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SUMMARY

In a two-dimensional stepping-stone model of finite size, if a pair of
alleles happen to segregate in the whole population, marked local differ-
entiation of gene frequencies can occur only if migration between colonies
is sufficiently rare so that Nm < 1, where N is the effective size of each
colony and m is the rate at which each colony exchanges individuals with
four surrounding colonies each generation. On the other hand, if Nm ^ 4,
the whole population behaves as if it were panmictic and the allelic fre-
quencies become uniform over the entire distribution range unless muta-
tion is unusually high. Tendency toward local differentiation is much
weaker in two-dimensional than in one-dimensional habitats.

Very often, a mode of selection is inferred from an observed pattern of poly-
morphism in natural populations. Thus, if the same pair of alleles are found in uni-
form frequencies over wide distribution range of the species, it is claimed that
natural selection is actively maintaining these frequencies. If, on the other hand,
different alleles are fixed in different local populations, or if there is a cline, these are
often considered to be the result of local adaptation of these alleles. Furthermore, if
the frequencies of alleles are uniform within each locality but different among
localities, this is also assumed to indicate the existence of some form of ' balancing
selection'.

Actually, selection can be invoked to explain any pattern of polymorphism in
natural populations. Often, such presumed selection is used to refute the neutral
polymorphism theory. The purpose of the present paper is to show that all the above
patterns of polymorphism can equally be explained in terms of migration and ran-
dom frequency drift of selectively neutral mutations.

In his recent study on the stepping-stone models of finite size, Maruyama (19716)
has shown that for a two-dimensional habitat, marked local differentiation of gene
frequencies can occur if migration is sufficiently rare between colonies so that

mN < 1, (1)

where N is the effective size of each colony and m is the rate at which each colony
exchanges individuals with four surrounding colonies each generation so that the
migration rate between a pair of adjacent colonies is Jra. Random mating is assumed
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within each colony. In deriving this formula, it was assumed that the number
of colonies (k) is large and they are arranged on a torus. The main reason for using
torus-like space is that it facilitates exact mathematical analysis (see Maruyama,
19706). For a more realistic but less tractable model of rectangular arrangement of
colonies, however, results are similar (for details, see Maruyama, 19706). On the
other hand, if

mN > 1, (2)

local differentiation is less pronounced, and, especially if

mN > 4, (3)
the whole population tend to behave as if it were a single panmictic population. In
such a population, the average length of time from occurrence until fixation of a
neutral mutant is 4:NT, where NT = kN (Maruyama, 1971a). A slight difference of
gene frequencies may still occur among colonies and a detailed mathematical study
on this point will be published elsewhere (Maruyama, 1972). Since Nm is the average
number of individuals which each colony exchanges with four surrounding colonies
each generation, condition (3) may almost always be satisfied by actively moving
animals. In addition, there is a good possibility of occasional long-range migration
in natural populations, making practical panmixis still easier to attain. It is possible,
however, that condition (1) applies often to plant species with low migration ability.

These conditions are pertinent when a small number of alleles are segregating in
the population. These conditions have been obtained by investigating the process of
random genetic drift in the entire population. The crucial quantities describing this
process are the dominant eigenvalue (A) and the corresponding eigenvector of the
relevant recurrence equation. The former gives the rate of steady decay of genetic
variation while the latter gives a set of coefficients of kinship between colonies. It is
known (Wright, 1931) that in a single panmictic population of effective size Ne the
rate of steady decay of genetic variance is \j{2Ne) per generation, so that, in our
terminology (using the transition probability matrix method)

1-A = l/(2JVe).

This also gives the ultimate rate at which the population becomes homallelic if the
number of coexisting alleles is two (although, more generally for n alleles the rate of
losing one of the n alleles is n(n—l)j2Ne, see Kimura, 1955). Therefore, we should
expect that if

1 - A = l/(2i\rT), (4)
in which NT = kN, then the entire population will form a panmictic population.
I t can be shown that under condition (2) this is valid as the first approximation.

Applying Robertson's (1964) result to the present model we have in general

where f0 is the coefficient of kinship of individuals within a colony and/ is that of two
different individuals randomly taken from the whole population. Note that Robertson
considered a mating system in which each individual has the same number of
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progeny, whereas we are considering a system in which this number varies binomially
so that the above formula has the factor 2 instead of 4 as in Robertson's original
formula. Thus, condition (4) implies /0 = / . Formula (5) also shows that the ratio
(1 — /o)/(l —/) is an appropriate indicator of local differentiation by random drift.

On the other hand, it can be shown that, if the rate of migration is lower (con-
dition (1)), we have

1-A = ml(2k) (6)

as the first approximation. In this case, local differentiation of gene frequencies is
expected (for exact nature of the eigenvalue and eigenvector, see Maruyama, 1971 b).
The transition from practical panmixis to marked local differentiation is rather rapid
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Fig. 1. Relationship between the rate of steady decay of genetic variation and the
migration rate in a two-dimensional stepping-stone model. The two lines in the
figure represent two approximations (4) and (6), while the dots represent exact
numerical values computed by a matrix iteration method of Maruyama (19716)
applied to the case of 190 x 190 colonies arranged on a torus (k = 190 x 190). iV is
the effective size of each colony, m is the rate at which each colony exchanges indi-
viduals with four surrounding colonies each generation, and A is the dominant
eigenvalue representing the steady decay.

as shown in Fig. 1, where exact numerical values of 1 —A are plotted with dots. The
two lines given by equations (4) and (6) meet at mN = 1 on the abscissa. This point
divides the set of values of mN into two regions, 0 ^ mN < 1 and mN ^ 1; the
approximation (6) is valid in the former while (4) is valid in the latter.

Fig. 2 illustrates two examples from Monte Carlo experiments, one (A) illustrating
the case of practical panmixis and the other (B) that of marked local differentiation.
In these examples the total population consists of 20 x 20 = 400 colonies each with
N = 10 breeding individuals. The simulation experiments (using TOSBAC 3400-
computer) were continued over many generations and a new mutant allele is intro-
duced whenever the whole population becomes homallelic. In the course of an experi-
ment, if the average frequency, q, of a mutant allele happened to become 0-1, its
frequencies in all colonies were printed out to see the amount of local differentiation.
Fig. 2 A shows an example with mN = 4 while Fig. 2B that with mN = 0-25. Note
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that in the latter case, in which local differentiation is evident, a cline is formed
between regions where mutant frequencies are high and those where they are low.
This pattern mimics a cline formed by selection.

When compared with the two-dimensional habitat, the tendency toward local
differentiation is much more pronounced in one-dimensional habitat. This is illu-
strated in Fig. 3 using four examples from Monte Carlo experiments. In these
examples the total population consists of 10 colonies arranged on a circle and each
colony consists of N = 50 breeding individuals (q = 0-2).
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Fig. 2. Two examples from Monte Carlo experiments simulating the genetic change
in a two-dimensional stepping-stone model with 20 x 20 colonies arranged on a torus.
The product of the migration rate (m) and the colony size (N) is 4-0 in A but 0-25 in
B. In both examples the average frequency of one of the alleles is 0-1 (q = 0-1). The
dark sector in each circle represents the average frequency of this allele in 6-25
neighbouring colonies.

mN=25 mN=2-5 mN=0-25 mN=0-1

Fig. 3. Four examples from Monte Carlo experiments similar to Fig. 2 but assuming
ten colonies arranged on a circle (a circular stepping-stone model).

I t was shown by Maruyama (1970a) that, in circular stepping-stone models, a
marked local differentiation occurs if

2mN < kj-n2. (7)
This corresponds to condition (1) in the two-dimensional case. An important point
to note here is that in the one-dimensional case a marked local differentiation is
possible whenever k (number of colonies) is large.

Let us now consider a situation in which mutations occur at a constant rate each
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generation. Following Kimura & Crow (1964) we shall assume that the number of
possible allelic states is so large that whenever a mutant appears it represents a new,
not pre-existing allele. When equilibrium is reached between mutational produc-
tion of alleles and their random extinction, a certain number of alleles are main-
tained in the population. Therefore, comparison between the effective number of
alleles in the whole population and that in each colony will reveal the amount of local
differentiation. The ratio between these two effective numbers of alleles turns out to
be/0//. This quantity is called by Crow & Maruyama (1971) the 'effective number of
colonies' (ke). Table 1 l ists/and/0 for several examples of the stepping-stone model
of finite size. The table has been calculated by using formulae (3-8), (3-9), (5-10) and
(5-12) of Maruyama (19706). The table shows that for 4NTu up to 0-1 (cases 1-10),
local differentiation is slight if mN ^ 4, but is pronounced if mN < 1. For higher
rate of production of mutants such that 4NTu ^ 2 (cases 11—15), marked local
differentiation can occur as will be discussed later. Case 16 is an example of one-
dimensional arrangement of colonies where tendency for local differentiation is
much stronger than in the cases of two-dimensional arrangements.

Table 1. Exact numerical values of several statistics (/0, / , etc.) relating to the amount of
local differentiation for various combination of "k {^number of colonies), N (colony size),
u (mutation rate) and m (migration rate)

(NT stands for Nk. Those statistics were computed by using the analytical solutions of
Maruyama (19706). Of the 16 cases listed, only the last one is one-dimensional, all others
being two-dimensional.)

(Wo)
ase

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

k

200 x 200
200 x 200
100 x100
100 x100
200 x 200
200 x 200
200 x 200
100 x100
100 x100
100 x100
100 x100
500 x 500
1000 x1000
1000 x 1000
1000 x1000
1000 x 1

N

125
125
100
100
125
125
125
100
100
100
100
40

1000
1000
1000

10000

±NTu

0-05
005
0-05
005
010
010
0-10
0-10
010
0-10
200
2-00

100-00
100-00
10000
0-40

mN

0-2
0-5
10
4-0
0-1
0-2
0-5
1-0
4-0
100
1-0
100
10-0
100-0
400-0
4-0

/o

0-9605
0-9558
0-9540
0-9528
0-9496
0-9351
0-9215
0-9150
0-9106
0-9096
0-5597
0-3733
01081
0-0207
00124
0-8985

7
0-7891
0-8823
0-9193
0-9447
0-5037
0-6485
0-7842
0-8495
0-8940
0-9034
0-2202
0-3133
0-0089
0-0098
0-0099
0-2537

Sol]
1-2171
1-0834
1-0378
1-0084
1-8854
1-4421
1-1752
1-0772
1-0186
10069
2-5413
11914

121239
2-1112
1-2561
3-5416

d-7)
0-1874
0-3752
0-5698
0-8555
01015
01845
0-3635
0-5643
0-8430
0-9354
0-5647
0-9127
0-9000
0-9890
0-9974
01361

Note that (1 — /0)/(l —/) is a good indicator of local differentiation when 4J$Tu is
small, say much less than unity. In such a case, both/0 and /a re close to unity and
the ratio /„// is not very informative as an indicator of local differentiation. On the
other hand, when ±NTu is much larger, say larger than 2, both/0 and/may be small
and (1 —/0)/(l —/) cannot be very informative. In such a case,/„// serves as a much
better indicator of local differentiation.
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Great difference between one- and two-dimensional habitats regarding their
tendency toward local differentiation can be shown by the following treatment where
mutation is also taken into account. First, consider two-dimensional distribution
of k colonies. Let u be the rate per gamete per generation for neutral mutation.
Suppose a mutant allele appears in one of the colonies. Let <r2 be the mean squared
distance of individual migration for one generation, taking one step as the unit
length. Then the mean squared distance between an individual having this mutant
and its descendants t generations later is ta2. In terms of standard deviation in one
direction (either horizontally or vertically), this is <rjt. Since \\u is the average
length of time between two consecutive substitutions of neutral mutants (cf. Crow &
Kimura (1970), p. 369), we should expect a marked local differentiation to occur by
random drift if the standard deviation of migration in this interval of time (i.e.
(cr*Jt with t = lju) is much smaller than the total length of the habitat in one direc-
tion; that is, *Jk. In such a situation, a new 'lucky' mutant always starts to increase
its frequency well before the previous mutant reaches complete fixation.

Noting that cr2 = m in the stepping-stone model, we have

V(W«) < Vfc- (8)
Squaring both sides of this inequality, multiplying through N and noting Nlc = NT,
this gives

Nm <^ NTu (9)

as a condition for marked local differentiation.
Next, consider the opposite situation in which ^(mju) is much larger than ^k.

Then, the whole population should behave as if it were panmictic. It is likely that if
the standard deviation ^(m/u) is twice or more of the entire length *Jk, practical
panmixis is attained. Thus, we have approximately

Nm > 4NTu (10)

as a condition for practical panmixis for a two-dimensional habitat.
So far, we have obtained two set of conditions, (1), (3) and (9), (10), using different

methods of treatment for the two-dimensional case. They are complementary and
their validity depends on the magnitude of NTu. Namely, if NTu is much smaller
than unity, conditions (1) and (3) are valid, for a segi'egating population contains at
most a pair of alleles and the type of analysis made by Maruyama (19716) is per-
tinent. The majority of observed protein polymorphisms may belong to this case.
If, on the other hand, NTu is much larger than unity, (9) and (10) are valid. A marked
local differentiation can occur if (9) is satisfied even if mN > 4. In addition practical
panmixis is possible under (10) even if NTu is very large. Table 1 lists several
examples to show these points.

A similar treatment as used to derive (9) can be applied to one-dimensional
arrangement of colonies. In this case the total length of habitat is Jc rather than ^Jk, so
that the condition for marked local differentiation becomes

J(m/u) <̂  k
o r Nm <£ NTuk. (11)
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Note that the right-hand side now contains factor k, so that a marked local differ-
entiation occurs whenever k is large, analogous to condition (7). These conditions
show that tendency toward local differentiation is much stronger in one-dimensional
than in two-dimensional habitats. The same conclusion has also been obtained by
Wright (1951) in his analysis of 'isolation by distance'.

Returning to condition (3), we should like to point out that observed pattern and
frequencies of protein polymorphisms in Drosophila, mouse and man may be
explained by neutral mutation-random drift theory by assuming that in these
species 4NTu is about 0-1 on the average per cistron and that there is sufficient
migration between colonies so that condition (3) is usually satisfied. If this is correct,
the majority of protein polymorphisms are a transient phase of molecular evolution
as recently claimed by Kimura & Ohta (1971).

We would like to thank Dr Kazutoshi Mayeda for reading the manuscript and correcting
the English. Thanks are also due to the referee for constructive criticism.
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