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LOCAL CHARACTER EXPANSIONS 
FOR SUPERCUSPIDAL REPRESENTATIONS OF f/(3) 

FIONA MURNAGHAN 

ABSTRACT. The topic of this paper is the relationship between characters of irre
ducible supercuspidal representations of the/?-adic unramified 3 x 3 unitary group and 
Fourier transforms of invariant measures on elliptic adjoint orbits in the Lie algebra. We 
prove that most supercuspidal representations have the property that, on some neigh
bourhood of zero, the character composed with the exponential map coincides with the 
formal degree of the representation times the Fourier transform of a measure on one 
elliptic orbit. For the remainder, a linear combination of the Fourier transforms of mea
sures on two elliptic orbits must be taken. As a consequence of these relations between 
characters and Fourier transforms, the coefficients in the local character expansions are 
expressed in terms of values of Shalika germs. By calculating which of the values of the 
Shalika germs associated to regular nilpotent orbits are nonzero, we determine which ir
reducible supercuspidal representations have Whittaker models. Finally, the coefficients 
in the local character expansions of three families of supercuspidal representations are 
computed. 

1. Introduction. Let F be a p-adic field of characteristic zero. Suppose 7r is an ir
reducible supercuspidal representation of GL„(F). Let ©^ and d(ir) be the character and 
the formal degree of ir, respectively. In [Mu2], under the assumption that the residual 
characteristic p of F is greater than n, it was shown that d^y1®^ coincides with the 
Fourier transform of an elliptic AdGL„(F)-orbit on some neighbourhood of zero. More 
precisely, there exists a regular elliptic element^ in the Lie algebra such that if fiO(xn) 
is the Fourier transform of the orbital integral associated to the orbit 0(X7T), 

(1.1) 0,(exp X) = d^fio^)^ 

for X regular and close to zero. It is natural to ask whether (1.1), or some similar result, 
holds for irreducible supercuspidal representations of G = G(F), where G is a con
nected reductive group defined over F. Detailed information about the inducing data for 
supercuspidal representations (the explicit realization of supercuspidal representations 
as representations induced from open compact mod centre subgroups) was required to 
prove (1.1) for GLn(F). Thus we consider those groups G for which inducing data for 
supercuspidal representations has been found. For general G, it is conjectured that all 
irreducible supercuspidal representations are induced from representations of open com
pact mod centre subgroups. 
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SUPERCUSPIDAL REPRESENTATIONS 607 

In the case G = SLn(F),p > n, it was found ([Mu3]) that (1.1) holds for most super-
cuspidal representations of G. However, if « is prime and divides q — 1, q being the order 
of the residue class field of F, then there exist irreducible supercuspidal representations 
7T of G such that (1.1) does not hold for any Xn. Such a representation TX is a component of 
a reducible supercuspidal representation for which (1.1) holds, but there does not appear 
to be a natural way to relate 0^ to Fourier transforms of elliptic Ad G-orbits. 

Let G = G(F), where G is the 3 x 3 unitary group defined relative to an unramified 
quadratic extension of F. The residual characteristic of F will be assumed to be odd. 
Moy ([Mo]) proved that the irreducible supercuspidal representations of G are induced 
from open compact mod centre subgroups and Jabon ([J]) obtained explicit inducing 
data using Moy's results. Filtrations of parahoric subgroups by open normal subgroups 
are used to construct inducing data for supercuspidal representations. A fundamental 
difference between G and GLn(F) is that the types of filtrations of parahoric subgroups 
occurring in the inducing data are more general for G than for GL„(F). For GL„(F), 
the filtrations arise from powers of the Jacobson radical of the hereditary order which 
stabilizes the lattice chain given by powers of the prime ideal in some degree n extension 
of F. For G, the filtrations do not always arise this way. Also, one of the filtrations is not 
a canonical filtration defined by height functions on affine roots. That is, a non-str 
filtration {//'}/>i (see Section 4) of the Iwahori subgroup of G occurs in the HILI'* up
data for certain supercuspidal representations of G. 

In this paper, we determine which irreducible supercuspidal representations TT of G 
have the property that there exists an elliptic, not necessarily regular, Xn in q such that 
(1.1) holds. Furthermore, the remaining irreducible supercuspidal representations are 
equivalent up to twisting by a one-dimensional representation of G, and we show that 
there exist regular elliptic elements Xu,\ and Xu^ such that, for any of these representa
tions, 

(1.2) 0„(expX) = d(7T)(q-l(q + \)2(L0{XUA)(X) ~ ^\q2 -q+ l )Ao (^2)W)/3, 

if Xis regular and close to zero. 
Let (lAfc) be the set of nilpotent Ad G-orbits. Harish-Chandra's local character expan

sion of 7T at the identity is the equality 

Q„(expX)= J2 c0{ir)MX)> 

where X is regular and in some neighbourhood of zero. (1.1) and (1.2) can be used to 
relate the coefficients CQ(K) to values of Shalika germs. Given O in (9fe\ let FQ be the 
Shalika germ associated to O. If ( 1.1 ) holds and X* is regular, then 

c0(7t) = d(7r)T0(Xn\ O G (fAfc) 

and, if (1.2) holds, then 

c0(7T) = d(7T)(q-l(q + l)2r0(XM,,) - q-\q2 -q+ l)r0(XM,2))/3, O G (fAfc). 
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608 FIONA MURNAGHAN 

The paper begins with a summary of some of the notation used throughout the paper 
(Section 2) and information about elliptic Cartan subgroups and subalgebras (Section 3). 

Properties of certain integrals which are related to Fourier transforms and to the in
ducing data for supercuspidal representations are proved in Section 4. 

In Section 5 properties of the inducing data for n are used to define the X^ of (1.1), 
and theZMi andXM,2 of (1.2). Proposition 5.1, which relates certain integrals of matrix 
coefficients of TT to the integrals considered in Section 4, is an essential part of the proof 
of Theorem 6.4. The main results of the paper are Theorem 6.4 and Corollary 6.6, in 
which we prove (1.1), (12), and the above results expressing values of the coefficients 
in the local character expansion in terms of values of Shalika germs. 

Section 7 is devoted to determining which irreducible supercuspidal representations 
have a Whittaker model. This is done by finding out whether the associated values of 
Shalika germs are nonzero. 

For certain TT, we compute all of the coefficients CQ{^) in the local character expansion. 
This appears in Section 8. 

Results of the type obtained in Sections 4-6 of this paper have also been proved in a 
later paper ([Mu4]) for supercuspidal representations of classical (symplectic, orthogonal 
and unitary) groups, using inducing data for those families of supercuspidal representa
tions obtained by Morris ([Ml-2]). Therefore there is some overlap between the results 
of this paper and those of [Mu4]. It is worth noting that in this paper we deal with all 
supercuspidal representations of G. In [Mu4], for technical reasons, some supercuspidal 
representations were excluded. In particular, we did not deal with those representations 
whose inducing data involved cuspidal unipotent representations of reductive groups 
over finite fields. Also, it is not known whether the constructions of Morris yield all su
percuspidal representations of classical groups. There is no analogue of the results of 
Sections 7 and 8 in [Mu4]. 

2. Notation. Let F be a a /7-adic field of characteristic zero and F the algebraic 
closure of F. If L is a finite extension of F, let 0L and pi denote the ring of integers 
and maximal ideal in the ring of integers. If qi is the order of OL/PL and voL is a prime 
element in p/,, a choice of norm | • \i on L is fixed by the requirement that \VDI\I — q1x. 
In the case L — F, the subscript may be dropped, that is, the notation q, vo and | • | 
may be used. N/y/r denotes the norm map from L to F, and ResL iF restriction of scalars. 
Throughout the paper, we assume that q is odd. 

Choose an element e in 0£ whose image in OF/PF — F^ generates F^x . Let E — 
F(y/e). Set^1 ={xeEx \ NE/F(x) = 1}. If x = a+b^, a,b<EF, definex = a-by/ë. 
If x = (xtj) is a matrix with entries in E, x — (xy). The notation tr will be used for the 
trace map on 3 x 3 matrices with entries in E. Fix a character ipF on F which is trivial on 
OF but non-trivial on w~xOp. Define IJJE = # ° ^E/F^ where tr£/F(jc) = x + x for x G E. 

Let G = U(3) be the 3 x 3 unitary group defined relative to the quadratic extension 
E of F. Then G = G(F) can be realized as {je G Gh^(E) \ xfx — J } , where lx is the 
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transpose of JC, and 

In other words, G is the group of fixed points of the automorphism ot(x) = fx~lJ of 
GLi(E). If L is a finite extension of E, G(L) = GLi(L). There is one isomorphism class 
of 3 x 3 unitary groups with respect to E/F ([R2], Section 1.9). 

The isomorphism classes of 2 x 2 unitary groups with respect to Zs/Fare parametrized 
by Fx /N£ / F(£x) ([R2], Section 1.9). Let H^ be the 2 x 2 unitary group defined relative 

to Jqs = j 0 j . That is Hqs = Hqs(F) = {x G GL2(E) \ xJq/x = Jqs}. Let Ran be the 

2 x 2 unitary group defined relative to Jan = I n , and let Han = Han(F). It is easily 

verified that Hqs is quasi-split over F and Han is anisotropic over F. Thus these groups 
represent the two isomorphism classes of 2 x 2 unitary groups. 

The notation Greg and greg will be used to denote the regular subsets of G and the Lie 
algebra g of G, respectively. For definitions, see [HC2]. 

Let 9{g be the nilpotent subset of g, and (fAfc) the set of nilpotent Ad G-orbits in g. 
The bilinear form 

(X, Y) = trE/F(tr(XY)) 

is a non-degenerate bilinear form on Q. If Î) is a subalgebra of g, let I)1 be the orthogonal 
complement of § in q. 

Suppose X in g is such that det(l + X) is nonzero. Then the Cayley transform c(X) of 
X is the element of G defined by: 

c(X) = (l-X)(\ +X)-1. 

3. Elliptic Cartan subgroups and subalgebras. 

LEMMA 3.1 ([R2] SECTION 3.6). An elliptic Cartan subgroup of G is isomorphic to 
one of the following: 

(1) ResEL/^kerNEL/^), where L is a cubic extension of F 
(2) El xEl x El 

(3) El x ResEL /F(kerNEL //,), where Lis a ramified quadratic extension of F 

Let 7 ^ be a Cartan subgroup of G which splits over an unramified cubic extension 
of E and is contained in G(OF). Let <3^nr be the Lie algebra of 7 ^ . 

To a ramified cubic extension L of F, we associate the Cartan subgroup 7 ^ ^ having 
Lie algebra 

I l ay/è b Cy/ê\ i 1 

meCfi ay/i -b fl,i,cGF>, 
\wCJby/i -WE^C ay/i I I J 

where £ G 0£ is chosen so that rram^ is isomorphic to ResEL/F(kerNEL //,)• 
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Next we define two Cartan subgroups TE,\ and TE,2 which split over E. Their Lie 
algebras are, respectively: 

T*.i = 

% E2 

[la^/ï 0 by/e' 
0 c^l 0 

[\by/i 0 ay/ïl 

a^/e 0 w~xby 
0 c^/i 0 

vobyfê 0 a^/ë 

Let # be one of w and ecu. Given 0, fix A G 0E such that AA = 6e/2w. (Such A's 
exist because \0E/2VO\ — \ (p ^ 2).) Let T î and r#,2 be Cartan subgroups which split 
over E(y/6) and have Lie algebras: 

\taj~e 0 by/i" 

<r^= o c^i o 
[\0by/I 0 fl>/É, 

<z,Z>,c G F) 

and 

^ 9 = 

/ (a + c)V^/2 Xb w-\c-d)yflj2" 
w\b ay/e —Xb 

\zu(c — d)yfej2 —wXb (a + c)y/i/2 
a,b,c£F}. 

Fix a, b and c in F such that both b and (a — cf — b2 are nonzero. LetXE,\ and Jf£52 
be the corresponding elements of CZ/r,! Pi Greg and CZ^ H Greg, respectively (given in the 
definitions of ^ 1 and TEJ). Define two additional elements XE^ and ̂ 4 in ^ 2 H Greg 
by: 

/ (a-b + c)y/ë/2 0 vj-l(-a + b + c)y/ë/2\ 
XEJ=\ 0 (a + b)y/ï 0 

\uj(-a + b + c)y/ë/2 0 (a-b + c)y/êl2 / 

/ (a + b + c)y/i/2 0 zu~](-a - 6 + c)y/ê/2 \ 
^ , 4 = 0 (a - b)y/i 0 

\'co(-a-b + c)y/ë/2 0 (a + b + c)y/ê/2 / 

Now fix a, 6, and c in F such that b is nonzero. Let XQ^ andX#2 be the corresponding 
elements oî%\ n Greg and %^ H Greg, respectively. 

Two elements xi and*2 of G are stably conjugate ([R2], Section 3) if there exists y G 
GL3(F) such thatjy-1xiy — X2- The same terminology will be used for elements of q. That 
is, elements X\ andX2 in q are stably conjugate whenever Ady~l(X\) = y~xX\y = X2 
for some^ G GL3(F). Given X in G, the set of elements in g which are stably conjugate 
to X will be called the stable orbit of X. 

LEMMA 3.2. Let T be a Cartan subgroup ofG. 
(1) Let X G Greg- IfX G %nr or a Cartan subalgebra of the form %^m^ tne stable 

orbit of X consists of the Ad G-orbit ofX. 
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(2) IfTis isomorphic to ResEL^(kerNEL^)yôr some cubic extension L ofF, then 
T is conjugate to Tnm ifL is unramified, and T is conjugate to rram^ for some 
£ G 0E, ifL is ramified over F. 

(3) XE,\, XE,I, XE,3 andXg,A are stably conjugate. Their Ad G-orbits are distinct, and 
make up a stable orbit. 

(4) IfT is isomorphic to El x El x El, then T is conjugate to one ofTE>\ and TE2. 
(5) For a fixed 0 (w or em), XQ^\ andXo2 are stably conjugate. Their Ad G-orbits do 

not coincide, and these two orbits make up a stable orbit. 
(6) IfTis isomorphic to E{ x ResEL/F(kerNEL^), L = F(y/Q) then T is conjugate 

to one of T$j and TQ^. 

PROOF. (1) and (2) follow from Proposition 3.5.2 of [R2]. 
That the elementsXEj, 1 <j < 4 are stably conjugate is immediate, because they have 

the same eigenvalues. A simple calculation shows that the Weyl groups W(TE,\) — S3 
and W(TE,i) — JJJTL, and no two of the XE/s are conjugate. Apply Proposition 3.5.2 
and remarks on p. 29 of [R2] to get (3) and (4). 

Xet\ and XQ^ have the same eigenvalues and so are stably conjugate. By Proposi
tion 3.5.2 of [R2], their stable orbit consists of two Ad G-orbits, so it suffices two show 
thatZ^i and XQ^ do not lie in the same Ad G-orbit. (5) and (6) now follow. • 

4. Filtration subgroups and vanishing of certain integrals. The topic of this sec
tion is properties of integrals of the form 

(4.1) J(X, Y;Q = jci)E(tr(XAdx-\YJ)^J dx 

for various semisimple elements X and open compact subsets C of G, where Y is in 
0\[Q. These types of integrals appear in formulas for Fourier transforms of measures on 
elliptic adjoint orbits in q. The results of this section will be used in Section 5 to relate 
these integrals to character values of inducing data for supercuspidal representations of 
G. 

To begin, parahoric subgroups and filtrations are defined as in [Mo] and [J]. Let 
K = G(0F). The Iwahori subgroup I of K consists of those matrices in K whose en
tries below the diagonal lie in pE. The remaining conjugacy class of parahoric subgroups 
of G contains the normalizer L of / in G. To each of K and L there is associated one 
filtration, and there are two filtrations associated to /. 

Given / G Z, let f/ be the set of 3 x 3 matrices with entries in pl
E, and let f, = tt n q. 

Set K0 = K trndKi = (1 + f,-) n G, 1 > 1. 
Define 

\(0E OE PË1\} (/pE 0E 0E\] 
ïo=\[ PE OE OE\\ ïi = < PE PE OE\\ 

[\PE PE OE/1 {\P2E PE PE I \ 

and I2/+/ = vtflj for / any integer, andy' G {0,1}. Set lz = 1/ n g, / G Z, L0 = L = lo H G, 
andL/ = (l + I / ) n G , / > 1. 
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PE PE OE 

PE PE PE 

Pi PE PE 

(l+\f)C\G,i> 1, where 

L \l°E OE OE 

io = PE OE OE 

WPE PE OE 

~u \(PE PE OE 

i2 = PE PE PE 

[\PE PE PE 

PE 0E 0E 

PE PE OE 

PE PE PE 

PE PE PE^ 

PE PE PE 

Pi PE PE/ 

= i,b ng. 

The first filtration associated to I (the standard filtration ) is given by I0 = I, and 
/,. = (l + \ï)nG,i> 1, where 

UOE 0E OE\] UpE OE OE\] 

to = < PE OE O E \ \ i\ = l\ PE PE OE\> t2 = 
[\PE PE OE/\ [\PE PE PE I \ 

and lii+j = wl\j for i G Z and/ G {0,1,2}. Set i; = t,- n q. 
The other filtration associated to I (the non-standard filtration) is /Q = /, 7b 

ti = 

U = 

and t j^ . = vjx) for ï G Z andy G {0,1,2,3}. Set t | 
Given any lattice 1 in g, let I* = {X G q \ tr(AT) e 0EVY e I}. 

LEMMA 4.2. Le/ / G Z. For the given Cartan subalgebra 1 (notation as in Section 3) 
and lattice m,-, 

( T + m/+i) n (m,- - m / +0 n <A& = 0. 

(7,) T =%m or %,\, and m,- = ï,-
(2) T = CC,i am/ m, = tb 

(3) T = CÇJ}2
 o r ^,2> and m,- = Ï, 

(4) T = 7 ^ a/id nt/ = t; 

PROOF. (1) Supposed G (T + f/+1) n (ï,- - Ï/+0, where T = ^ or T = <2^. 
Then the image of w~lX in ï,-/ï/+i ~ Q(F9) lies in an elliptic Cartan subalgebra, so 
is semisimple. If X G 5\£?, then the image of zu~'X in g(F^), which by assumption is 
nonzero, is nilpotent. But a nonzero element of Q(Fq) cannot be both semisimple and 
nilpotent. 

(2) Suppose X G i0
b. Then XeY+\\, where 

(A 0 0 \ 
y= o <yë o 1, AeoE,beoF. 

\ 0 0 - i / 

If X G fAfc, thenX3 = 0, which implies 73 G î j , that is, ^ G p£ and 6 G pF. Thus 
X G i{\ and (i0

b - \\) n lAfc = 0. Since i^ = ^ i 0
b , (2) holds for / divisible by 4. 

It is easily seen that %A Cli\ C \\ and %A n i3
b C t£. Therefore (2) holds for / of 

the form 4/ + 1 or 4/ + 3. 
IfXG (%9x + i3

b)H i2
b, t h e n I ^ + i J , where 

/ 0 0 ay/i\ 
Y=\ 0 0 0 , a G O F . 

\way/i 0 0 / 
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If X G 9{Q, then 73 G \), that is, a3 G pF, or a G PF, which is equivalent to X G i3
b. (2) 

now holds for / = 4/ + 2,j G Z. 
The proofs of (3) and (4) are omitted as they are similar to the proof of (2). • 

LQtXg^, XQ^9 andX^2 be defined as in Section 3. 

LEMMA 4.3. Assume Y G fAfc. 

(1) Suppose X G ï_/-i, / > 0, has the property that the image ofvol+lXin ïo/ïi — 
g(F^) is regular and elliptic. Then J(X, Y; K) = 0 whenever Y fi lt. 

(2) LetX=X6ti be such that \a\, \c\ < 4 and \b\ = qi+], i > 1. Then J(X, Y;I) = 0 
whenever Y fi t|z_2-

(3) LetX=X9a be such that \a\, \c\ < ql and \b\ = qi+\ i > 1. Then J(X, Y;L) = 0 
whenever Y fi I2/-1. 

(4) Let X = XE,2 be such that \a\, \c\ < (fn, i > 0, and\b\ = \{a-cf-b2\xl2 = qi+l. 
Then J(X, Y;L) = 0 whenever Y fi l2i. 

PROOF. For each of (l)-(4), we will use the notation m/,y G Z, for the lattices 
defining a particular filtration. For (1), m7 = tj, for (2), nty = i j \ and for (3) and (4), 
XXXj = I j . 

Given X, let T be the Cartan subalgebra containingX. In (1), T is %m or <TE,\- Set 

xn'j = ttij Pi T and mj1 = m,- D T 1 . 

Moy ([Mo], p. 190, p. 200) has shown that 

(4.4) m,-= mj + mj1 

and the map induced by taking commutators is onto: 

(4.5) [X, •]: ny /m,*, — W m^_ , / s T ' m £ 

Here s — 0 in cases (1) and (3), and s = — 1 in cases (2) and (4). 
Let d = 1,4,2 and 2, in cases (l)-(4), respectively. In each case, wxtij = ït\d+jj G Z. 

Let Py = c(my), for y > 1, and let P be the associated parahoric subgroup. Then we must 
show that J(X, Y\ P) = 0 whenever Y fi xtiy-w-s+i. 

Define the integer r by Y G mr — mn-i- Assume that r < (i — \)d — s, that is, 
Y fi m(i-\)d-s+\' Let I = (i — \)d — s + 1 — r. The integral J(X, Y;P) is a nonzero 
multiple of 

IJ i>E(tr(XAd(kh)-\Y)))dhdk. 

Fix k G P and set Z = AdA:_l(y). If h G P£ , then A = c(H) for some / / G m*, and 
Ad/r l(Z) - (Z - 2[Z,//]) G m2£+r C m(/_iy_,+2. The relation ([J], p. 32) 

(4.6) m* = m_/_rffi 

together with X G m_/^+5_i, implies that tr(Xm(/_ iy-s+2) C 0£. 
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Using these facts, we see that the inner integral J(X, Z; P?) equals 

Jm 1>E(tr(X(Z - 2[Z9H]))) dH = Vfe(tr(AZ)) J ^E(\x{-2[X,Z\HJ) dH. 

Since m^ = m_£_</+i, this integral vanishes unless [X,Z] G m_£_^+i, because otherwise 
the character of m £ in the integral is non-trivial. 

Now, using (4.4), write Z = Z' + Z1, where Z' G m'r and Z 1 G mf
r
L. Choose n > r 

such that Z 1 G m ^ - m ^ . By (4.5), [X, Z1] G m ^ ^ - m%+n+s Assume [X, Z] -
K Z 1 ] G m_£_j+i. Then-/£/ + »+ 5 > -l-d+ 1, that is, « > r + 1. 

Since Z G fAfc a n d w > r + 1, Lemma 4.2 implies that Z G m^i. But m^i is 
AdP-invariant, so Y G m^-i, which is a contradiction. Thus [X,Z] fi m_£_^+i and 
J(X, Z; P£) = 0 for every k G P. Therefore _7(X, 7; P) = 0. • 

LEMMA 4.7. Suppose Y G fAfc. ££* ̂ am,c ^ ^ defined in Section 3. IfX G CÇam̂  Pi 
(i_z — i_/+i), ybr some / > 1 which is not divisible by 3, then J(X, Y;I) — 0 whenever 

PROOF. Argue as for Lemma 4.3, with m7 = y,j G Z, P = /, and I = i — r — 3. 
Because the residual characteristic may equal 3, (4.4) does not apply. In place of (4.4), 
apply Lemma 3.5 of [C] to see that 

[X, Adk~l(Y)] e\\ = i-f+,+1 => Adk-\Y) G %am,c + irfi, kel. -

Let / > 1. Define 

lay/l 0 0 \ 
(4.8) <x= 0 cy^ 0 , a,c<EF, \a\,\c\ < \a-c\ = (j+l. 

\ 0 0 a v ^ / 

The stabilizer G' of a in G is isomorphic to i /^ x El. Let g' be the Lie algebra of G'. If 
A is a subset of g, v4' denotes 4̂ D g', and v4/J- is ̂  Pi g'1. Next we define certain regular 
elliptic elements in g': 

laxyfl 0 by/i\ 
(4.9i) (3=1 0 cxyfi 0 , al9b,ci£F, \b\ = j + \ \ax\, \cx\<(f\ 

\by/i 0 aiy/ëj 

( a\y/i 0 zu^&y^ëX 
0 Cly/l 0 , 

wb^/e 0 aix/e / 
aub,Cl£F, \b\ = \b2-a2\^2=c/+l, | c , |<</ + 1 , 

(4.9iii) 

/3 = 0 ciy/E 0 , ai,è,ci G F, |è| = ^+ 1 , |ai | , |ci | < ç/, 9 G {w,ew}. 
\0by/i 0 a l V ^ / 

The next lemma is concerned with J(X, Y; P) for X of the form X = a + /3, where 
j3 G t-i n g' is as in (4.9), and P is a parahoric subgroup. We will refer to j3 given by 
(4.9i), (4.9ii), and (4.9iii) as cases (i), (ii), and (iii), respectively. 
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LEMMA 4.10. Let a be as in (4.8), f} as in (4.9), and Y G fAfc. For r G Z, let 
mr = tr, \r, and i,, in cases (i)-(iii), respectively. LetPr = c(mr)forr > 1, and let P 
be the associatedparahoric subgroup. Setd = 1, 2, and 4 in cases (i)-(iii), respectively. 
Then wmr = xtid+r in every case. 

(1) In cases (i) and (ii), assume that 0 <j < i. Ifj> 1, orj = 0 a«rf F G mi, set 

P(YJJ) = {keP\ Adk~l(Y) G m[dJ/2]+l + m[di/2]+l}, 

andifj — 0 and Y £ m\, set 

P(7,/,0) = {keP\ Adk~\Y) G m'0 + m[d(i+l)/2]}. 

(2) In case (Hi), assume that 0 <j < /. Set 

P(Y,ij) = {keP\ Adk~\Y) G m[dj/2] + m^ / 2 ] + 1 } . 

LetX=a + fi. Then 3{XJ\P) = j(X,Y;P(YJJ)), Y G fAfc. 

PROOF. 

STEP 1. Assume 7 G mi. The integral J(X,Y;P) is a nonzero multiple of 
J>_7(X, Adk-\Y)\P t) dk for any integer I > 1. Set £ = [(di + l)/2]. Here, [•] denotes 
the greatest integer function. Fix k G P and set Z = Adk~l(Y). lfh = c(H) G /^ , 

Adh-\Z)-Z + 2[Z,H] G m^Hi = m*_^.+1), 

the last equality following from (4.6). Also, X G m_</(/+1) and tr(2Y[Z,//]) = 
tr(2[X, Z]#)- Therefore, J(X, Z; P^) can be rewritten as 

#(tr(XZ)) £ i>E(tx(-2[X,Z]H)) dH. 

This integral vanishes unless [X,Z] G m J. A straightforward calculation shows that 
nv = m; + m;1, r G Z. Write Z = Z' + Z \ Z' G mj, Z1 G m ^ . Define r by Z 1 G 
m .̂1 — m ^ . We remark that if d is even, then m'£ = m2f+1 ,s G Z, so r must be even if 
d = 2 or 4. Note that a G m_</(/+1) — m_</(/+i)+i and /? G rti-d(i+iy+i- It can be checked 
that 

[a,Z ] G m_^/+1)+r — m_^ /+1)+rH. 

from which it follows, using (4.6), that [X,Z] G m\ = m-^-^+i is equivalent to — d(i + 
1) + r > -I - d+ 1, that is r > [di/2] + 1. As a result, J(X, Y;P) = j(X, Y;P(Y,i))9 

where 

P(Y,i) = {keM\ Adk~\Y) G q' + m^ / 2 ] + 1 } . 

The second part of Step 1 involves writing j(X, Y;P(Y, /)) as a nonzero multiple of 
a double integral and showing that the inner integral vanishes under certain conditions. 
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Let m = [(dj+1)/2]. Observe that P(Y9 i) is invariant under right translation by PmnGf. 
Thus j(X, Y; P(Y, i)) is a nonzero multiple of 

J J\X9 Ad hr\Y)\PmnG')dk 

= J ^E(tr(aAdk'\Y))]y(p,Adk-l(Y),PmnGf)dk, 

equality holding because Ad h(a) = a for h G G'. Fix k G P(7, /) and set Z = Ad i~ l (Y)9 

writing Z = Z' + Z 1 as above. Observe that 

tr(/3Ad/T^Z1)) = t ^ A d / ^ Z 1 ) = 0, A G G' 

=> JC8, Z, ;Pm H G') = _7(/3, Z';Pw n G'). 

Let T = CZ î, ^ 2 , resp. CẐ j, in cases (i)-(iii), respectively. Arguing as above, we find 
that this last integral vanishes unless Z' £ T + xnid.,2,+l. Recall that Z 1 G m^y2]+i• By 
an easy variant of Lemma 4.2, 

i? + mU/2]+l + ™[</i/2]+l) H fAfc = (m[Jy/2]+l
 + m[</i/2]+l) H fAfc-

Thus we have shown that J/(X, 7; P) = j(x, 7; P(7, ijj) for 7 G fAfc H m !. 

STEP 2. If/ = 0 and 7 G mo, taking £ = [di/2] + 1 and m — 1 and arguing as in 
Step 1 results in J{X9 Y; P) = j(X9 Y; P(Y9 i, 0)). 

STEP 3. If y > 1 and Y £ mx or y = 0 and Y £ m0, then P(Y9 ij) = 0. The proof 
that J(X9 Y\ P) = 0 is as for Lemma 3.9 of [Mu2]. • 

Let / > 0. Define 

( ay/e 0 w~lby/e\ 

0 (a-b)y/i 0 , a,beF, \b\ = qi+\ \a\ <qi+l. 
wbyfi 0 dy/s J 

An argument similar to that in [J], p. 57 shows that the stabilizer G" of a in G is isomor
phic to Han x Ex. Let g" be the Lie algebra of G". 

LEMMA 4.12. Supposer > 1. Then 
(Q,/ + lrH)n(lr-lrH)n!Afc = 0. 

PROOF. SupposeXG (g" + 11)nI0. ThenXeY+l Ï 9 where 

/ c^/ë 0 vj-{dy/ë\ 
Y= 0 e^/ë 0 , c9d9eeOF. 

\zudy/e 0 Cyfi ) 

\ÎX G fAfc, X3 = 0, which implies that 73 G 11. It is easily seen that 73 G f i if and only 
if c, d9 e G PF> that is, X G Ii. 

A similar type of argument works for X G (g" + I2) H11. • 
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LEMMA4.13. SupposeYG 9\[g.LetX = a+/3 with a as in (4.11) and [3 G g"nl_2,--i. 
Then J(X, Y;L) = J(a9 Y;L). Furthermore J (a, Y;L) = 0 whenever Y fi l2i. 

PROOF. Suppose Ye lr — 1,+ i for some r < 2i — 1. Otherwise there is nothing to 
show. Set £ = 2/ — r. The element a of (4.11) is slightly different from the a considered 
by Moy, but is conjugate to it by an element of L, so Moy's results still hold. Argue as in 
the proof of Lemma 4.3, using results on p. 200 of [Mo], to see 
vanishes unless Adk~l(Y) G %" + IH-I, which, by Lemma 4.12 is equivalent to Y G IH-I • 
Thus J (a, Adkrl(Y);Le) = 0 for all k G L. This implies, as in the proof of Lemma 4.3, 
thatJ?(X,7;Z) = 0. 

We have now shown that, independent of the choice of (3, J(X, Y;L) = 0 unless Y G 
l2i. To finish the proof, note that (3 G I_2/_i - V2i ((4.6)). Thus J(X, Y;L) = J(a9 Y;L) 
for Y G I*. m 

5. Definition of X*. In [Mo], Moy defined nondegenerate representations, a set of 
irreducible representations of open compact subgroups of G. Up to twisting by a one-
dimensional character of G, each irreducible admissible representation of G contains a 
nondegenerate representation. Using Hecke algebra isomorphisms, Moy classified the 
irreducible admissible representations of G containing a given nondegenerate represen
tation. He identified the supercuspidal representations and proved that they are all in
duced from representations of open compact subgroups. Jabon ([J]) used Moy's results 
to explicitly determine the inducing data for each supercuspidal representation. 

Suppose 7T = Ind^ K, for some finite-dimensional representation n of an open compact 
subgroup H. Let \K be the character of K. The function/^: G —• C defined by 

f«(x) = 
XK(X), if x G H, 

0, otherwise 

is a finite sum of matrix coefficients of IT. 
Let 0<E(G) be the set of irreducible supercuspidal representations of G. Suppose KU is 

an irreducible cuspidal unipotent representation of G(F^) (see Lemma 5.2). The repre
sentation 7rM obtained by inflating KU to K and then inducing to G is irreducible ([Mo]). 
Let 0<Eu(G) be the subset of 0<E(G) consisting of those representations which are equiva
lent to 7rM (£) x for some one-dimensional representation \ of G. Since any two choices for 
KU differ by a one-dimensional representation of G(F^) ([Mo]), 0rEu(G) is independent of 
the choice of KU. GivenXand Y in g, and an open compact subgroup Kc, let J(X, Y;KC) 
be defined by (4.1). The goal of this section is to prove the following analogue of Propo
sition 3.10 of [Mu2]: 

PROPOSITION 5.1. Letn e0iE(G). 
(IJIfirfi 0rEu(G), there exists anX^ G G and an open compact subgroup K^ such 

that 

mrx { fv{k-lc(r-Y/2)k) dk = J(X„, Y;K„\ Y G fAfc. 
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(2) IfV G 0(Eu(G), there existXUy\ andXu^ G Greg such that, if Y G 9{Q, 

M»"1 f/*{trlc(-Y/2)k)dk 

= ^JVCu Y;K) - «Lllll,^ Y;K}. 
3q 3q 

REMARKS, (a) In every case, the centralizer of Xn in G is compact, butX^ may not 
be regular. 

(b) Note that c(-Y/2) = exp(F) if Y G fAfc. 
(c) In (2), XUi\ and Xu^ are independent of the choice of TT G °'EM(G). 

There are three general types of TT to be considered, according to the properties of the 
nondegenerate representations Q which they contain. The first type (Lemmas 5.3 and 
4) contains a nondegenerate representation Q of K or L which factors to an irreducible 
cuspidal representation of K/K\ or L/L\. The second type (Lemma 5.6) contains an 
Q which is represented by a regular element a (see (5.5)). Finally, for the third type 
(Lemmas 5.8, 5.11, 5.12), Q is represented by a singular semisimple element a of the 
form (4.8) or (4.11). 

LEMMA 5.2. Let K be an irreducible cuspidal representation of G(Fg). Then K has 
degree (q — \){q + l)2, (q — l)(q2 — q+X), or q(q — 1). Let Y be a nilpotent element of 
g(F^), and let t/i be a nontrivial character of¥qi. Given a regular elementX G Q(F^), let 
f be the Cartan subgroup of G(Fq) such thatX G *T = Lie(f). Define 

Q(X,Y) = q-3\T\-1 £ $(tr(XAdx-l(Y)))9 
xGG(F^) V ' 

where \T\ denotes the order off. 
(1) Ifn has degree (q — \){q + l)2, then XK{C(Y)) = Q(Xum, Y)for anyXum which is 

regular in §(Fq) and belongs to the image of %nr D f o-
(2) If hi has degree (q — \)(q2 — q + 1), then XK{C(Y)) = Q(XE, Y)>far anyXE which 

is regular in G(F^) and belongs to the image ofclE,\ H f o-
(3) hi is unipotent if and only if n has degree q(q — 1). In that case, XK{C(Y)) — 

(QiXunr, Y) - Q(XE, ?j)/3, whereX^ andXE are as in (1) and (2). 

PROOF. For the définition of cuspidal and unipotent representations of a reductive 
group over a finite field, see [DL]. Suppose f is the image of Tum or TE,2 in G(F^). Let S 
be a regular character of f, that is, a character which is not fixed by any nontrivial element 
of the Weyl group of T in G(F^). The virtual character Rf (6) ([DL]) is, up to sign, the 
character of an irreducible cuspidal representation of G(F^). The values of the character 
Xe of this representation on the unipotent set are independent of the choice of character 
0. Kazhdan ([K]) proved that, if u G G(F^) is unipotent, then Xe(u) = Q(X, log w), where 
X is any regular element of T. Note that, if Y is nilpotent, then log c(—Y/2) = Y. 
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Ennola ([E]) computed the characters of G(F^). The cuspidal representations can 
be identified using the properties of their characters on the unipotent set. There are 
three families of irreducible cuspidal representations, of dimension (q — \)2(q + 1), 
(q — \)(q2 — q + 1) and q(q — 1). The members of each family take the same values 
on the unipotent set. If T is the image of 7 ^ , then \f\ = q3 + 1 because T is the set of 
norm one elements in a cubic unramified extension of ¥qi. \e is the character of an irre
ducible cuspidal representation of dimension ô(Xunr, 0) = (q — X)(q + l)2. Each member 
K of the family of cuspidal representations having dimension (q — Y)(q + l)2 therefore 
has the property that x«(w) — Xe(u) f° r u unipotent. (1) now follows. 

(2) also holds by the same argument, using the fact that if T is the image of TE,U 
\T\ = (q+lf. 

Suppose Kj, 1 < j < 3, are cuspidal representations of G(F^) having degrees 
(q — 1 ){q +1 )2, (q — 1 ){q2 — q +1 ) and q(q — 1 ), respectively. From the character tables in 
[E], we find that x«3(w) = (x«i(w) — X«2(

w))/3 for every unipotent w G G(Fq). Thus the 
second part of (3) follows from (1) and (2). That the unipotent cuspidal representations 
are those of degree q{q — 1) is implied by [L], Section 9. • 

LEMMA 5.3. Suppose n G 0rE(G) contains a nondegenerate representation Q ofK, 
Q being trivial on K\ and factoring to a cuspidal representation of G(Fq) ~ K/K\. Let 
Xu^\, resp. Xu^2, be any element of%m H f_i, resp. 7 ,̂1 H ï_i, such that the image of 
voXu^\, resp. voXu^, in Q(Fq) is regular Then 

(1) IfQ has degree (q — X)(q + l)2, Proposition 5.1(1) holds with Xn = XUt\ and 
K*=K. 

(2) If Ci has degree (q — l)(q2 —q+l), Proposition 5.1(1) holds with Xn = Xu^ and 
K„=K. 

(3) 7T G 0<Eu(G) if and only if the degree ofÇl is q(q — 1), and in that case Proposi
tion 5.1(2) holds. 

PROOF. Let Y G fAfe. If Y <£ ï o, then the left sides of the equalities are zero, because 
ft is supported on K = K^. The right sides vanish as a consequence of Lemma 4.3(1). 
Thus we may assume that Y G to- Observe that (3) is a consequence of (1) and (2). 
If X G f o and k G K, let X and k denote the images of X and k in g(F^) and G(F^), 
respectively. In cases (1) and (2), for Y G fAfc H fo> 

Ml)'1 JKf.{k-xc{-Y/2)k)dk 

= Q(l)-1 j n(k~lc(-Y/2)k) dk 

= jJf|G(F,)|-1( £ ^ ( t r ^ A d ^ ' A d r ' C ? ) ) ) ] ^ 
VxGG(F9) J 

= JK^E(tr(XnAdk-l(Y))^J dk = y(XV9 Y-K). 

Here we have applied Lemma 5.2 to obtain the second equality. As \[) can be taken to be 
any nontrivial character of ¥q2, we can assume that ^ ( 0 = $(ôrt), t £ p]>1. m 
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LEMMA 5.4. Suppose TT G 0rE(G) contains a nondegenerate representation Q ofL, 
Q being trivial on L\ and factoring to an irreducible cuspidal representation ofL/Lx ~ 
H^(F^) x U(\)(Fq). There exists X^ G %^ D I_2 H qreg such that the image ofwX^ in 
I0 /I l is regular, and Proposition 5.1(1) holds with K^ — L. 

PROOF. Using Ennola's character tables ([E]), and arguing as in the proof of 
Lemma 5.2, we can show that there exists a regular X G Lie(H^(F^)) such that 

xM-Y/2)) = x.imMT1 £ ^(tr(XAdx-l(Y)))9 fnilpotent 

where n is any irreducible cuspidal representation of H^(F^). 
Given Z G lo, let Z denote the image of Z in lo/Ii- Let XE,I G TE ,2 be such that 

XE,2 = X Then the entries ofXE,i satisfy \b\ — \a2 — b2\xl2 — q, and |c| < 1, so XE,i £ 
greg. If Y G fAfc H lo, then, since ? is a nilpotent element of Lie(H^(F^) x U(1)(F^)), 
?GLie(H„(F,)) . 

Set Xn = XE,2- The remainder of the proof is much like the proof of Lemma 5.3, 
except that Lemma 4.3(4) is used. • 

Suppose trt£ = f>, 1 ,̂ i^, or \\ for some I > 1. If a G tn*i+l, the representation Q.a 

of Pi = c(m^) is defined by: 

(5.5) na(c(X)) = M(^-2X)l XG% 

The nondegenerate representations appearing in the remainder of the section all have this 
form. 

The next case to be considered is that of TT G 0<£(G) which contains a nondegenerate 
representation Q.a of Pi, some I > 1, where a G Qreg-

LEMMA 5.6. For each a and Pi given below, ifir G ° ̂ {G) contains a nondegenerate 
representation Qa of Pi (defined by (5.5)), then Proposition 5.1(1) holds, with X^ — a 
and Kn — P. 

(1) a G TE%\ or Tum such that the image ofwl+la in $(Fq) is regular, and Pi = Kt 

(2) a = Xoih with \a\, \c\ < q\ \b\ = qi+\ and Pi = I^_2 

(3) a = X0a, with \a\, \c\ < q\ \b\ = qi+\ and Pi = L2i-\ 
(4) a = XEa with \a\, \c\ < qi+l, \b\ = \(a - cf - b2\xl2 = qi+l, and Pi = L2i 

(5) a G ^am,c with \a\> \c\ < <t> \°\ = tf*1 > and Pi — hi-\ 
(6) a G 'ïamx with \a\, \b\ < ql, \c\ = ql+l, and Pi = hi-2 

PROOF. The inducing data for TT as in (1), (2), (3) and (4) is given in Propositions 3.5, 
3.8, 3.25, 3.23, and 3.27 of [J] respectively. For a description in cases (5) and (6), see 
[Mo], p. 201. 

Let T be the Cartan subgroup containing c(a). Set m = [(£ + l) /2]. In every case, 
TT = Ind^>w K;, where n is an irreducible representation of TPm such that K\P[£/2\+\ is a 
multiple of a character p of P^/2]+i which has the property p\Pi = Q a . 
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If X G fA&, then c(X) G TPr, r > 1, if and only if X G m,. This is a variant of 
Lemma 4.2. Suppose 7 G fA&. Let it G P. Then k~lc(-Y/2)k = c(-Adk~l(Y)/2) G 
7Pm if and only if F G mm. 

Let 7 G m^ D fAfc. Since « l ^ is a multiple of Qa , it follows that 

f„(k-lc(-Y/2)k) =M\WE(tr(aAdk-\Y)) 

Thus 
A(l)"1 jpf,{k-lc(-Y/2)k) dk = J(a, 7;P), Y G fAfc H m,. 

By Lemmas 4.3 and 4.7, if 7 G fA& and 7 £ m£, then J (a, Y;P) = 0. Therefore 
to complete the proof it suffices to show that fPfK(k~lc(—Y/2)k) dk vanishes for 7 G 
9én(mm-mi). 

Suppose 7 G mr — ttin-i, where £ — 1 > r > [I/2] +1. By définition off^, the integral 
Spfir{k~}c(—Y/2)k^ dk is a nonzero multiple of 

l\Pi X*{h~lk-lc(-Y/2)kh)dhdk. 

FixkGP and set Z = Ad k~l(Y). lfh = c(H), H G m^_r, then after verifying that 

c(Z/2)h-lc(-Z/2)h G c([Z,//])/Vi and [Z,H] G m*, 

the inner integral above can be rewritten as 

XK(l)p(c(-Z/2J)f M-2*[a,Z]H)dH 

As was seen in the proofs of Lemmas 4.3 and 4.7, this last integral vanishes because 
Z fi rx\£. Thus 

J/^ci-Y/Iik) dk = 0, Y G Sfc n (m[£/2]+1 - m<). 

Finally, we must consider the case t is even and 7 G iAfcn(mm — mm+\). In this case, « 
is obtained by a Heisenberg construction, and n\Pm is the unique irreducible component 
of Ind^p W>M+I p. Since the unipotent subset does not intersect (TnPm)Pm+\ — Pm+\, no 
P-conjugate of c(Y) can lie in (Tr\Pm)Pm+\. This, together with the formula for characters 
of induced representations of finite groups, implies that 

fv(c(-Adk-l(Y)/2J) =XK(c{-Adk-l(Y)/2)) = 0, k G P. m 

Let a be as in (4.8). We shall use notation from Section 4. Lemmas 5.8—5.13 are 
concerned with those supercuspidal representations TT which contain the representation 
Qa of Kj defined by (5.5). Before stating the lemmas, we use Q a to define a character of 
G\ and discuss the parametrization of the representations TT. 

We define a one-dimensional representation of G' which coincides with (5.5) on a 
subset of G' containing Kt n G'. This extension of Q.a to Gf, though it is not unique, 
will also be denoted by Qa. Let Ej = El n (1 + p^' ]+ ). Note that the Cayley transform 
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c\ty/l\^(\-tje)(\+ty/ï)-x maps^v/ë | t E p£/3]+X} onto E). The map <j)a\E}xE) —> 
C defined by 

(/>a(c(^v^),c(/>/ë)) = ^ ( - 2 e ( a s + ctj), s, t E p£/3]+1 

is a linear character ofE) x £?. Fix an extension, also called <j>a, of<f>a to Ex x El. 
Givenx G G ' ~ Hqs xE\ letxi be the//^-component of x, andx2 the is1-component. 

Note that detxi E ^ . S e t 

QaM = </>a(detxi,jt2), x E G7. 
Supposed E g' is such thatX3 E f/+i. Let A ,̂ 1 < £ < 3, be the eigenvalues of 

X, \\ and A3 being the eigenvalues of the Lie(//^)-component of X. Let L be a finite 
extension of E containing Ai and A3. Note that A2 E E. Extend | • \E to | • \i on L. 
Since vo'^X3 E f0, we have zu'^X] E 0L, 1 < I < 3. That is, |A£|

3 < q*K 
Letx = c(X). Then detxj = c(AiA3) andx2 = c(A2). A simple argument shows that 
c(A1A3)Ec(A1+A3)(l + pf) .Thus 

(/>a(detx!,x2) = il>E(-2y/ê(a(\i + A3) + cA2)) - # ( ( a , - Z Y ) ) . 

We have shown 

(5.7) Cla(cÇXJ) = # ( ( a , -2X)), X E g' such thatX3 E f/+1. 

In particular, the new definition of Cla on Kt Pi G' coincides with the old ((5.5)). 
The supercuspidal representations containing the representation Qa ofKt defined by 

(5.5) are parametrized by those supercuspidal representations 7/ of G' containing the 
trivial representation of G'niy ([J], p. 42). The supercuspidal representations obtained by 
Jabon in Theorems 3.12,3.14,3.17,3.19, and 3.22 of [J] are actually those which contain 
Q"1. To get the ones containing Q a , it suffices to replace Q^1 in Jabon's theorems by 

If (5 E g' and m' is a lattice in g' which has the property that (/?, (m')2) C OF, let Qp 
be the representation of ^(m') defined by: 

Qp(c(X)) = <M<& -2X)\ X E m'. 

The different types of 7r' which must be considered are of the form irf = Ind# ft', where 
H and K1 are as below ([J]): 

(a) H = TEy\KL+ly2y 1 < j < i. The restriction of K' to Âj is a multiple of the 
representation Q^, /3 as in (4.9i). 

(b) H — K'. H! is trivial on £{ and factors to an irreducible cuspidal representation 
of the finite group H^(F^). 

(c) H = TEZLJ, 1 <j < i. The restriction of K! to Li is a multiple of the representa
tion Q/5, /3 as in (4.9ii). 

(d) H — Lf. Kf is trivial on L\ and factors to an irreducible cuspidal representation of 
the finite group L/L\ ~ H^5(F^). 

(e) H = Tg^Iy, 0 E {m, sw}, 1 <j < i. The restriction of K' to l\!_2 is a multiple 
of the representation Q^, /3 as in (4.9iii). 

If M is a subgroup of G, let M' =MH G''. 
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LEMMA 5.8. Suppose w 6 0<E(G) contains the representation Qa ofKit a as in (4.8), 
and the for the corresponding representation IT' ofG' has inducing data as in (a), (c), or 
(e). Then Proposition 5.1(1) holds with X^ = a + j5, j3 as in (4.9i), (ii), or (in) (j > \), 
and Kn = K, L or I, respectively. 

PROOF. Letm£ = f£, I£,andi£
b, I eZ,r= [//2] + l,y+ 1, and2/, s = [( /+l) /2] , 

j , and 2/, / — f 2j, and 4/ — 2, d = 1,2 and 4, T = TEy\, TE,i, and Tetu
 m cases (a),(c) 

and (e), respectively. In each case, let T be the Lie algebra of T. 
The first step in the construction of the inducing data for TT is to define a representation 
of TP'sP[{di+ly2]. Set 

Jt = c(mdi + m{ji/2]+l) and J, = c(mdi + m[^+1)/2]). 

Observe that since a G m _</(/+1) = ntlJ /+1, Q a may be regarded as a representation of 
Pdi which is trivial on Pdi+\. To extend Qa from /># to 7/, set Qa|c(m|jr./21+1 ) = 1. Recall 
that Q a is already defined on TP'S C G'. Note that TP'S normalizes Jf and conjugation by 
TP'S fixes Q«|J/. Also P[di/2]+\Ji — P[di/2]+\ anc* ^ < t(^z + l)/2]- Therefore Qa extends 
to TP'sP{dii2]+x. If Jt = Jh then TP'^ = 7P^ [ (^+ 1 ) / 2 ] and rc« is just Qa. If J, ^ Jz, 
then a Heisenberg construction must be used to produce the representation Ka {cf. [J]). 
This representation has the property that Ka\Jt is the unique irreducible component of 
Ind^ Qa . Since Jt is normal in J/, this implies that 

(5.9) XKa\j.-j. = o and 

XKaVrlxKa\Ji = na. 
The representation K'\P'r is a multiple of a character p oîP'r which coincides with Q# 

onP't. Note that 2r > f + 1. Because Q ^ m ^ i = l,and 

((rn?r)/(rn?/+1))
A-(Tnm;+1)/(Tnm;) 

- ( T n m _ ^ ) / ( T n m _ ^ + 1 ) , (c/ (4.6)) 

there exists fi e f n m_,_</ such that p | r n P r = fl^. Furthermore, ç\c(fïL Pi m .̂) = 1 
([J]). It then follows from 

p'r = (rn PM?1 n m'r) and n^ccr1 n < ) = i , 

that p = Qn on all of P r. Because Clp\Pt — QQ\PU
 w e maY (and do) assume that (3 = J3. 

If s — r, then K' = Q/3. Otherwise r = 5 + 1 and K'\P'S is the unique irreducible 
component of Ind " ^ )/v Q#. Therefore, if x £P'S— P'r is such that no P£ -conjugate of x 
lies in (J n P 5 )^ , then x«'(*) — 0. In both cases s = r and s = r — 1, 

(5.10) ^{=Qp(xl xeP'r. 

7T is induced from the representation n of TPf
sK^di+ly2] — TP'Ji defined by 

n\Ji = « a (g) ldim«/ a n d K>\TP'S = KOC^K' 
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Here, l&mK' denotes the trivial representation of dimension dim/ç'. 
Now we determine the values of the character \K of hi on unipotent elements in the 

inducing subgroup. If Y G fAfc, then 

c(Y) G TP'sP[{di+m «=» c(Y) G P'sP[{di+l)/2] 

^=ï r G m l + m p D / î ] . 

The details of the proof of this are similar to the proof of Lemma 4.2 and are omitted. 
Let Y G yfan (m's + nt[(<fl+i)/2])- Then, as remarked in the proof of Lemma 4.10, 

Y = Y + Y1 for some Y G m, and YL G m[fdi+l)/2y 

A straightforward calculation shows that 

c(-r)c(Y)ec(Y1-[Y1,Y,]-2rY±r+[rYLr,r])pdi+l cc(m[fdi+l)/2])pdi+l cjt. 
Combining this with above remarks concerning the definition of na and (5.9), results in 

x4c(7)) = x^^^M-^M7)) 
x«a(i) XK«0) 

= ( £la(c(Y')), if Y1- G m[A-/2]+1, that is, c(Y) G TT^i 
10 otherwise 

Now we evaluate Qa(c(7')). Let § denote the Lie algebra of 3 x 3 matrices with 
entries in E. Let §' be the centralizer of a in q. For £ G Z, 

m£ = ( m £ n â / ) + (tn£ng ,-L) 

it follows from r^r 2 + r r x r + r 2 G § ' \ r G mr, and r3 = ( r + r1)3 = o, that 
r'3 G (Y'Y1-1 + r^r'^ + y^r1) + t3[di/2]+3 c n w c ti+l. 

Apply (5.7) and note that (a, Y1) = 0 to conclude that O a(c(y)) = #((<*, -2F)). 
Suppose that s = r— 1. Since c(Y) is unipotent and c(Y) G c(F/)JP^P[(^+1)/2]5 the image 

of c(Y') in /* / J* ~ G7(F^) is unipotent. Thus, if c(Yf) £ P'n no /Vconjugate of c{Y') is 
in TPr. Combining this with earlier remarks about the character of hz\ we conclude that 

XK,(C(Y'))=0 if rem's-m'r. 

Recall that xK<\P'r is given by (5.10). 
We can now conclude that for Y G 9{g Pi (m^ + m^di+xy2]X 

*MV) = ( # ( ( a + /3, -27)) , if 7 G m; + m[di/2]+l 

X«;(l) 10 otherwise. 

The above formula gives values of/; on ̂ P[(£//+1)/2]nc(fAfc) = c((mf
s+m[idi+ly2])n 

fAfe) • From this and Lemma 4.10, it is now clear that Proposition 5.1(1) holds with Kn = 
PandX^ = a + /3. • 
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LEMMA 5.11. Suppose TT G 0(E(G) contains the representation Qa ofKi, a as in 
(4.8), and the corresponding representation 7r' ofG' has inducing data as in (b) or (d). 
Then Proposition 5.1 (1) holds with X^ = a + (3, (3 as in (4.8i) or (ii), j — 0, and K^—K 
orL, respectively. 

PROOF. Let m^ = lt, resp. lE, I e Z, P = K, resp. L,d= 1, resp. 2, in case (b), 
resp. (d). 

Let Jt and Jt be as in the proof of Lemma 5.8. Extend Qa to from Pdi to PlJi. Then 
produce a representation na of PfJi whose restriction to P,

lJi is a multiple of Qa-
Observe that 

P'/P 
(H^(F ? )xU(l)(F ? ) , in case (b) 

Uan(Fq) x U(1)(F,), in case (d). 

P' /P'x has no cuspidal unipotent representations and it can be shown, by an argument 
similar to that for Lemmas 5.2 and 5.3, that if the image of Y' G m'0 in mj/mj is 
nilpotent, then 

^ l = / ^ £ ( t r ( / 3 A d r ' ( - 2 7 ' ) ) ) ^ 

for some (3 as in (4.9i) of (4.9ii) withy = 0 in cases (b) and (d), respectively. (The measure 
on P' is assumed to be normalized so that P' has volume one.) 

7T = Ind^,j ft, where 

^P1 — Ka (8) K and n\Ji — na 0 ldim«'-

If Ji = Ji, then an argument as in the proof of Lemma 5.8 yields 

X " V , y = M(cc,-2Y)) £>( ( / ? , -2Adk~\Y) ) )dk , KG 5^n(mi+m [ ( ( f f f l ) / 2 ]). 

If Ji T̂  Jf, then the main idea of the proof is along the same general lines as for 
Lemma 5.8, except that it is much longer, as the calculation of x«a is more involved. We 
omit the details. Proofs of analogous results for GLn(F) and classical groups appear in 
Lemma 3.20 of [Mu2] and Lemma 9.2 of [Mu4]. The value of \na (

c00) *s given by: 

X " - ^ y = f 1>F({a,Mh-\-2Y))) dh, Y e 9^ n(inj + m[{di+m). 
XKa(i] • JP[(di+l)/2] 

Combining this with the formula for x« / results in 

x«(i) JPP[(di+l)/2] 
V>F((<* + /3 

The desired result now follows after an application of Lemma 4.10(1) or (2) in the case 
7 = 0. 

We now consider those ir which contain a nondegenerate representation Qa ofL^, 
where a is as in (4.11). 
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LEMMA 5.12. Let i > 1 and assume a is as in (4.11). If K G 0<E(G) contains the 
nondegenerate representation Qa ofL^, then Proposition 5.1(1) holds with X^ — a + /? 
and Kir — L, where (3 is one of the following: 

(1) P = 0 
I a\yfl 0 w b\y/ë\ 

(2) P=\ 0 cy/ë 0 laubuceFf 

\wb\y/ê 0 a\y/e I 
\axl\bxl\c\<\{ax-cf-b]\'l2^^ 

/ 0 Ac 0 \ 
(3) p=l wXc 0 -Ac IXeEasin Section 3,ceF\c\= (j+x. 

\ 0 -w\c 0 / 

PROOF. The proof is similar to the proof of Lemma 5.8, so we omit the details. 
Along with a as in (4.11), Jabon and Moy also consider elements a of the form 

/ ayfi 0 w-yby/ë\ 
0 (a + b)y/ï 0 . 

\wby/ë 0 ayfs I 

Since such elements are conjugate by L to matrices of the form (4.11), we need only 
consider a as in (4.11). 

The centralizer G" = Han(F) of a in G is compact. The element (3 represents a repre
sentation of G" which is trivial on Lu H G". If this representation is trivial on L\ D G", 
then (3 = 0. Otherwise, (3 is given by Proposition 3.30 of [J]. 

Compactness of G" can be used to show that for Y G fAfô, c(Y) belongs to the inducing 
subgroup if and only if F G 1/ (similar to Lemma 4.12). Furthermore it can be shown 
that 

To finish, apply Lemma 4.13. • 

REMARK. In Lemma 5.12, we could have taken (3 equal to zero for all of the rep
resentations 7T considered. However, we chose a f3 which reflected the inducing data for 
IT. This is useful for expressing coefficients in the local character expansion in terms of 
Shalika germs {cf. Corollary 6.6). 

To conclude the proof of Proposition 5.1, we have the following lemma. 

LEMMA 5.13. Suppose TX G ° *E(G) does not contain a nondegenerate representation. 
Choose a one-dimensional representation xofG such that ir ® x contains a nondegen
erate representation. 

(1) Ifir£ 0<Eu(G), then Proposition 5.1(1) holds with X^ = X^x and K^ = K^^x. 

(2) If IT G 0iEu(G), Proposition 5.1(2) holds. 

PROOF. Since x is trivial on the unipotent subset of G, it is easy to check that/^jc) = 
fr®x(x) for x unipotent. • 
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6. Main results. Given/ in Ç£°(g), the space of locally constant, compactly sup
ported, complex-valued functions on g, l e t / in Q°(g) be the Fourier transform off 
defined relative to the character ipp* and the bilinear form (•,•). That is, 

AX) = JiPE{tr(XY))f(Y)dY, 

where dY is a self-dual (with respect to ̂ ) Haar measure on g. Given 7 in g, 0{Y) denotes 
the Ad G-orbit of 7. Let ̂ 0(Y) be the distribution given by integration over the orbit 0(Y). 
The Fourier transform (LO{Y) °f MO(y) is defined by fio(Y)if) — M0(r)(/)>/m Q°(9)- Recall 
([HC2]) that (LO{Y)

 c a n be realized as a locally integrable function on g which is locally 
constant on greg. We use the same notation (LO(Y) f° r this function. 

Let 7 be a semisimple element in g. Choose a Cartan subgroup T such that 7 belongs 
to the Lie algebra of T. Suppose that the stabilizer Gy of 7 in G is compact modulo the 
split component^ of T. This is always the case if 7 is regular, since Gy = T. Choose an 
open compact subgroup Kc of G, and normalize Haar measure on Kc so that the volume 
of Kc equals one. Then the integral 

(t(X : Y) = JA^jKc #(tr(KAd***)"1 (X)j) dkdx 

converges ([HC2], Lemma 18). Furthermore, if dx is normalized so as to correspond to 
jiO{Y), then ([HC2], Lemma 19) 

(6.1) fl0(Y)(X) = ^(X:Y) 

Harish-Chandra stated the result for 7 regular, but it generalizes to the situation above. 
Note that the centre of G is compact, so the split component of an elliptic Cartan subgroup 
of G is trivial. 

LEMMA 6.2. Suppose TT £ 0(E(G). Define f^ and K^ as in Section 5. Assume that 
Haar measure dh on K^ is normalized so that the volume ofK^ is one. 

(1) Suppose 7T ^ ^ (G) . LetXn be defined as in Section 5. LetX G greg and y (E G, reg-

Then 
®{X : XT) = JG JKc [/^ fe(tr(^ Ad(kxh)-\X))) dh dkdx 

(2) LetXUjJ = I, 2 be defined as in Section 5. Then the conclusion of (I) holds with 
Xn replaced by XUJ-, j = 1 or 2. 

(3) e„(y) = $$SG SKC [hM(tehyxykxh) dh] dkdx 

REMARK. The proof of Lemma 6.2 is the same as for Lemma 4.2 of [Mu2]. (3) 
follows from Harish-Chandra's character formula ([HC1], p. 60): 

e„00 = j^r jQ jKf,{{kx)-xykx) dkdx. 
A(l) 

07r does not depend on a choice of measure on G. In order for (3) to hold, the formal 
degree d{ir) of 7r must be taken relative to the measure dx on G. 

https://doi.org/10.4153/CJM-1995-032-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-032-x


628 FIONA MURNAGHAN 

LEMMA 6.3. IfxeG andX G ltfor some t>\, then hàx(X) G f t + Qfe. 

PROOF. This lemma is due to Howe in the case of the general linear group. For 
G, the proof works the same way. Given x G G, x = k\ak.2 for some k\, ki G K, and 
some diagonal matrix a having diagonal entries zur, 1, and w~r, where r is a non-negative 
integer. Conjugating the element Aàki(X) of li by a is easily seen to produce an element 
which is a sum of an upper triangular element in fAfe a n d an element in f̂ . It is now 
immediate that Kdx(X) G fAfc + *t, as AdK leaves both 9^Q and tt invariant. • 

For each ir G °£(G), let V^ = ï^, where £ = £(7r) is defined as follows: 
(i) If 7T contains a nondegenerate representation, and Kn — K or /, resp. L, choose I 

so that A^ G t*t, resp.X^ G I|€_2-
(ii) If IT ® x contains a nondegenerate representation, where x is a non-trivial one-

dimensional representation of G, let £ = £(ir) = max{£(7r(g)x),w}, where where 
m is chosen so that \ is trivial on Km. 

THEOREM 6.4. Let IT G °£(G). Suppose X eV^f] greg. 
W 7/TT $ ^ ( G ) , ;Aoi 0„(c(-X/2)) - d(ir)Çi0{X^X). 
(2) If IT G °£^(G), then 

G„(c(-X/2)) = {(q - \)(q + l ^ W - for - 1)(<?2 - 9 + l)(i0(Xu2)(X)}/3. 

REMARK. C(—X/2) may be replaced by expX if X is sufficiently close to zero (see 
the proof of Corollary 6.6). 

PROOF. Assume that IT contains a nondegenerate representation. Suppose that IT £ 
0<Eu(G). Then (6.1) and Lemma 6.2 imply that it suffices to show 

(6.5) j(XV9Adx-\X);Kr) =Ml)~l fKfv^ 

for any x G G. Fix JC G G. By Lemma 6.3, we can write Adx_1(X) = Y+Z, with 7 G fAfc 
and Z G F*. If AT* = K or 7 and A G A^, Ad A_1(Z) G F*. If A^ = L and A G L, since 
ï* C Ï2£-2, AdA_1(Z) G Ï2€—l- Therefore, 

i/jE(tx(X„ Ad h~l (Y+ Z))^J = ^ ( t r ^ A d A - ^ y ) ) ) , A G #„. 

This implies that the left side of (6.5) equals J(Xn, Y;Kn). 
Let A G A^. Set Yx = Adh~l(Y) and Zi = Adh~l(Z). Suppose A^ = K or /. It 

can be shown that if 7i ^ lo, then neither c(—Y\/2) or c(—(Yi + Z\)/2) is in AT, so 

fn{c(-Yx/2)) = fJc(-(Yi + ZO/2)) = 0. If Yx G ï0, then it is easy to see that 

c(r-Yi/2) G c{-{Yx +Zx)/2)Kt. Also tf* is in the support offv. Thus/7r(c(-7i/2)) = 

A ( C ( - ( F 1 + Z 1 ) / 2 ) ) . 

If Kn = L, argue as above, replacing ïo by lo, and Ki by L^-i^ to conclude that 

A ( c ( - ( 7 , +Z, ) /2 ) ) = / » ( c ( - r , / 2 ) ) . 
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We have shown that the right side of (6.5) equalsMl)~ l SKnfn(h~lc(-Y/2)h)dh. 
Since Y G fAfc, by Proposition 5.1(1), this integral equals J(X^, Y\K^), which, as seen 
above, equals the left side of (6.5). This completes the proof of (1) in the case where 7r 
contains a nondegenerate representation. 

The proof of (2) is omitted, as it is the same as the proof of (1), except that Proposi
tion 5.1(2) is used. 

Suppose 7T 0 x> X a one-dimensional representation of G, contains a nondegenerate 
representation. To prove the theorem for 7r, use ©^(JC) = x l(x)®n®x(x)>x ^ ^reg- Note 
that x is trivial o n ^ . • 

Given 0 G (fAfc), let r 0 : qTQg —> R be the Shalika germ ([HC2]) associated to O. 
Then, if/ is in C^(Q) and X is regular and sufficiently close to zero, 

Mow(/)= E r0CY)Mo(/)-

Let c 0 ( i ) , O G (lAfc), be the coefficient of /ÎQ in the local character expansion of ir at 
the identity (Section 1). 

COROLLARY 6.6. Let O G (fAfe) and ir G °£(G). 
(1) If ir £ QtEu(G) andX« G greg, then C0(TT) = </(7r)r0(A;). 
(2) T/̂ TT ^ °Î^(G) andX„ £ greg, rte/i C0(TT) = d^TciX* + Z)/or any Z G Q which 

commutes with X^, is sufficiently close to zero, and is such thatXn + Z G çjreg-
(3) If ir G 0(Eu(G)f then 

coW = {(q ~ IX* + l ) 2 ro(^ , i ) ~{q- W ~q+ l ) r 0 (A^)} /3 . 

REMARKS, (a) In case (2), some twist of of n by a one-dimensional representation 
of G is as in Lemma 5.12, and X% = a, where a is given by (4.11). More generally, 
if Xn = a + (3 with a given by (4.11), it follows from the proof of (2) that CQ(^) is 
independent of j3. 

(b) In Section 7, we will determine whether the coefficient creg(7r) corresponding to 
the regular nilpotent orbit is nonzero. Also, in Section 8, for certain 7r G 0rE(G), the 
coefficients CQ(TT) will be computed for all O G CAfc). 

PROOF (COROLLARY 6.6). Harish-Chandra ([HC2], Lemma 21 ) showed that: 

®(Xl:X2)= J2 r0(X2){Lo(Xi) 

for X\, X2 G Greg contained in certain subsets of g. Assume ir is as in (1). Arguing as in 
the proof of Theorem 4.4 of [Mu2], we see that there exists an open neighbourhood W^ of 
zero in g such that the above relation holds with X2 = X*, as long as X\ — X G W^dq^g. 
Applying Theorem 6.4(1) results in 

®v(c(r-X/2J) = d(ir) J2 ToiX^MX), l G g r e g n ^ n ^ 
Oe(fA&) 

https://doi.org/10.4153/CJM-1995-032-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-032-x


630 FIONA MURNAGHAN 

There exists an open neighbourhood W'^ C Vn such that if X G W^n greg and 
x e G, AdjT^JO = Y + Z, with 7 G f\k and Z G ^ , exp is defined on W'^ and 
/^(A^expCy + Z)*) =f7r(h-{(QxpY)h) for every /* G K^. To see this argue as in the 
proof of Theorem 4.3 of [Mu2]. In fact, the proof is much the same as the proof in The
orem 6.4 that fJh~xc{-{Y + Z)/l)h\ =f7T(h~lc(-Y/2)h), except that it is necessary 
to work on a smaller neighbourhood of zero on account of the exponential map. Since 
Y G fA&, in particular Y3 = 0, c(-Y/2) = exp Y. So we have 

A ^ e x p C F + Z ) / * ) =/w(A-1(expy)A) 

= A ( A - 1 c ( - 7 / 2 ) / z ) - A ^ - 1 c ( - ( 7 + Z)/2)/Z). 

It now follows from Lemma 6.2(3) that e^QxpX) = 07 r(c(-Z/2)) forX G W'^ n Greg-

To finish the proof, compare the above expression for 07r(c(—X/2)) with the local 

character expansion of ir around the identity: 

e7T(QxpX)= Yl CO(TT)/2O(J0, 

X G greg near zero. Note ([HC2]) that the functions /IQ, O G OAfc) are linearly indepen
dent on any open neighbourhood of zero intersected with greg. 

Suppose 7T is as in (2). ThenX^ = a, where a is given by (4.11). Suppose [a, Z] = 0, 
a + Z £ greg, and Z G I-2/-1. Then, by Lemma 6.2(1) and Lemma 4.13, 

fi 0(a) — fiO(a+Z)-

Combining this with Proposition 5.1(1), we get 

er(c(-x/2)) = d(7r)ii0(a+Z)(X) 

for X G Greg close to zero. Now proceed as for (1). 
The proof of (3) is like that of (1), except that Theorem 6.4(2) is used. • 

7. Whittaker models. In this section we determine which of the representations in 
0<E(G) have Whittaker models (Theorem 7.13 and Corollary 7.16). We begin with a few 
remarks about nondegenerate characters and Whittaker models. Let £/be the unipotent 
radical of the upper triangular Borel subgroup of G. An element uofU has the form 

l\ B by/£-BB/2\ 
u= io 1 -B , B<EE, b<EF. 

\ 0 0 1 / 

Given r G E, define a character \T of U by: 

XT(U) = II)E{TB\ ueU. 
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Any linear character of U is trivial on the commutator subgroup of U and therefore is 
equal to \r for some r in E. As follows from the definition ([Sh, p. 191]), \T is nonde-
generate (or generic) if and only if r is nonzero. This use of of the term nondegenerate 
is not the same as Moy's nondegenerate representations in [Mo]. 

A smooth admissible representation n of G has a xT-Whittaker model, or is Xr-generic, 
if there exists a linear functional À on the representation space V of IT satisfying 

(7.1) A(TT(W)V) = Xr(w)A(v), ueU,veV. 

LEMMA 7.2. Let n G ° 'E(G). The dimension of the space oflinearJunctionals on the 
representation space ofn satisfying (7.1) is either zero or one. 

PROOF. The result is stated and proved in [Sh] for irreducible unitary admissible 
representations of GLn(F). However, as remarked in the introduction of [Sh], the result 
holds for quasi-split groups. Note that since the centre of G is trivial, every TT G °£(G) 
is unitary. • 

In the case of a general reductive group, a representation may have a Whittaker model 
with respect to one nondegenerate character, but not with respect to another (nonconju-
gate) nondegenerate character. However, this will not happen for G because all nonde
generate characters of U are conjugate by elements of the diagonal Cartan subgroup Tj 
of G. In fact, if x G Td has diagonal entries r_ 1 , 1, andf, then \T(xux~x) = Xi(w)- Thus 
we say that IT has a Whittaker model if ir has a Xr-Whittaker model for some (hence all) 
r G Ex. Otherwise we say that ir does not have a Whittaker model. 

There is one regular nilpotent orbit 0reg in g ([R2]). The notations rreg, /ireg, and 
creg(7r) will be used in place of T0, Ho a n d CQM if O = Q-eg- Recall that CQM, O G 
(fAfc), is the coefficient of (ÏQ in the local character expansion of ir at the identity. 

LEMMA 7.3. Suppose TT G 0(E(G) - 0(EU(G) andXn G greg. Then TT has a Whittaker 
model if and only ifT^X^) ^ 0. 

PROOF. By Corollary 1.17 of [MW], creg(7r) ^ 0 if and only if TT has a Whittaker 
model. The lemma now follows from Corollary 6.6(1). • 

We now proceed to determine whether rreg(X) is nonzero for various X in greg. 

LEMMA 7.4. Let X G greg. IfX G %^, 9 ^ , or %2 H (I^+i - ly+2), j G Z, then 
rregW Ï o. 

PROOF. Since rreg(X+Z) = TTeg(X) for Z in the centre of g ([HC2]), we can assume 
that t rZ = 0. Define / G Z by X G tt•- f,+i. 

Given X G %œ H greg, there exist B,C G pl
E and b, c G pj- such that 

/ o B y ? \ 
X= I C 0 -B . 

\Cy/I - C O / 
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The image Xq oïvo~lX in to / ! 1 ~ Q(F^) is regular and is contained in a degree 3 unrami-
fied extension of ¥q2. If B, C G p£*, then zero is an eigenvalue of Xq, which is impossible. 
After conjugating by the matrix J (J appears in the definition of G in Section 2) if nec
essary, we can assume that B G pl

E — pl£1. After conjugating Xby the diagonal matrix in 
G having diagonal entries w~\ 1, and w, we obtain the matrix 

/ 0 w~xB vu-2by/e\ 
voC 0 -w~lB 

\w2Cy/I —WC 0 / 

which lies in the set 5 = Y + ï/+i, where 

/ 0 zu_15 w-2by/I\ 
Y=\0 0 ra-1^ . 

\ 0 0 0 / 

Let / G Ç£°(g) be the characteristic function of 5. Then Ho(X)(f) ¥ 0. Furthermore, a s / 
is invariant under translation by ii+\, an unpublished result of Hales ([H]) implies that the 
Shalika germ expansion of/ is valid on f, D greg. If Z G fAfc fï S then, since F2 ^ Ï2/+1, it 
follows that 7} ^ 0. This implies that O(Z) is the regular nilpotent orbit. Thus the germ 
expansion of ^o(X)if) is: 

Therefore TTeg(X) ^ 0. 
The other cases are similar. • 
In [S], Shelstad derived a formula for T^g(x), for x in Greg, where T^g denotes the 

Shalika germ corresponding to the regular unipotent conjugacy class in G. A simple 
argument shows that if X G Greg is close enough to zero andx = expX, then rreg(X) is a 
positive multiple of r^g(x). Lemma 7.3 can be rephrased in the following way: 

LEMMA 7.5. Suppose irr G 0iE(G) - °£M(G) andXn G greg. Then ix has a Whittaker 
model if and only ifT^g (Qxp(vj2mX7r)) ^ Ofor m sufficiently large. 

PROOF. The lemma is an immediate consequence of Lemma 7.3, the above remarks 
and the homogeneity property of r reg ([HC2]). • 

Suppose T is a Cartan subgroup of G. Let T = T(F). The diagonal Cartan subgroup 
of G will be denoted by T</. Suppose x = expX G T9X G greg is near the identity. If a is 
a root of T in G, define 

a(x)1/2 = exp(a(X)/2). 

Let {aa} be a-data for the action of TF = Gd\(F/F) on the roots of T, as defined in 
Section 2.2 of [LS]. Given a, let av be the corresponding co-root. 

a(x)l/2-a(x)-1/2" 
(7.6) a^ II 

a>0 
a~la<0 

defines a 1-cocycle of I> in T(F) ([S]) whose class in Hl(T) will be denoted by inv(x). 
Let inv(T) be the image in Hl(T) of the class X(TSC) defined in Section 2.3 of [LS]. 
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THEOREM 7.7 ([S]). T°g(x) ^ 0 if and only ifinv(jc) = inv(T)~l. 

LEMMA 7.8. For the given T andh, hT(F)h-{ = Td(F). Fixr G Esuch thatlrf = 1. 
(V T = T*,i 

I T 0 r \ 
A= 0 1 0 

\ - r / 2 0 r / 2 / 

(2) T = T£,2 

( ZZ7T 0 T \ 

0 1 0 
-n j r /2 0 r / 2 / 

(3; T = T^,flG{c7,etu} 
/ r 0 r/y/Ô\ 

h= 0 1 0 
V-n /Â O r ) 

(^) T = T02, 0 G {tu, em}. Suppose X w as in Section 3, that is XX = 0e/2vo. 

h 

Ty/ëw/lX T 
y/Ëm/2X 0 

—TyfËwjlX T Ty/Iw/2wX ) 

Tx/Tw/lwX \ 
evo/lvjX 

PROOF. In each case T(F) is equal to the invertible elements in the commuting al
gebra of T in the set of 3 x 3 matrices over F. To check that hT(F)h~l = Td(F) is 
straightforward. The details are omitted. • 

Supposed G G (F) is diagonal with diagonal entries A,, 1 < j < 3. For j — 1 or 
2, define aj(X) = Xj - Ay+1. Set a3(X) = ax{X) + a2(X). {±aj | 1 < j < 3} are the 
roots of Td in G. Let B be the upper triangular Borel subgroup of G. Given this choice 
of Borel subgroup, a7, 1 <j < 3 are the positive roots. DefineXapj = 1 or 2, to be the 
matrix whose only nonzero entry is a one in they j +1 position. Let Xa3 = Xai +Xai, and 
X-aj — fXaj. This choice of F-splitting (B, Td, {X±a.}) of G will remain fixed throughout 
the section. 

Given a Cartan subgroup T and an h in G(F) such that hT(F)h~l = T</(F), for a Borel 
subgroup of G containing T, we take h~lBh. The roots of T in G will be identified, via 
h, with those of T^ in G. h will be assumed to be as given in Lemma 7.8. 

LEMMA 7.9. The following table gives a-datafor some Cartan subgroups in G. a-a. 
is defined to be —aaj, 1 <j < 3. 

T « a , aa2 
a(*3 \ 

T*,i ^ -yfi vT1 

Tf.2 V~e - ^ Wyfê 

T«.i V~e S* y/Ëw~ 

Tfl,2 \/ew y/ëw y/Ëw~ 
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PROOF. In order that the given data be a-data, auaj = o{aaj) must be satisfied for 
every G G I> ([LS]). This is straightforward. • 

LEMMA 7.10. LetT G {T£?1,T£,2,T^i,T^2}, 0 e {vo.ew}. If inv(T) is defined 
relative to the F-splitting given above and the a-data in Lemma 7.9, then inv(T) is the 
trivial class in H{ (T). 

PROOF. Fix T. Let Q be the Weyl group of T^ in G. For each a G I>, let GT G Q • I> 
be the action of G on Tj which comes from transporting the action of a on T to Td via 
conjugation by h. Define X(GT) G Td by: 

*°T) = n <v 

{/V-i(ay)>0} 

Conjugation by ha(h~l), h as in Lemma 7.8, defines an element UJ(GT) of Q.. a\ and a2 

are the simple roots of T^ in G. Using X±a.J = 1,2, to define n{ctj) as in [LS], we obtain 

/ 0 1 0 \ / l 0 0 \ 
n(cti)= - 1 0 0 , n(a2)= 0 0 1 

\ 0 0 1/ \ 0 - 1 0 / 

As in [LS], if UJ(GJ) is written in reduced form as a product of simple reflections corre
sponding to the (Xj\j = 1, 2, a representative n{uj{Gr)) for UJ{CJT) is given by taking the 
corresponding product of «(o/)'s, j = 1, 2. 

GT '—• m(Gr) = x(GT)n(uj(GT)) 

defines a 1-cocycle of {GT \ G G I>} in T^(F) ([LS]). A(T) is then given by: 

G H—> hTxm(Gr)G(h), G G r>. 

With our choice of a-data and h, it turns out that h~x m(Gr)G(h) — 1 for every G G I>. 
Thus the 1-cocycle A(T), and hence its class inv(T), is trivial. We omit the details. • 

LEMMA 7.11. LetXEj, 1 <j < 4, andXQj,j = 1, 2, be defined as in Section 3. Let 
m, n EZbesuch thatn > m. 

(1) Suppose a, b, c G F «re swc/z / t o |« + 6 — c| = |a — 6 — c\ = q~m and \b\ = q~n. 
For m sufficiently large, the following are equivalent: 

(a) inv(expX^i) is trivial 
(b) m + n is even 
(c) inv(expX£52) is non-trivial 

Furthermore, inv(expX^3) and inv(expX^4) are non-trivial 
(2) Suppose XQ\ is such that \b\ = q~m and \a\, \c\ < q~m~l. If m is sufficiently large, 

then inv(expX^i) is non-trivial 
(3) Suppose XQ\ and XQ2 are such that \a\, \b\ < \a — c\ = q~m. Then, if m is 

sufficiently large, inv(expX^i) is trivial and inv(expJ^2) is non-trivial 

PROOF. Let T G { T ^ T ^ T ^ T ^ } . Suppose* = expX G TD Greg is close to 
the identity and let r\x be the 1-cocycle defined by (7.6). The class inv(x) of rjx is trivial 
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if and only if there exists >> G T(F) such that f]x(cr) = ycr(y~l) for every a G I>. By 
setting t — hyh~l G T^(F) and taking GT as in the proof of Lemma 7.10, we see that this 
is equivalent to 

(7.12) hr]x(a)h-1 = tha(h~l)a(rl)o(h)h-1 = taT(rl\ a G I>. 

If a G I> is such that a(aj) < 0, 1 <j < 3 set 7/ = 7/(x) = (^(x)1/2 - aj(x)~1/2)/aap 

1 <y < 3. Otherwise, <T(OJ) > 0 for 1 <y < 3, and we take 7/ = 1. 

hr]x{a)h-x = diag(7i73,7r172,7^173"1), cr G I>, 

where diag(Ai, À2, A3) denotes the 3 x 3 diagonal matrix with diagonal entries Ay, 1 < 
j < 3. Throughout the proof, we assume that t G T^(F) is of the form diag(Ài, A2, A3), 
Xj G F. 

(1) Since T^i and T^2 split over E, it suffices to determine whether there exists a t G 
T^(F) satisfying (7.12). Let ae denote the nontrivial element of Gal(£/F). If ^ G T</(£), 
a simple calculation shows that, for both T = TE,\ and 7^2, 

ta£j(t~
l) = diag(AiAi, A2A2,A3A3). 

To determine whether inv(expX^) is trivial, we must determine whether there exist Ay G 
£ x , l < 7 < 3 such that 

A1A1 = 7i73, A2A2 = 7f 72, A3A3 = I2 73" . 

Note that 7j(expXEj) G F, 1 < y < 3, 1 < / < 4. N £ / F (£ x ) consists of the set of 
elements in Fx of even valuation. In the case of XE,\, for large m, |7f172| = 1 and 
|7i73| = |7273| = q~m~n The equivalence of (a) and (b) is now clear. The case of XE,I 
is similar, except, due to the different a-data, |7i73| = |7273| = <7~m~"_1, which implies 
the equivalence of (b) and (c). In the cases of XE^ and ^ 4 , IT2T3I = q~2m~l, and so 
727 3 ^N £ / F (£ X ) . 

The details for (2) and (3) are omitted. • 

THEOREM 7.13. Let ir G 0tE(G) - 0<Eu(G). Let a, b, c e F. 

(1) IfXn G %m or ^am,o tnen ^ nas a Whittaker model 
(2) Suppose \a + b — c\ = \a — b + c\ = q*+l and \b\ = qi+l for integers i >j > 0. If 

Xn is equal to XE,\, resp. XE,I, TT has a Whittaker model if and only ifi +j is even, 
resp. odd. IfX^ = XE,3 or XE,4, n does not have a Whittaker model. 

(3) Suppose \b\ — ql+l and \a\, \c\ < <f~x, i > 1. IfXn = XQ^, resp. XQ^, then ir does 
not, resp. does, have a Whittaker model. 

(4) Suppose \a\, \b\ < |a — c| = </+1, / > 1. IfX^ = XQ^, resp. XQ^, then ir does, 
resp. does not, have a Whittaker model. 

(5) IfX^ £ QTeg, then ir does not have a Whittaker model. 

PROOF. Part (1) and the caseX^2 in part (2) follow from Lemmas 7.3 and 7.4. For the 
other cases where X^ G greg, Lemma 7.5, Theorem 7.7, and Lemma 7.10 are combined 
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with the appropriate part of Lemma 7.11. If X* £ greg, then let Z be an element which 
commutes with Xn, is close to zero, and is such that X* + Z e greg. We can choose Z so 
that Xn + Z = XET> or XEA as in (2), or else X7r+Z = Xea as in (4). By Corollary 1.17 of 
[MW] and Corollary 6.6(2), TT does not have a Whittaker model, since r ^ g ^ +Z) = 0. • 

REMARK 7.14. It can be seen from the definitions of the various X / s in Section 5 
that every TT G 0<£(G) — °'EM(G) has anXn which appears in Theorem 7.13. In fact, 

(a) If TT contains a nondegenerate representation of K or of I , then X* G %m or 
Xve{XE/n\ \<m<4}j=j = 0. 

(b) If TT contains a nondegenerate representation Qa ofKf, i > 1, with wl+la having 
regular elliptic image in q(¥q\ thenZ^ G %m H greg or A^ = A^i, (/ =j). 

(c) If 7r contains a nondegenerate representation Qa ofKt, / > 1, with a as in (4.8), 
thenXv G { I £ , i , I £ ) 2 ,^ i (as in (4))} 

(d) If 7T contains a nondegenerate representation Q a of L^, i> 1, a as in (4.11), then 

X* G {a,XE^XEA,Xn (as in (4))}, 

and ix does not have a Whittaker model. 
(e) If 7T is not as in one of (a)-(d), and TT contains a nondegenerate representation Qa 

such that J^ = a G cjreg (see Lemma 5.6), then 

X* e {XE^2 <m< 4,(i =j)9X6tr9r= 1,2 (as in (3))}. 

Recall that representatives for the Ad G-orbits within stable orbits of regular elements 
are given in Section 3. In part(l) of Theorem 7.13, the X^s considered have the property 
that their their Ad G-orbits are stable orbits. In each of parts (2)-(4), theX^'s are represen
tatives for the Ad G-orbits within a stable orbit which contains more than one Ad G-orbit. 
Suppose 5 is a finite subset of 0r£(G) — 0r£w(G) having the property that {J^ | TT G 5} 
is a set of representatives for the Ad G-orbits within the stable orbit of a regular element 
(with each Ad G-orbit in the stable orbit represented once). Theorem 7.13 implies that 
exactly one of the representations in 5 has a Whittaker model, and that representation 
can be identified by the corresponding X^. In fact, it can be seen from the inducing data 
for the representations in 0<£(G), that, given elements as in Theorem 7.13(1)—(4), such 
sets S exist. However, since inequivalent representations may have the sameX^, they are 
not uniquely determined. Rogawski ([R2]) has defined a partition of the representations 
of G into sets called L-packets. We expect, although it is not proved here, that if an L-
packet consists entirely of supercuspidal representations, then every TT in the L-packet is 
in 0<£(G) — 0r£w(G), and X* is regular. Furthermore, the set of Xn's corresponding to the 
representations in the L-packet should consist of representatives for one stable orbit. 

In Section 8, the coefficients c0(^), O G (fAfe), will be computed for certain TT G 
0<£(G), including TT G °'£W(G). As a consequence we will obtain the following result. 

COROLLARY 7.15. I/TT G °'£M(G), TT does not have a Whittaker model 
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8. Evaluation of coefficients. We conclude the paper by computing the coefficients 
co(7r), 0 G (fAfc), for 7T belonging to the following families of representations: 

fi={7re°'E(G)\X7re%nr} 

ft = {TT G 0<£(G) I ^ = A f̂i such that |a - c ± b\ = |6|} 

J3 = ° W ) 
LEMMA 8.1. Assume that the measure ofK in G is one. 
(1) For ire ft such thatXn G ï_/-i - !_,, i > 1, d(ir) = q3i(q - \)(q + l)2. 
(2) For TT<E ft2 such thatX* G ï_/_i - ï_,-, d(ir) = q3i(q - \){q2 - q + 1). 
(3) For IT G ft, d{n) = q(q - 1). 

PROOF. Jabon ([J]) computed d(ir) for all TT G °£(G). If TT G J i or F̂2 and / = 0, 
then some twist of TT by a one-dimensional representation of G contains a nondegqnerate 
representation of K. If / > 1, then some twist of 7r contains the nondegenerate represen
tation Qa of Kt, where a = X^. If IT £ ft, then 7r is a twist of TTU. The formal degrees 
may be read off the table on p. 66 of [J], • 

Let 0reg be the regular nilpotent Ad G-orbit. The two other nontrivial nilpotent orbits, 
0\ and 0OT, are represented by ([R2] Section 3.9) 

/ 0 0 y/ë\ / 0 0 VJy/Ë\ 
^ i = 0 0 0 and 4 - 0 0 0 . 

\ 0 0 0 / \ 0 0 0 / 

For 7T G ° £(G), let creg(7r), c\ (TT), CW(TT) and co(ir), be the coefficients in the local character 
expansion, corresponding to 0reg, 0\, Ow, and the trivial nilpotent orbit 0$ — {0}. The 
notation rreg, T\, Tw and To will be used for the Shalika germs associated to the nilpotent 
orbits. 

To find the values of coin), we will compute To{X^) and then apply Corollary 6.6 
and Lemma 8.1. The next lemma gives a normalization of measure on each O G (fAfc). 

LEMMA 8.2. Let dt be Haar measure on F normalized so that Op has volume one. 
Vf É Q°(g), letfK G q°(g) be defined by fK(X) = SKf(hàk-\X)) dk, where dk 
is normalized so that K has volume one. For each O G (fAfc), the distribution defined 
below is an Ad G-invariant measure on O. 

(1) O = Q>; Mo(/) = / (0) 
(2) O = O,; Ml(/) = < r V + 1 ) / % F ( S » ) \t\fK{tXx)dt 

(3) O = Ow; iiw{f) = q-\tf + 1)SNE/F(EX) WK{tXw)dt 
(4) O = Oreg; Let n be the subalgebra of strictly upper triangular matrices in g. 

Assume Haar measure dXon n is normalized so that n D f o has volume one. 

Mreg(0 = < r V + 1) JMX)dX 

PROOF. In each case, Ranga Rao's formula for ^oif) ([RR]) *s s e e n t 0 t>e a positive 
multiple of the given formula. • 
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REMARK. By Corollary 1.17 of [MW], there exists a positive constant a depending 
on normalizations of measures such that, if TT is an irreducible admissible representation 
of G, a~lcTeg(7r) equals the dimension of the space of linear functionals satisfying (7.1). 
We claim that with the above normalizations of the Fourier transform and of /ireg, a = 1. 
Choose a one-dimensional representation v of a Borel subgroup BofG which is trivial 
on the unipotent radical of B and such that the representation Indf v is irreducible. Let 
®u denote the character of the representation Indf v. then /2reg = ®u o exp on some 
neighbourhood of zero. (This can be seen by the argument used for Lemma 5.1 of [Mu2].) 
By (9), p. 444 of [MW], Indf v has a Whittaker model and the corresponding space of 
linear functionals has dimension one. This implies that a — 1. It now follows from from 
Corollary 6.6(1) and Lemma 7.2 that if ir G °£(G) -0iEu(G) has a Whittaker model and 
X„ G Qreg, then T r e g ^ ) = d(lï)~l. 

If / is a nonzero element of F andXis regular, T0(tX) can be expressed as a multiple of 
Tto(X). (Here tO denotes the nilpotent orbit obtained from O by multiplying the elements 
ofObyt.) 

LEMMA 8.3. Let X G QTQg. Suppose t G F*. If the valuation of t is even, then 
T0(tX) = |^|-d i m°/2r0(X), O G (fAfc). If the valuation oft is odd and if ^ and fiw 

are normalized as in Lemma 8.2, 

0) r,(rf) = |/|-2rro(J0 
(2) Tw(tX)=\t\-2Tx{X) 

(3) rrego*) = | ' | -3r r e gW 

PROOF. The case of t a square in F is the standard homogeneity property of Shalika 
germs ([HC2]). Let To,/i, </>o and <f>\ be the characteristic functions of fo, f i, to and i3, 
respectively. 

For t — e, a comparison of the Shalika germ expansions off at zu2jXand w2j£X, for 
f = fo and </>o, for j sufficiently large, and an application of the standard homogeneity 
property yields the desired result. 

For t = w, the proof involves a comparison of the Shalika germ expansion of/o at 
w2j+lX with that off at vo2jX, and similarly for </>o and <j>\. The details are omitted. • 

THEOREM 8.4. Assume JIQ, O G {^(a), is normalized as in Lemma 8.2. The values 
of the various CQ(IT)S for TT G Jj are given in thejth row of the table below, 1 <j < 3. 
Ifir G fo or fo, let i > 0 be such that andX^ G f _/_i — ï_/. 

co(n) C\(TT) cro(7r) Creg(Tr) 

<fl 

q2+l 
(-iy-y (-i)V 1 

(<72-<7+l) 3i 

H 
q2+\ 

((-l)'-3) ; fi=!£!=3y 1 

q2+\ 
0 1 0 
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PROOF. LetX G {ZUXUJ \j= 1,2}, where Xuj is defined as in Lemma 5.3. Let^o 
and 0o be the characteristic functions of fo and to, respectively. Note that X G fo — h-
By Proposition 7.1 of [Ko], forx G G, 

JC_ 1C(.\> G K <=^> J C G I 

This is easily seen to be equivalent to 

Adx-l(X)€to*=>xeK. 

Thus iiO(X)(fo) equals the volume of AT in G, which equals one. If k G K, because the 
image of Ad k~l (X) in q(¥q) is regular and elliptic, it cannot lie in the Borel subalgebra 
of q(Fq). Thus Ad A;"1 (JO £ to- Therefore O(X)ni0 = AdK(X)ni0 = 0. An unpublished 
result of Hales ([H] implies that the Shalika germ expansions of/o and </>o hold on f ongreg 

(because these functions are invariant under translation by io). Evaluation of fi0(fo) and 
/i0(</>o), O G (fAfc), We find that ^0(X)(fo) = 1 is equivalent to 
(8.5) 

i = - ( ^ -1 ) _ 1 (^ 2 +1)" 1 +(^2 - ^+1)(^2 + 1 ) 1 (rK^o-h^r^r^CJo) +^"3(^3 + i)rreg(^Q. 

Also, Ho{X)(M — 0 is equivalent to 
(8.6) 

Here we have used Rogawski's formula ([Rl]) To(X) = —d(Stc)~l. The formal degree 

of the Steinberg (or special) representation Stc is ((1.9) of [Mo]) 

d(StG) = (q- \)(q2 + \)(q3 + l r ^ o l u m e ^ / T 1 = (q - \){q2 + 1). 

By Lemma 5.3, if ir G Jj,j = 1,2, is such thatX^ G f_i — ïo, thenX^ = XUJ-. 
By Theorem 7.13, the remark following Lemma 8.2, Treg(Xuj) = d(-jr)~l, and this value 
is given by Lemma 8.1. By Lemma 8.3(3), rreg(J0 = q3rrQg(w~lX) = q3TTeg(Xuj). 
Substituting the value of Treg(X) into (8.5) and (8.6) we can solve for T\(X) and TW{X). 

For 7T G J-jJ — 1, 2, Lemma 8.3 can be applied to obtain TQ{X1T) from YQ{WXUJ\ 

O G (fAfc), and J(7r) is given in Lemma 8.1. By Corollary 6.6(1) the coefficients CQM 
are as given in the table. For ir G ^3, apply Corollary 6.6(3). • 

REMARKS, (a) The analogue of Theorem 8.4 was proved for GSp4(F) in Theo
rem 8.3 of [Mul], by different methods. 

(b) The choice of additive character used in the Fourier transform has an effect on the 
/io's. For example, suppose X/JE is replaced by ip' defined by ipf(x) = ipEfax), x G E. Then 
/il, resp. /2ro, defined using xpE, becomes #~2/i^, resp. q~2ft\, defined using ipf. For the 
trivial and regular nilpotent orbits, changing the character has the effect of multiplying 
ft Q by a. positive constant. 

(c) If 7r G ^3, since TT does not have a (nondegenerate) Whittaker model, it follows 
from Corollary 1.17 of [MW] that 7r admits a degenerate Whittaker model relative to the 
orbit Ow and a one-parameter subgroup defined as in [MW]. 
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