H-SEMIDIRECT PRODUCTS

ΒY

GEORG PESCHKE

ABSTRACT. The concept of H-semidirect product structure on a grouplike space is introduced. It is shown that the loop space ΩX of any based CW-complex X is the H-semidirect product of the identity path-component of ΩX with $\pi_1 X$. The set of free homotopy classes of maps into a Hsemidirect product inherits the structure of a semidirect product. This leads to new results concerning the nilpotency of homotopy classes of maps into a group-like space.

Introduction. Let G_0 be a path connected group-like space. The group $\mathscr{C}(G_0)$ of free homotopy classes of self homotopy equivalences of G_0 has the subgroup $H\mathscr{C}(G_0)$ consisting of those elements of $\mathscr{C}(G_0)$ (all of) whose representatives are at the same time H-maps. Given a (discrete) group Π and a homomorphism $\Phi: \Pi \to H\mathscr{C}(G_0)$, we shall say that Π acts on G_0 by classes of H-self homotopy equivalences.

If Π acts on G_0 by classes of H-self homotopy equivalences, we may mimic the construction of a semidirect product of discrete groups to obtain a new group-like space which we shall refer to as the H-semidirect product of G_0 with Π under Φ , denoted by $G_0 \rtimes \Pi$ (Definition 1.3).

Given any group-like space *G*, the set of path components Π of *G* has a canonical group structure, and Π acts on the identity component G_0 of *G* by classes of "inner" H-automorphisms. We may then form $G_0 \rtimes \Pi$ and obtain a canonical H-map $h:G_0 \rtimes \Pi \rightarrow G$, which turns out to be an H-equivalence if and only if all path components of *G* are open in *G* (Lemma 1.6). As a consequence the loop space ΩX of any based CW-complex *X* is the H-semidirect product of the identity component of ΩX with $\pi_1 X$ (Theorem 1.7).

The H-semidirect product structure on a group-like space can be utilized in various ways. If *Y* is a path-connected space, the group of free homotopy classes [Y, G] inherits from *G* the structure of a semidirect product $[Y, G_0] \rtimes \Pi$, which is nilpotent if and only if Π is nilpotent and Π acts nilpotently on $[Y, G_0]$. This leads to conditions under which [K, G] is nilpotent, where *K* is an iterated mapping cone. In particular, [K, G] is nilpotent for every finite dimensional CW-complex *K* if and only if $[S^n, G]$ is nilpotent for all $n \ge 0$ (Corollary 2.11). Thus §2 establishes a simultaneous generalization of

Received by the editors April 9, 1986, and, in revised form, September 1, 1986.

AMS Subject Classification (1980): 55D35, 55D45, 55E05, 55E35.

[©] Canadian Mathematical Society 1986.

G. W. Whitehead's work on "Nilpotency of mappings into group-like spaces" [6], where G was required to be path-connected, and Theorem (3.1) of Roitberg [3]. Corollary (2.11) has also been obtained by Scheerer [4] by direct inspection of the groups $[S^n, G]$.

The present paper evolved out of unpublished results of K. Varadarajan [5] (obtained in 1976) stating that for a locally path-connected topological group G, the group [Y, G] (Y path-connected) is a semidirect product. Furthermore, the earlier mentioned relation between the nilpotency of a semidirect product and the nilpotency of its factors is proven there. The algebraic result concerning the nilpotency of a semidirect product of groups was also obtained by P. J. Hilton [1].

I am most grateful to K. Varadarajan for making this material available to me as well as for various discussions I had with him.

§1. Construction of H-semidirect Products

Let G_0 be a path-connected group-like space with H-multiplication μ , H-inverse *i* and (homotopy) identity *e*. We write gg' for $\mu(g,g')$ and g^{-1} for i(g) if there is no danger of confusion. Let Π be a group and $\Phi: \Pi \to H^{\mathscr{C}}(G_0)$ a group homomorphism. We define the H-semidirect product of G_0 with Π under Φ and then give conditions for a group-like space to be a H-semidirect product.

For each $p \in \Pi$, fix a H-self homotopy equivalence $\varphi_p \in \Phi(p) \in H^{\mathscr{C}}(G_0)$. Define

$$m: (G_0 \times \Pi) \times (G_0 \times \Pi) \ni ((g, p), (g', p')) \mapsto (\mu(g, \varphi_p(g')), pp') \in G_0 \times \Pi$$

$$j: G_0 \times \Pi \ni (g, p) \mapsto (\varphi_{p^{-1}}(i(g)), p^{-1}) \in G_0 \times \Pi$$

(1.1) PROPOSITION. $(G, m) := (G_0 \times \Pi, m)$ is a group-like space with H-inverse map j.

PROOF. Step 1. m restricted to $G \lor G$ is homotopic to the folding map.

For
$$\xi \in G \lor G$$
,

$$m(\xi) = \begin{cases} (e\varphi_1(g'), p') & \text{if } \xi = ((e, 1), (g', p')) \\ (g\varphi_P(e), p) & \text{if } \xi = ((g, p), (e, 1)) \end{cases}$$

Let *F* be a homotopy of φ_1 into Id_{G_0} and for each $p \in \Pi$, let α_p be a path in G_0 joining $\varphi_p(e)$ to *e* (we must take $\alpha_1 := F_{|\{e\} \times I}$). This yields a homotopy

$$A: (G \lor G) \times I \ni (\xi, t) \mapsto \begin{cases} (eF(g', t), p') & \text{if } \xi = ((e, 1), (g', p')) \\ (g\alpha_p(t), p) & \text{if } \xi = ((g, p), (e, 1)) \end{cases} \in G$$

satisfying

$$A(\xi, 1) = \begin{cases} (\mu(e, g'), p') & \text{if } \xi = ((e, 1), (g', p')) \\ (\mu(g, e), p) & \text{if } \xi = ((g, p), (e, 1)) \end{cases}$$

Thus a homotopy of $\mu_{|G_0 \lor G_0}$ into the folding map of G_0 induces a homotopy of A(., 1), and hence of $m_{|G \lor G_2}$ into the folding map of G.

Step 2. Homotopy associativity of m. We must show that the maps $m(m \times Id)$, $m(Id \times m)$: $G \times G \times G \rightarrow G$ are homotopic.

Computing

$$m(m((g_1, p_1), (g_2, p_2)), (g_3, p_3)) = ((g_1\varphi_{p_1}(g_2))\varphi_{p_1p_2}(g_3), p_1p_2p_3)$$

$$m((g_1, p_1), m((g_2, p_2), (g_3, p_3))) = (g_1\varphi_{p_1}(g_2\varphi_{p_2}(g_3)), p_1p_2p_3)$$

we see that such a homotopy can be obtained by going through the following succession of deformations.

Since Φ is a homomorphism, $\varphi_{p_1p_2} \approx \varphi_{p_1} \circ \varphi_{p_2}$. This yields a homotopy of $m(m \times Id)$ into

$$((g_1, p_1), (g_2, p_2), (g_3, p_3)) \to ((g_1\varphi_{p_1}(g_2))\varphi_{p_1} \circ \varphi_{p_2}(g_3), p_1p_2p_3).$$

Using homotopy associativity in G_0 , we see that this map is homotopic to

 $((g_1, p_1)(g_2, p_2), (g_3, p_3)) \rightarrow (g_1(\varphi_{p_1}(g_2)\varphi_{p_1} \circ \varphi_{p_2}(g_3)), p_1p_2p_3).$

Since φ_{p_1} is an H-map, this map is homotopic to $m(Id \times m)$.

Step 3. *j* is a homotopy inverse. We must show that the maps

$$G \xrightarrow{\Delta} G \times G \xrightarrow{Id \times j} G \times G \xrightarrow{m} G$$
$$G \xrightarrow{\Delta} G \times G \xrightarrow{j \times Id} G \times G \xrightarrow{m} G$$

are homotopic to the constant map $G \rightarrow \{(e, 1)\}$ (Δ denotes the diagonal map).

Let $(g, p) \in G$; then

$$m \circ (Id \times j) \circ \Delta(g, p) = (g\varphi_p(\varphi_p^{-1}(g^{-1})), 1) = (g(\varphi_p \circ \varphi_p^{-1})(g^{-1}), 1).$$

Since $\varphi_p \circ \varphi_{p^{-1}} \approx \varphi_{pp^{-1}} \approx \varphi_1 \approx Id_{G_0}$, we get a homotopy of $m \circ (Id \times j) \circ \Delta$ into $(g, p) \mapsto (gg^{-1}, 1)$, which is homotopic to the constant map $G \to \{(e, 1)\}$ using the property of the H-inverse *i* in G_0 .

Similarly, we obtain a homotopy of $m \circ (j \times Id) \circ \Delta$ to the constant map. \Box

(1.2) LEMMA. For $p \in \Pi$, let φ_p , $\varphi'_p \in \Phi(p)$ and denote by $(G, m) := (G_0 \times \Pi, m)$, $(G', m') := (G_0 \times \Pi, m')$ the corresponding group-like spaces. Then, the identity map $G \rightarrow G'$ is an H-equivalence.

PROOF. Since φ_p and φ'_p are homotopic self equivalences of G_0 , the H-multiplications m, m' of G, G' are homotopic. \Box

Proposition (1.1) and Lemma (1.2) suggest the following.

(1.3) DEFINITION. Let G_0 be a path connected group-like space, Π a discrete group, $\Phi: \Pi \to H^{\mathscr{C}}(G_0)$ a homomorphism. A group-like space X is a H-semidirect product of G_0 and Π under Φ if and only if X is H-equivalent to the space G constructed in (1.1). In this case, we write $X \approx G_0 \rtimes_{\Phi} \Pi$. The subscript " Φ " may be deleted if the context is clear.

[December

H-SEMIDIRECT PRODUCTS

1987]

Turning to the question as to whether or not a given group-like space (G, M) is a H-semidirect product, let us denote by G_0 the identity path component of G and by Π the set of path connected components of G. It is known that Π is a group under the multiplication $\bar{x}\bar{y} = \bar{x}\bar{y}$, where \bar{x} denotes the path component of $x \in G$.

(1.4) **PROPOSITION.** Π acts on G_0 by classes of H-equivalences.

PROOF. For $\bar{x} \in \Pi$, let $\Phi(\bar{x}) \in H^{\mathscr{C}}(G_0)$ be represented by φ_x

$$\varphi_x(g) := xgx^{-1} \quad g \in G_0$$

 φ_x is a H-equivalence with H-inverse $\varphi_{x^{-1}}$ and, since $\varphi_x(e) \in G_0$, takes values in G_0 . If $\bar{x} = \bar{x}'$, a path in G joining x to x' yields a homotopy of φ_x into $\varphi_{x'}$. Thus $\Phi(\bar{x})$ is well defined. The same technique shows that $\varphi_{xy} \approx \varphi_x \circ \varphi_y$. Hence, Φ is a homomorphism. \Box

Now fix an element x for each path-component $\bar{x} \in \Pi$. From the data in (1.4), we may then form the H-semidirect product $G_0 \rtimes_{\Phi} \Pi$ in accordance with (1.1). We obtain a canonical continuous map

$$h: G_0 \rtimes \Pi \ni (g, \bar{x}) \mapsto gx \in G$$

(1.5) LEMMA. (i) h is a H-map.

(ii) Taking different choices $x' \in \overline{x}' = \overline{x}$ in the various path components of G yields a H-map $h': G_0 \rtimes \Pi \to G$ with $h \approx h'$.

PROOF. (i) The techniques of constructing homotopies that have been developed up to here show that the following diagram commutes up to homotopy.

Here $[x_1x_2]$ denotes the fixed representative for the path component $\overline{x_1x_2} \in \Pi$. *M* and *m* denote the H-multiplications of *G* and $G_0 \rtimes \Pi$ respectively. (ii) is clear.

Representing the path component of the identity G_0 of Π by the identity *e* itself, we see that the restriction

$$h_{|G_0 \times \{\bar{e}\}}: G_0 \times \{\bar{e}\} \rightarrow G_0$$

is homotopic to Id_{G_0} (if we identify $G_0 \times \{\overline{e}\}$ with G_0). Therefore, for any $\overline{x} \in \Pi$,

$$h_{|G_0 \times \{\bar{x}\}}: G_0 \times \{\bar{x}\} \to \bar{x}$$

is also a homotopy equivalence. Since h establishes a bijection between the path components of $G_0 \rtimes \Pi$ and those of G, we would like to assert that the path componentwise homotopy inverses of h combine to a homotopy inverse k of h and are confronted with the question whether the topology of G is fine enough to admit this. Elementary point set topology yields.

(1.6) LEMMA. The path componentwise homotopy inverses of h combine to a homotopy inverse k of h if and only if the path components of G are open in G. \Box

This result can be utilized as follows. If X is a based CW-complex, Milnor [2] shows that ΩX has the homotopy type of CW-complex. The connected components of a CW-complex are open. Therefore, the path components of ΩX are open. Thus

(1.7) THEOREM. Let X be a based CW-complex, $(\Omega X)_0$ the identity component of ΩX and $\Pi := \pi_1 X$. As in (1.4), let $\Phi: \Pi \to H^{\otimes}(\Omega X)_0$ denote the action of Π on $(\Omega X)_0$ by classes of H-self homotopy equivalences. Then there is a H-equivalence $h: (\Omega X)_0 \rtimes \Phi \Pi \to \Omega X$.

PROOF. Apply (1.4), (1.5), (1.6).

Since the path components of a locally path connected space are open, we see that locally path connected group-like spaces are H-semidirect products. Of particular interest here is the case where G is a locally path connected topological group with identity component G_0 . In this case, G_0 is a normal subgroup of G and easy checking shows that the quotient group $\Pi := G/G_0$ is the same as the group constructed on the path components of G in accordance with (1.4).

(1.8) THEOREM. (i) The action of Π on G_0 as defined in (1.4) is by homotopy classes of inner automorphisms of G restricted to G_0 .

(ii) There is a H-homeomorphism $h: G_0 \rtimes \Pi \to G$.

PROOF. Apply the ideas contained in (1.4), (1.5), (1.6) to the present situation.

§2. Nilpotency of mappings into group-like spaces.

Throughout this section G will denote a group-like space obtained by taking the H-semidirect product of a path connected group-like space G_0 with a discrete group Π under $\Phi: \Pi \to H^{\mathscr{E}}(G_0)$.

In [6], [7] G. W. Whitehead showed that for a path-connected space X the group $[X, G_0]$ is nilpotent if X has finite category. Here, we give conditions for [X, G] (free homotopy classes) to be nilpotent. We begin by stipulating some notation.

Notation. (i)
$$\Upsilon = \Upsilon^1: G \times G \ni (g, h) \mapsto ghg^{-1}h^{-1} \in G$$
 and for $n \ge 1$,

$$\Upsilon^{n+1}: G \times G^{n+1} \ni (g_0, \dots, g_{n+1}) \mapsto \Upsilon(g_0, \Upsilon^n(g_1, \dots, g_{n+1})) \in G$$

denote the commutator maps of G.

406

(ii) Let $\Upsilon_{\Phi} = \Upsilon_{\Phi}^{1}: (G_{0} \times \Pi) \times G_{0} \ni (g, p, h) \mapsto g\varphi_{p}(h)g^{-1}h^{-1} \in G_{0}$ and, for $n \geq 1, \Upsilon_{\Phi}^{n+1}: (G_{0} \times \Pi) \times (G_{0} \times \Pi)^{n} \times G_{0} \rightarrow G_{0}$

 $(g_0, p_1, g_1, \ldots, p_{n+1}, g_{n+1}) \mapsto \Upsilon_{\Phi}(g_0, p_1, \Upsilon_{\Phi}^n(g_1, \ldots, p_{n+1}, g_{n+1}))$

denote the Φ -commutator maps of G_0 .

(2.1) DEFINITION. (i) G is H-nilpotent of nilpotency index nil $G \le c : \langle = \rangle \Upsilon^c$ is homotopic to a constant map.

(ii) G_0 is ΦH -nilpotent of nilpotency index $\operatorname{nil}_{\Phi} G_0 \leq c : \langle = \rangle \Upsilon_{\Phi}^c$ is homotopic to a constant map.

Thus, $\operatorname{nil}_{\Phi} G_0 \leq c$ implies $\operatorname{nil} G_0 \leq c$.

Note that the above commutators, when formally applied to a group H (resp. Π acting on H by $\psi:\Pi \rightarrow \operatorname{Aut} H$), agree with the usual commutators (ψ -commutators). Here for Υ^c (resp Υ^c_{ψ}) to be homotopically trivial means that all *c*-fold commutators (ψ -commutators) of H are equal to the identity element of H, and the image set of Υ^n (resp Υ^n_{ψ}) generates the usual *n*-th central series group $\Gamma^n H$ (resp $\Gamma^n_{\psi} H$). Thus the H-nilpotency indices of (2.1) agree with the usual group theoretic nilpotency indices.

(2.2) **PROPOSITION.** If nil $G \le c$, then nil $[X, G] \le c$.

To obtain more information on the structure of the group [X, G], note first that Π acts on $[X, G_0]$ by composition, $\psi : \Pi \to \operatorname{Aut}[X, G_0]$ being defined by

$$\psi_p(f) := \Phi(p) \circ f \text{ for } p \in \Pi, f \in [X, G_0].$$

A routine check yields

(2.3) THEOREM. The function

$$R:[X,G_0] \rtimes_{\Psi} \Pi \ni (f,p) \mapsto (f,1)(e,p) \in [X,G_0 \rtimes_{\Phi} \Pi]$$

is an isomorphism.

It is known [1], [5], that $[X, G_0] \rtimes \Pi$ is nilpotent if and only if $[X, G_0]$ is ψ -nilpotent and Π is nilpotent. There is a *H*-analogue.

(2.4) THEOREM. $G = G_0 \rtimes_{\Phi} \Pi$ is H-nilpotent if and only if G_0 is Φ H-nilpotent and Π is nilpotent.

PROOF OF PROPOSITION (2.2). Let $f_0, \ldots, f_c \in [X, G]$ be represented by maps $\alpha_0, \ldots, \alpha_c : X \to G$. The commutator of f_0, \ldots, f_c is represented by the composite

$$X \xrightarrow{\Delta} X^{c+1} \xrightarrow{\alpha_0 x \dots x \alpha_c} G^{c+1} \xrightarrow{\gamma_c} G$$

which is homotopically trivial, because Υ^c is homotopically trivial.

PROOF OF THEOREM (2.4). Suppose nil $G = \operatorname{nil} G_0 \rtimes \Pi = c$. Then Y^c is null homotopic so that the image of Y^c is contained in the single path component of $G_0 \rtimes$ Π containing $Y^c((e, 1), \ldots, (e, 1))$. Hence Y^c takes values in $G_0 \times \{1\}$. Inspection of the *H*-multiplication of *G* shows that for any $((g_0, p_0), \ldots, (g_c, p_c)) \in G^{c+1}$, the

https://doi.org/10.4153/CMB-1987-060-2 Published online by Cambridge University Press

1987]

G. PESCHKE

second coordinate of $\Upsilon^{c}((g_{0}, p_{0}), \dots, (g_{c}, p_{c}))$ is equal to $\Upsilon^{c}(p_{0}, \dots, p_{c}) = 1$. Thus nil $\Pi \leq c$.

To see that G_0 is ΦH -nilpotent, observe that there is a homotopy $G_0 \times \Pi \times G_0 \times I \to G_0$ deforming $\Upsilon^1((g,p),(h,1))$ into $(\Upsilon^1_{\Phi}(g,p,h),1)$. For

$$Y^{1}((g,p),(h,1)) = (g,p)(h,1)(\varphi_{p^{-1}}(g^{-1}),p^{-1})(h^{-1},1)$$
$$= (g\varphi_{p}(h),p)(\varphi_{p^{-1}}(g^{-1}),p^{-1})(h^{-1},1)$$
$$= (g\varphi_{p}(h)(\varphi_{p}\varphi_{p^{-1}}(g^{-1})),1)(h^{-1},1).$$

Since $\varphi_p \varphi_{p^{-1}}$ is homotopic to the identity map on G_0 , there is a homotopy deforming the latter expression into

$$(g\varphi_p(h)g^{-1},1)(h^{-1},1) = (g\varphi_p(h)g^{-1}h^{-1},1) = (\Upsilon_{\Phi}^{1}(g,p,h),1).$$

For $n \ge 1$, induction gives a homotopy $G_0 \times (\Pi \times G_0)^n \times I \to G_0$ deforming $Y^n((g_0, p_0), \ldots, (g_{n-1}, p_{n-1}), (g_n, 1))$ into $(Y^n_{\Phi}(g_0, p_0, \ldots, g_{n-1}, p_{n-1}, g_n), 1)$. Thus a null homotopy of Y^c yields a null homotopy of Y^c_{Φ} showing that $\operatorname{nil}_{\Phi} G_0 \le c$.

Conversely, suppose nil $\Pi \leq a$ and nil_{Φ} $G_0 \leq b$. Since the second coordinate of $Y^n((g_0, p_0), \ldots, (g_n, p_n))$ is equal to $Y^n(p_0, \ldots, p_n)$, it follows that for $s \geq 0$, Y^{a+s} $(G_0 \rtimes \Pi)^{a+s+1} \subset G_0 \times \{1\}$. Hence, we may proceed as above and construct a homotopy (for $s \geq 1$), $(G_0 \rtimes \Pi)^s \times (G_0 \rtimes \Pi)^{a+1} \times I \rightarrow G_0$ deforming $Y^{a+s}((g_0, p_0), \ldots, (g_{s-1}, p_{s-1}), (g_s, p_s), \ldots, (g_{s+a}, p_{s+a}))$ into $Y^s_{\Phi}(g_0, p_0, \ldots, g_{s-1}, p_{s-1}, \alpha((g_s, p_s), \ldots, (g_{s+a}, p_{s+a})))$ denotes the first coordinate of $Y^a((g_s, p_s), \ldots, (g_{s+a}, p_{s+a}))$.

Consequently, Y^{a+b} is homotopic to Y^b_{Φ} following α , so that a null homotopy of Y^b_{Φ} yields a null homotopy of the composite and hence, of Y^{a+b} . Thus nil $G_0 \rtimes \Pi \leq a+b$. \Box

We shall now enter a discussion of the nilpotency of the groups $[C, G_0 \rtimes_{\Phi}\Pi] \cong [C, G_0] \rtimes_{\Psi}\Pi$, where *C* is a mapping cone. Since $[C, G_0] \rtimes \Pi$ can only be nilpotent if Π is, we shall from now on require Π to be nilpotent. Let us also agree that all spaces denoted by symbols *A*, *Y* are based path connected compactly generated Hausdorff spaces. In order to get a canonical isomorphism $[(Y, *), (G_0, e)] \rightarrow [Y, G_0]$, we require the inclusion map of a base point into its space to have the homotopy extension property and stipulate for the sequel that mappings and homotopies $A \rightarrow Y$ are to be based and mappings and homotopies into *G* are free.

So let $a: A \rightarrow Y$ be a map and consider the exact sequence

(2.5)
$$[Y,G_0] \xleftarrow{\epsilon=i^*} [C,G_0] \xleftarrow{\nu=q^*} [SA,G_0]$$

arising from the Puppe sequence

$$A \xrightarrow{a} Y \xrightarrow{i} C := C_a \xrightarrow{q} SA$$
.

We know that Π acts on $[Y, G_0], [C, G_0], [SA, G_0]$ and denote the corresponding homomorphisms into the respective automorphism groups by $\psi(Y), \psi(C), \psi(SA)$. It is clear that ϵ and ν are operator homomorphisms.

408

[December

The key is the following

(2.6) LEMMA. [C, G] is nilpotent if and only if there exists $s \in \mathbb{N}$ such that

(*i*) $\Gamma^{s}_{\Psi(C)}[C, G_0] \subset im \nu$

(ii) there exists $t \in \mathbb{N}$ such that $\Gamma'_{\psi(SA)}(\nu^{-1}\Gamma^s_{\psi(C)}[C, G_0]) \subset \ker \nu$.

(2.7) COROLLARY. Suppose [Y,G] is nilpotent and there exists $t \in \mathbb{N}$ such that $\Gamma'_{\psi(SA)}[SA, G_0] \subset \ker \nu$. Then [C, G] is nilpotent.

This yields immediately

(2.8) COROLLARY. If [Y, G] and [SA, G] are nilpotent, then [C, G] is nilpotent.

Our previous discussion can be extended to iterated mapping cones as follows. Let $\mathscr{A} = \{\mathscr{A}_{\lambda}\}_{\lambda \in \Lambda}$ be a family of spaces. Inspired by G. W. Whitehead [7], let us call a sequence $Y = S_0 \subset \ldots \subset S_k = K$ an \mathscr{A} stratification of K if, for $n \ge 1$, S_i is obtained from S_{i-1} as the mapping cone of a wedge of spaces in \mathscr{A} .

(2.9) THEOREM. Let [Y, G] be nilpotent and let $Y = S_0 \subset ... \subset S_k = K$ be an \mathcal{A} -stratification for K. Suppose there exists a positive integer N such that for all λ , nil $[SA_{\lambda}, G] \leq N$. Then [K, G] is nilpotent.

Letting \mathcal{A} be the family of *n*-spheres S^n ($n \ge 0$) and *Y* the 1-point space, we obtain

(2.10) COROLLARY. Let $Y = S_0 \subset ... \subset S_k = K$ be a stratification of a connected CW-complex K by connected subcomplexes S_i . Suppose there exists a positive integer N such that for every n-sphere $(n \ge 0)$ nil $[S^n, G] \le N$. Then [K, G] is nilpotent.

Using the stratification of finite dimensional connected CW-complexes K by their skeleta, we obtain

(2.11) COROLLARY. [K,G] is nilpotent if and only if for all $n \ge 0$, [Sⁿ,G] is nilpotent.

PROOF OF LEMMA (2.6). If nil[C, G] $\leq a$, the choices s := a and t := 0 clearly satisfy (i), (ii).

Conversely, suppose there exist s, $t \in \mathbb{N}$ such that (i), (ii) are satisfied. It is known (and can be shown by using the idea of [7] Theorem X 3.10) that the sequence (2.5) is a central extension. By (i), $\Gamma_{\psi(C)}^s[C, G_0]$ is contained in the center of $[C, G_0]$. Hence, for $a \in [C, G_0]$, $b \in \Gamma_{\psi(C)}^s[C, G_0]$, $p \in \Pi$

$$Y_{\psi(C)}(a, p, b) = a\psi(C)_p(b)a^{-1}b^{-1} \stackrel{(*)}{=} \psi(C)_p(b)b^{-1} = Y_{\psi(C)}(e, p, b).$$

for $k \ge 0$

$$\Gamma_{\psi(C)}^{k+s}[C, G_0] = \Gamma_{\psi(C)}^k \Gamma_{\psi(C)}^s[C, G_0]$$

so that

Thus,

$$\Gamma_{\psi(C)}^{\prime+s}[C, G_0] = \Gamma_{\psi(C)}^{\prime}(\Gamma_{\psi(C)}^s[C, G_0]) \stackrel{(**)}{\subset} \nu \Gamma_{\psi(SA)}^{\prime}(\nu^{-1}\Gamma_{\psi(C)}^s[C, G_0]) \subset \nu(\ker \nu) = \{1\}.$$

Equation (*) is true because $\Gamma_{\psi(C)}^{s}[C, G_0]$ is invariant under the action of Π . Inclusion (**) is true because ν is an operator homomorphism.

G. PESCHKE

Consequently, [C, G] is nilpotent because Π is nilpotent and $[C, G_0]$ is $\psi(C)$ -nilpotent. \Box

PROOF OF COROLLARY (2.7). Suppose $\operatorname{nil}_{\psi(Y)}[Y, G_0] \leq s$. Then (because ϵ is an operator homomorphism)

$$\epsilon \Gamma^s_{\Psi(C)}[C, G_0] \subset \Gamma^s_{\Psi(Y)}[Y, G_0] = \{1\}.$$

Thus $\Gamma_{\psi(C)}^{s}[C, G_0] \subset \ker \epsilon = \operatorname{im} \nu$ and conditions (i), (ii) of Lemma (2.6) are satisfied.

PROOF OF THEOREM (2.9). Using Corollary (2.8), we show by induction on the stages of the stratification of K that $[K, G_0]$ is $\psi(K)$ -nilpotent.

 $[S_0, G_0]$ is $\psi(S_0)$ -nilpotent by hypothesis. So suppose $0 \le i < k$ and $[S_i, G_0]$ is $\psi(S_i)$ -nilpotent. Let Λ_{i+1} be an indexing set for the (i + 1)-st wedge corresponding to the \mathcal{A} -stratification of K. By distributivity of wedge and suspension, we get

$$P := \left[S\left(\bigvee_{\lambda \in \Lambda_{i+1}} A_{\lambda}\right), G_{0}\right] = \left[\bigvee_{\lambda \in \Lambda_{i+1}} (SA_{\lambda}), G_{0}\right] \cong \prod_{\lambda \in \Lambda_{i+1}} [SA_{\lambda}, G_{0}] =: Q.$$

The isomorphism above is an operator isomorphism. Hence

$$\operatorname{nil}_{\Psi} P = \operatorname{nil}_{\Psi} Q \leq N.$$

By (2.8), $\operatorname{nil}_{\psi(S_{i+1})}[S_{i+1}, G_0] \leq \operatorname{nil}_{\psi(Y)}[Y, G_0] + (i + 1)N$, which completes the induction. Summing up, we obtain

$$\operatorname{nil}_{\Psi(K)}[K, G_0] \leq \operatorname{nil}_{\Psi(Y)}[Y, G_0] + kN. \quad \Box$$

PROOF OF COROLLARY (2.11). For connected K, the statement follows from (2.10). If K is not connected, it is the topological sum of its connected components K_i . Therefore

$$[K, G] \cong \Pi[K_i, G] \cong \Pi[K_i, G_0] \rtimes \Pi)$$

and the bounded nilpotency of the factors $[K_i, G_0] \rtimes \Pi$ ensures the nilpotency of the product. \Box

Analogously to [7] p. 465, in the situation of Theorem (2.9), we may derive the following explicit $\psi(K)$ -central series for $[K, G_0]$.

(2.12) PROPOSITION. Let F_i be the set of homotopy classes of maps $K \to G_0$ whose restriction to S_i is nullhomotopic. Let $\operatorname{nil}_{\psi(S_0)}[S_0, G_0] \leq c$. Let $e_i: S_i \to K$ denote the inclusion map and let $W_i = V_{\lambda \in \Lambda_i} SA_{\lambda}$. Then

$$[K, G_{0}] \supset (e_{0}^{*})^{-1}\Gamma_{\psi(S_{0})}^{1}[S_{0}, G_{0}] \supset \ldots \supset (e_{0}^{*})^{-1}\Gamma_{\psi(S_{0})}^{c}[S_{0}, G_{0}] = F_{0} \supset$$

$$\supset (e_{1}^{*})^{-1}(\nu_{1}\Gamma_{\psi(W_{1})}^{1}[W_{1}, G_{0}]) \supset \ldots \supset (e_{1}^{*})^{-1}(\nu_{1}\Gamma_{\psi(W_{1})}^{N}[W_{1}, G_{0}]) = F_{1} \supset$$

$$\vdots$$

$$\vdots$$

$$\supseteq (e_{k}^{*})^{-1}(\nu_{k}\Gamma_{\psi(W_{k})}^{1}[W_{k}, G_{0}]) \supset \ldots \supset (e_{k}^{*})^{-1}(\nu_{k}\Gamma_{\psi(W_{k})}^{N}[W_{k}, G_{0}]) = F_{k} = \{1\}$$

is a $\psi(K)$ -central series for $[K, G_0]$.

PROOF. This follows from the proof of Lemma (2.6) and the fact that the e_i 's and v_i 's are operator homomorphisms. \Box

Finally, we remark that the investigation of the nilpotency of [X, G] would benefit from knowledge about the sets Hom $(\Pi, H\mathscr{E}(G_0))$ and, hence, from knowledge about the groups $H\mathscr{E}(G_0) \subset \mathscr{E}(G_0)$. Some information in this direction can be found in [8], [9], [10]. The author is grateful to the referee for bringing these to his attention.

REFERENCES

1. P. J. Hilton, *Nilpotent actions on nilpotent groups*, Algebra and Logic; Springer Lecture Notes 450 (1975), pp. 174–197.

2. J. Milnor, *On spaces having the homotopy type of a CW-complex*, Trans. Amer. Math. Soc. **90** (1959), pp. 272–280.

3. J. Roitberg, Note on nilpotent spaces and localization, Math. Z. 137 (1974), pp. 67-74.

4. H. Scheerer, Bemerkungen ueber Gruppen von Homotopieklassen, Archiv. Math. 28 (1977), pp. 301-307.

5. K. Varadarajan, Nilpotent actions and nilpotent spaces, unpublished (1976).

6. G. W. Whitehead, On mappings into group-like spaces, Comm. Math. Helv. 28 (1954), 320-328.

7. G. W. Whitehead, Elements of Homotopy Theory, Springer Verlag, New York (1978).

8. M. Arkowitz and C. R. Curjel, On maps of H-spaces, Topology 6 (1967), pp. 137-148.

9. D. W. Kahn, A note on H-equivalences, Pac. J. Math. 42 (1972), pp. 77-80.

10. J. Roitberg, *Residually finite, Hopfian and Co-Hopfian Spaces*, Contemporary Mathematics, AMS-Conference on Algebraic Topology in Honor of Peter Hilton **37** (1985), pp. 131–144.

UNIVERSITY OF CALGARY CALGARY, ALBERTA CANADA T2N 1N4

1987]