

Department of Mathematics
The University of Burdwan
Burdwan 713104, West Bengal
India