ON A RELATION BETWEEN THE "SQUARE" FUNCTIONAL EQUATION AND THE "SQUARE" MEAN-VALUE PROPERTY

BY
HIROSHI HARUKI

1. Introduction. We consider the following functional equation

$$
\begin{align*}
& f(x+t, y+t)+f(x-t, y+t) \tag{1}\\
& +f(x-t, y-t)+f(x+t, y-t)=4 f(x, y)
\end{align*}
$$

where $f=f(x, y)$ is a real-valued function of two real variables x, y on the whole $x y$-plane and t is a real variable.

With regard to the geometric meaning of (1), the equation is called the "square" functional equation.

The following theorem was proved in [1] by using distributions and analytic function theory (see also [3]):

Theorem A. Let f be a real-valued continuous function of two real variables x, y on the whole $x y$-plane; it satisfies (1) on the whole $x y$-plane, if and only if it is a harmonic polynomial of degree 4, i.e.

$$
\begin{aligned}
f(x, y)= & a x y\left(x^{2}-y^{2}\right)+b\left(3 x^{2} y-y^{3}\right) \\
& +c\left(x^{3}-3 x y^{2}\right)+d x y+e\left(x^{2}-y^{2}\right)+f x+g y+h,
\end{aligned}
$$

where a, b, c, d, e, f, g, h are arbitrary real constants.
A real-valued function U of two real variables x, y is said to have the Gauss mean-value property on the whole $x y$-plane if for every $\left(x_{0}, y_{0}\right)$ the value $U\left(x_{0}, y_{0}\right)$ is the mean of the values of U over an arbitrary circle whose center is $\left(x_{0}, y_{0}\right)$. Every function harmonic on the whole $x y$-plane possesses the Gauss mean-value property. Conversely (due to Koebe), if a function U is continuous on the whole $x y$-plane and has the Gauss mean-value property on the whole $x y$-plane, then U is harmonic on the whole $x y$-plane. Now we replace the circle by an arbitrary square whose sides are parallel to the coordinate axes. A real-valued function U of two real variables x, y is said to have the "square" mean-value property on the whole $x y$-plane if for every $\left(x_{0}, y_{0}\right)$ the value $U\left(x_{0}, y_{0}\right)$ is the mean of the values of U over an arbitrary square whose center is $\left(x_{0}, y_{0}\right)$ and whose sides are parallel

[^0]to the coordinate axes, i.e.
\[

$$
\begin{equation*}
\frac{1}{8 l} \int_{A B C D} f(x, y) d s=f(G), \tag{2}
\end{equation*}
$$

\]

where $A B C D$ is an arbitrary square with center at G whose sides are parallel to the coordinate axes and $2 l$ stands for the length of one of the sides of $A B C D$.

The purpose of this note is to prove the following
Theorem. If f is a real-valued continuous function of two real variables x, y on the whole $x y$-plane, then (1) is equivalent to (2).
2. A proof that (1) implies (2). First of all we shall explain a notation which will be used in this proof. Suppose that $A B C D$ is an arbitrary square whose sides are parallel to the coordinate axes. We divide each of the four sides of this square into 2^{n} equal parts where n is an arbitrary natural number and denote the arithmetic mean of the $2^{n} \times 4=2^{n+2}$ values of f at these 2^{n+2} vertices of these 2^{n+2} division points by $M\left(A B C D, 2^{n+2}, f\right)$.

We shall prove

$$
\begin{equation*}
M\left(A B C D, 2^{n+2}, f\right)=f(G) \tag{3}
\end{equation*}
$$

where G is the center of the square $A B C D$.
The proof depends on induction on n. Since (1) holds, we have (see [1, p. 43])

$$
\begin{equation*}
f(x+t, y)+f(x, y+t)+f(x-t, y)+f(x, y-t)=4 f(x, y) . \tag{4}
\end{equation*}
$$

By (1), (4) the result is true for $n=1$. Suppose that P, Q, R, S are the four middle points of the four sides $A B, B C, C D, D A$ of the square $A B C D$ and that our theorem is true for $n=m$. We divide each of the four sides of the square $A B C D$ into 2^{m+1} equal parts. Considering the inductive hypothesis in the four squares $A P G S$, $P B Q G, G Q C R, S G R D$, we have

$$
\begin{align*}
& M\left(A P G S, 2^{m+2}, f\right)=f\left(G_{1}\right), \tag{5}\\
& M\left(P B Q G, 2^{m+2}, f\right)=f\left(G_{2}\right), \\
& M\left(G Q C R, 2^{m+2}, f\right)=f\left(G_{3}\right), \\
& M\left(S G R D, 2^{m+2}, f\right)=f\left(G_{4}\right),
\end{align*}
$$

where $G_{1}, G_{2}, G_{3}, G_{4}$ are the four centers of the four squares $A P G S, P B Q G, G Q C R$, $S G R D$, respectively.

Observing that the quadrilateral $G_{1} G_{2} G_{3} G_{4}$ is a square with center at G whose sides are parallel to the coordinate axes, by (1) we have

$$
\begin{equation*}
f\left(G_{1}\right)+f\left(G_{2}\right)+f\left(G_{3}\right)+f\left(G_{4}\right)=4 f(G) . \tag{9}
\end{equation*}
$$

By adding (5), (6), (7), (8), (9) side by side we have

$$
\begin{align*}
& M\left(A P G S, 2^{m+2}, f\right)+M\left(P B Q G, 2^{m+2}, f\right)+M\left(G Q C R, 2^{m+2}, f\right) \tag{10}\\
& \quad+M\left(S G R D, 2^{m+2}, f\right)=4 f(G) .
\end{align*}
$$

Now we note that each of the division points for $M\left(A P G S, 2^{m+2}, f\right)$, $M\left(P B Q G, 2^{m+2}, f\right), M\left(G Q C R, 2^{m+2}, f\right), M\left(S G R D, 2^{m+2}, f\right)$ is a division point for $M\left(A B C D, 2^{m+3}, f\right)$; considering the overlapping division points and using (4), we have

$$
\begin{align*}
& M\left(A P G S, 2^{m+2}, f\right)+M\left(P B Q G, 2^{m+2}, f\right)+M\left(G Q C R, 2^{m+2}, f\right) \\
&+M\left(S G R D, 2^{m+2}, f\right)= 2 M\left(A B C D, 2^{m+3}, f\right)+\frac{1}{2^{m+2}} 4 f(G) \tag{11}\\
&+\frac{1}{2^{m+2}} 4 f(G)+\frac{1}{2^{m+2}} 2\left(2^{m}-1\right) 4 f(G)
\end{align*}
$$

By (10), (11) we have

$$
M\left(A B C D, 2^{m+3}, f\right)=f(G)
$$

Thus (3) is proved.
As $n \rightarrow+\infty$ in (3), by the continuity of f we have (2).
3. A proof that (2) implies (1). (See [2].) We shall use the following:

Lemma. Suppose that f is a real-valued continuous function of two real variables x, y on the whole $x y$-plane. If f satisfies (2), then

$$
\frac{1}{4 l^{2}} \iint_{A B C D} f(x, y) d x d y=f(G)
$$

Proof. Suppose that $A_{1} B_{1} C_{1} D_{1}$ is a square whose sides are parallel to the sides of $A B C D$ and whose center is G. Then we have

$$
\begin{align*}
\frac{1}{4 l^{2}} \iint_{A B C D} f(x, y) d x d y=\frac{1}{4 l^{2}}\left(\iint_{\Delta G A B}\right. & f(x, y) d x d y+\iint_{\Delta G B C} f(x, y) d x d y \tag{12}\\
& \left.\quad+\iint_{\Delta G C D} f(x, y) d x d y+\iint_{\Delta G D A} f(x, y) d x d y\right) .
\end{align*}
$$

Using the well-known theorem concerning repeated integration in each of the four integrals of the right side of (12), the right side of (12) is equal to

$$
\frac{1}{4 l^{2}} \int_{0}^{l}\left(\int_{A_{1} B_{1} C_{1} D_{1}} f(x, y) d s\right) d h
$$

where we denote the differential of the arc length by $d s$ and denote the length of
one of the sides of $A_{1} B_{1} C_{1} D_{1}$ by $2 h$. Hence, by (12) we have

$$
\begin{equation*}
\frac{1}{4 l^{2}} \iint_{A B C D} f(x, y) d x d y=\frac{1}{4 l^{2}} \int_{0}^{l}\left(\int_{A_{1} B_{1} C_{1} D_{1}} f(x, y) d s\right) d h \tag{13}
\end{equation*}
$$

By hypothesis we have

$$
\begin{equation*}
\int_{A_{1} B_{1} C_{1} D_{1}} f(x, y) d s=8 h f(G) . \tag{14}
\end{equation*}
$$

Hence, by (13), (14) the lemma is proved.
Proof that (2) implies (1). We denote the four middle points of the four sides $A B, B C, C D, D A$ of $A B C D$ by P, Q, R, S, respectively. Furthermore, we denote the four centers of the four squares $A P G S, P B Q G, G Q C R, S G R D$ by $G_{1}, G_{2}, G_{3}, G_{4}$, respectively.

By hypothesis and by the above lemma we have

$$
\begin{align*}
& \frac{1}{l^{2}} \iint_{A P G S} f(x, y) d x d y=f\left(G_{1}\right) \tag{15}\\
& \frac{1}{l^{2}} \iint_{P B Q G} f(x, y) d x d y=f\left(G_{2}\right) \tag{16}
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{l^{2}} \iint_{G Q C R} f(x, y) d x d y=f\left(G_{3}\right) \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{l^{2}} \iint_{S G R D} f(x, y) d x d y=f\left(G_{4}\right) \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{4 l^{2}} \iint_{A B C D} f(x, y) d x d y=f(G) \tag{19}
\end{equation*}
$$

Adding (15), (16), (17), (18), and using (19), we have

$$
\begin{equation*}
f\left(G_{1}\right)+f\left(G_{2}\right)+f\left(G_{3}\right)+f\left(G_{4}\right)=4 f(G) . \tag{20}
\end{equation*}
$$

Since G is the center of the square $G_{1} G_{2} G_{3} G_{4}$ whose sides are parallel to the coordinate axes and we can consider that $G_{1} G_{2} G_{3} G_{4}$ is an arbitrary square whose sides are parallel to the coordinate axes, by (20) we have (1).

Corollary to Theorem. Suppose that f is a real-valued continuous function of two real variables x, y on the whole $x y$-plane. The function f satisfies (2), if and only if

$$
\begin{aligned}
f(x, y)= & a x y\left(x^{2}-y^{2}\right)+b\left(3 x^{2} y-y^{3}\right)+c\left(x^{3}-3 x y^{2}\right) \\
& +d x y+e\left(x^{2}-y^{2}\right)+f x+g y+h
\end{aligned}
$$

where a, b, c, d, e, f, g, h are arbitrary real constants.

Proof. By Theorem A and the above theorem the proof is clear.
Acknowledgement. I wish to thank the referee for his linguistic suggestions.

References

1. J. Aczél, H. Haruki, M. A. McKiernan, and G. N. Sakovič, General and regular solutions of functional equations characterizing harmonic polynomials, Aequationes Math. 1 (1968), 37-53.
2. H. Haruki, On a certain definite integral mean value problem (in Japanese), Sûgaku, 20 (1968), 165-166.
3. H. Swiatak, On the regularity of the distributional and continuous solutions of the functional equations $\sum_{i=1}^{k} a_{i}(x, t) f\left(x+\varphi_{i}(t)\right)=b(x, t)$, Aequationes Math. 1 (1968), 6-19.

University of Waterloo,
Waterloo, Ontario

[^0]: Received by the editors June 2, 1970 and, in revised form, July 28, 1970.
 2-С.м.в.
 161

