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Maximal perfect spaces

Ivan Baggs

Let (X, T) be a topological space (we assume T throughout]

1
where every point is a limit point. The purpose of this note is
to present an internal construction of a maximal perfect
topology on (X, T) . The existence of a maximal connected
Hausdorff space has not been demonstrated. However, this
construction of a maximal perfect topology is useful in
constructing connected Hausdorff spaces which cannot be embedded

in a maximal connected Hausdorff space.

Let (X, T) be a topological space in which every point is a limit
point, then (X, T) is said to be perfect. (Throughout this note, all

spaces are assumed to be Tl .) A topological space (X, T) is maximal
perfect if (X, T) is perfect and for every topology T' = T, (X, 7T

is not perfect. It follows from an application of Zorn's Lemma that, if
(x, T) is a perfect topological space, there exists a topology T' DT
such that (X, T') 1is maximal perfect. The main aim of this note is to
present an internal construction of a maximal perfect topology for any
given perfect topological space. The advantage of this construction arises
when one wishes to know which sets are open in a maximal perfect topology.
This maximal perfect topology is constructed by using WN-sets (see
Definition 1) and a particular filter, F , of dense subsets of (X, T) .
It is also shown that, if 0 DT v F and (X, o) is perfect, then, if
G€TVvF, G=FnM,vhere FE¢F and M is an N-set.

The problem of the existence of a maximal perfect topology arose
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naturally from the consideration of the existence of a maximal connected
Hausdorff space. A connected Hausdorff space (X, T) is maximal connected
if for every topology T' 2 T, (X, T') is not connected (see [2]). 'The

author used the type of particular construction of a maximal perfect
topology, as presented in this note, to construct an example of a countable
connected Hausdorff space (X, T) which is not first countable at any
point and such T is not contained in any maximal connected topology on

x [11.

If (X, T) is a topological space, then we will say a set K< X is
T-dense in X if X is contained in the closure of X in the T

topology.

AMlso, K is T-open if X €T , and K° will be used to denote the

complement of KX .

For the remainder of this note, we will assume that (X, T) is an

arbitrary but fixed perfect topological space. Let

g=1{Fcx l fad is nowhere dense in X} .

Then, H 1is a filter of dense subsets of X . It follows from Zornils
Lemma that there exists s maximal filter F , containing H , such that for
every F € F, F is a dense subset of X . Throughout, we will use F
to denote this maximal filter on X .

DEFINITION 1. A set GC X is an N-set if for every z € ¢ and
every open set U € T and containing x , U N G contains a T-open set.
It follows, immediately, from the definition, that if U € T , then U

is an N-set. However, there may exist N-sets which are not T-open; for

example, if G 1s the subset of the real line defined as follows:

¢ = {0} u {Eﬁi’ii%i] | n=1, 2, ...} )

DEFINITION 2. A collection of N-sets, G , is an N-family if G

is closed under finite intersection.

If Gl and 62 are two N-families, we will say that Gl = 62 if

for every G € Gl s, G € G2 . It follows from Zorn's Lemma that given any
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N-family G , there exists a maximal N-family M , such that G =M. In
what follows, M will be used to denote a maximal N-family on X .

If A and B are two families of subsets of X , by 4 v B is meant
the topology which is generated by the subbase

P={c|ce€a or C€B}.
LEMMA 1. Let T'=Fv M; then T'">T and (X, T') 1is perfect.

Proof. Since Tc M, it follows that T < T' . Suppose (X, T') is
not perfect. This implies that there exists some & € X such that
{x} ¢ T v F. Therefore, {2z} =FnG ,vwhere FE€F and G € M.
However, since G contains a non-empty T-open set U and Fn U is
T-dense in U , it follows that F n G # {x} ; a contradiction. So,
(X, T') 1is perfect.

Henceforth, T' will be used to denote the topology F Vv M. Let us
assume there exists a topology T* en X , such that (X, T*) is perfect
and T* 7 T .

LEMMA 2. If P€T*, PcU,uwhere U €T, and P is T-dense in
U, then P €T Vv F.

Proof. Suppose Pc U and P is T-dense in U € T and
PETVvF, If, foreach F€F, PnF is T-dense in U , then

Fn (Pul}c) is dense in X for al1l F € F. So, since F is maximal,
this would imply that 2 u U € F . However, if P u I ¢ F, then

P = (PUUC) NnU and P €T v F. 1If, onthe other hand, there exists some
F € F such that F n P is not T-dense in U , then there exists some

T-open set V< U such that Vn (FnP) =@ . Let z €V such that x € P
and z f F. Put F =Fu {x} . Then F ¢ F and is, therefore, open in

Tv F. This would imply that F, n (PaV) = {x} and since FlnPe¢ T* ,

this implies {z} is open in T* . However, since T* is perfect, this
is impossible. Therefore, for each F € F, FnP is T-demse in U ,
and so P €T v F.

COROLLARY. If PeT*, PC U, where U €T and P 18 T-dense in
U, then P €T' .
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DEFINITION 3. Let P €T#., P has property B if for every « € P

there exists a T*-open set U:c C P and containing 2« such that

U =(U KOJ u L , where
Q€A

(a) for each a € 4 , K, cu, € T and K, 1is T-dense in Ua s
(b) no subset of L is T-dense in any T-open set, and

{(c) if x €L , then xﬁKa,forany a .

LEMMA 3. Let P be a set with property B such that P € T* . Let

x €P and U, = [ql;l‘4 KOJ vl beas in Definition 3. Then, for every

y €L nU, and for every T'-open set U containing x , U 0 U, # 2,
for some o €A .

Proof. Suppose there exists some x € P and some Yy €L n Ux and a
T'-open set U containing y such that U n Uy = g, forall o €4 . We

may assume without loss of generality that U = F n (In¥) , where F € F ,
I €T and M €M . Since M is an N-set, M nI contains a non-empty
T-open set. Let @ be any non-empty T-open set contained in I n M.
Then, & N Ua =@, for all o €4 3 for, if there exists some o € 4 ,

such that @ n U, # @ , and since & < (InM) , this implies that
UnUa;é ¢ . Also (InM) nKa=¢ , for all « € A . If there exists an
x € (InM) nKa , for some o € A , then, since KaCUa and I NnM is an
N-set, if U' is an T-open set containing x , U' n (In¥) n U, would
contain a T-open set. This would contradict the fact that U‘a ne=29,
for each open set @ < (InM) . Therefore, (InM) n Ka =@ , for all
a € 4.

y €UnU, and T* is perfect, so there exists some p € Un U, and
p#y . Since UnUa=¢,fora11aa.nd KO‘CUa,pﬁKa,forany

o € A . Therefore, p €L . Let V bYe any T-open set containing p .
Put H=Von (InM) . Since p €U and U=F n (In¥) , it follows that
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p € H. Also, since (IrM)nKa=¢ , forall a €4, LODHEnP . From
the definition of L , it follows that H n P is nowhere dense in

(X, T) . So, (4rP)° € F and it is clear from the definition of F that
(8uP)® u {p} is also an element of F . But, this says that

| (#eP)%0{p}| n (BP) = {p} . This implies that {p} € T* , which
contradicts the assumption that T#* is perfect. Therefore, for each
y € U:c end for each T'-open set U containing y , there exists some

a € A, such that UnUx#w.

LEMMA 4. If P €T*and P has property B , then P €T' .

Proof. Let z €P andlet U CP bea T#*-open set such that

U, = {GU Ka} UL, where the K 's and L satisfy conditions (a) through
€A

(c) of Definition 3. We will show that for every y € U, , there exists a

7' open set U , containing Yy , such that U C Ux .
For each y €L , put Uly) = {oU Ua}' v {y} . It follows from Lemma
€A

3, that for each y € L , Uly} is an N-set since for every p € Uly)
and every T-open set U containing p, UnU,# @ for some «.

We will show that U(y) € M. Suppose not. Then, since M is a
maximal N-family, there must exist some M € M |, such that M n U(y) is
not an N-set. This implies there exists some T-open set V containing
y such that V n (MAU(y)) does not contain a T-open set. It follows
from the definition of an N-set, and the fact that {U(y)-{y}} is T-open
that {U(y)-{y}} n¥ V=9 . Therefore, Vv n (MU ) S L since
U"’={QEAU°‘}UL' Pt H=Vn (MU ) , then H €T*. Since L is

nowhere dense in (X, T) , ¥ must also be nowhere dense in (X, T) .

Therefore, H° € F , since F contains each set whose complement is

nowhere dense in (X, T) . This implies that (E°n{y}) n& = {y} ¢ T* |
which contradicts the assumption that T* is perfect. Therefore,
U{y) n M must be an element of M , for a1l M € M, and, so, U(y) € M.
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This implies that U(y) € T' .

Since U Ka is T-dense in U Ua , it follows from Lemma 2 that
acl a4

u Ka =Fn (dU Ua] , for some F € F ., Therefore, there exists an
aed €A

F| €F (namely, F, = Fu iy} ), such that Flnuly) = {y}u (aleJA Ka]

Since both F, and U(y) are open in T' , it follows that
U= {y} u LU Ka] is open in T' and clearly, Uc U:c . Therefore, for
€A .

every Yy € Ux , there exists a T'-open set U containing y and
contained in U:z: . This implies that Ua: and, consequently P , is an
element of T'

THEOREM 1. (x, T') <s maximal perfect.

Proof, Let T* be any perfect topology on X such that T*D T'

Let x € X and let Ux be any T*-open set containing x . For each
y € Ux , let Kot be a subset of Ux , containing Y , such that Ka is

T-dense in some Uo:. €T and KaC Ua , if such a Ka exists. Otherwise,

let L ={y €U_| no such X_  exists}. Clearly U ={U K}UL,a.nd,
x o x o

therefore, by Lemma 4, U, € T' and T' is maximal perfect.

In the preceding, we constructed a maximal perfect topology T* on a
perfect topological space (X, T) by adding to T a particular maximal
filter F of dense subsets of (X, T) and a maximal WMN-family M . We
will now show that if ¢ is any perfect topology on X , larger than
TvF, then O can be generated by T, F and a family of WN-sets. On
the other hand, if Yy is a perfect topology, larger than T v M , we will
give an example to show that Y may not be generated by T, M and a
family of dense subsets of (X, T) .

Let (X, T) be a perfect tcpological space and let F be a maximal
family of dense subset of (X, T) , such that, if H is a nowhere dense
subset of (X, T) , then H ¢ F .
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THEOREM 2. Let o be any perfect topology on X such that
6CTVvF. If Ge€o and GETVF, then G=M0nF , vhere M is an
N-set and F € F .

Before presenting the proof of Theorem 2, we present a lemma which
will be helpful in completing the proof of this theorem. The symbols used

in Lemma 5 have the same meaning as in Theorem 2.

LEMMA 5. If V <s any T-open subset of X and Gn V # @ , then

GnV is T-dense in some T-open subset of V.

Proof. Suppose G NV is not T-dense in any T-open subset of V .

Then, G n V 1is nowhere dense in (X, T) . This implies that
(Gav)° € F. Let y €GnVv . Then (Gv)° u iy} € F and since
{y} = [(6V)°0ly}] n (GnV) , this implies that {y} € 0 , and contradicts
the fact that (X, 0) is perfect. Therefore, G n V is T-dense in some
T-open subset of V .
Proof of Theorem 2. Put G = { U Ka} uL , where for each O € 4 ,
o A

KGC Uy » Uy is T-open and Ky is T-dense in Uy 5 and no subset of

L is T-dense in any T-open set. Put M = { ] Ua} vl . We will show
a A

that M is an N-set. Let x €M . If zx € an for some @ , then
clearly, for every T-open set U containing = , U n Ua is a T-open
set. If x €L and U 1is a T-open set containing & , then it follows
from Lemma S, that U n Ua # @ , for some o , so, again, U n Ua is a
T-open set and is contained in M . Therefore, M is an WN-set.

Finally, we will show that for some F € F, FnM=( . It follows

from Lemma 2 that there exists some Fl € F , such that

Fn{UU}=Gn{U U}.Put F=F vizx |z €L}. Ten Fam=g
1 [¢] a 1
o a 4
and the theorem is established.

We now give an example of a maximal F§-family and a perfect topology
Y on X , such that Y is larger than T v M but Y cannot be
generated by T, M and a family of dense subsets of (X, Tj .
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EXAMPLE. Let X be the clesed unit interval and let T be the
usual topology on X . Let K be the Cantor subset of X and let

¢, = (a

' 1y bn) , for n =1, 2, ... , be the open intervals which are

removed to form the Cantor set. Put Rn = (0, an] , and Gn = [bn, l] ,
for n=1, 2, ... . Then for each n , Rn and Gn is an N-set. Let
M be a maximal WN-family which contains Rn and Gn , for all n . Put

Yy =(TwM) vXK . Then, Y is perfect and K is a Y-open set. It is
easily seen that KX # M nF , vhere F is T-dense in X and M € M.
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