ON COATOMS OF THE LATTICE OF MATRIC-EXTENSIBLE RADICALS

HALINA FRANCE-JACKSON

A radical α in the universal class of all associative rings is called matric-extensible if for all natural numbers n and all rings $A, A \in \alpha$ if and only if $M_n(A) \in \alpha$, where $M_n(A)$ denotes the $n \times n$ matrix ring with entries from A. We show that there are no coatoms, that is, maximal elements in the lattice of all matric-extensible radicals of associative rings.

1. INTRODUCTION

We work in the universal class of all associative rings. A radical α is called matricextensible if for all natural numbers n and all rings A, we have $A \in \alpha$ if and only if $M_n(A) \in \alpha$, where $M_n(A)$ denotes the $n \times n$ matrix ring with entries from A. Many of the most important radicals such as, the prime radical β , Levitzki, Jacobson and Brown-McCoy radicals are well known to be matric-extensible and one of the hardest and still open problems in ring theory raised by Koethe in 1930 is equivalent to the matric-extensibility of the nil radical. Thus there is a motivation for studying matricextensible radicals. Snider [7] shown that the class \mathbb{L}_m of all matric-extensible radicals has a complete lattice structure with respect to inclusion. If $\{\alpha_i, i \in I\}$ is a class of matricextensible radicals, then the meet and join are given by $\bigwedge_{i\in I} \alpha_i = \bigcap_{i\in I} \alpha_i$ and $\bigvee_{i\in I} \alpha_i$, where $l(\bigcup_{i\in I} \alpha_i)$ denotes the smallest radical containing the class $\bigcup_{i\in I} \alpha_i$. In [2] all atoms, that is, minimal elements of the sublattice of \mathbb{L}_m consisting of all hereditary matricextensible radicals were described and it was shown that this sublattice is atomic. In this paper we shall show that \mathbb{L}_m does not contain coatoms, that is, maximal elements.

In what follows the notation $A \triangleleft B$ means that A is an ideal of B, $A \triangleleft_l B$ means that A is a left ideal of B and $A \triangleleft' B$ means that the factor ring B/A is a prime ring. As usual, the cardinality of a set S will be denoted by $|S|, S \subseteq R$ means that S is contained in R and $S \subset R$ means that S is strictly contained in R. A class μ is called hereditary if $I \triangleleft R \in \mu$ implies $I \in \mu$, left hereditary if $I \triangleleft_l R \in \mu$ implies $I \in \mu$, and homomorphically closed if $I \triangleleft R \in \mu$ implies $R/I \in \mu$. For a radical α and a ring A, $\alpha(A)$ denotes the α -radical of A and $S(\alpha) = \{A : \alpha(A) = 0\}$. A ring A is called α -semisimple

Received 4th July, 2005

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

H. France-Jackson

if $\alpha(A) = 0$. A radical α is left strong if for any ring A we have $L \triangleleft_l A$ and $L \in \alpha$ imply $L \subseteq \alpha(A)$. For a class μ of rings, $l(\mu)$ denotes the smallest radical containing μ and $l_s(\mu)$ denotes the smallest left strong radical containing μ . All undefined terms and used facts on radicals can be found in [1] and [4].

2. MAIN RESULTS

We require the following.

CONSTRUCTION. ([3]) For any cardinal $\kappa > 1$, let $S = W(\kappa)$ be the set of all finite words made from a (well-ordered) alphabet of cardinality κ , lexicographically ordered. Then S is a linearly ordered set with no greatest element, with least element and such that every interval [x, y], x < y, has cardinality κ . Moreover, S is a semigroup with multiplication defined by $xy = \max\{x, y\}$. For any nonzero semiprime ring A let A(S)denote the semigroup ring of S over A.

LEMMA 1. The semigroup ring A(S) enjoys the following properties:

- (a) A(S) is a subdirect sum of copies of A.
- (b) If $Q \triangleleft' A(S)$, then $A(S)/Q \simeq A/P$, for some $P \triangleleft' A$.
- (c) If $0 \neq L \triangleleft_l A(S)$, then $|L/\beta(L)| \ge \kappa$.

PROOF: Parts (a) and (b) are proved in [3]. Our proof of part (c) is an adaptation of ([3], proof of Lemma 1(d)). Since A is a semiprime ring, it follows from part (a) that so is A(S). Let $0 \neq L \triangleleft_l A(S)$. Then $L\beta(L) \triangleleft_l \beta(L)$ and, since $\beta(L) \in \beta$ and β is left hereditary ([4, Example 3.2.12]), it follows that $L\beta(L) \in \beta$. But then, since β is left strong ([4, Example 3.17.2 (i)]), it follows that $L\beta(L) \subseteq \beta(A(S)) = 0$. Moreover, $\beta(L) \neq L$ since otherwise we would have $L^2 = L/\beta(L) = 0$ which is impossible because A(S) is a semiprime ring. Let $x = a_1u_1 + \cdots + a_ku_k \in L\setminus\beta(L)$, $0 \neq a_i \in A$ and $u_i \in S$, where $u_1 < \cdots < u_k$. If $a = \sum_{i=1}^k a_i \neq 0$ then, since A is a semiprime ring, it follows that $aba \neq 0$ for some $b \in A$. Then for all $v \in S$ such that $v > u_k$ we have $0 \neq bau_k + bav = (bu_k + bv)x \in L$. Moreover, $bau_k + bav \notin \beta(L)$ since otherwise we would have $0 \neq abau_k + abav = x(bau_k + bav) \in L\beta(L) = 0$, a contradiction. Thus $bau_k + bav \in L\setminus\beta(L)$. Let $c \in A$ be such that $(ba)c(ba) \neq 0$. Then for each $u \in S$ such that $u_k < u < v$ we have $0 \neq cbau + cbav = cu(bau_k + bav) \in L\setminus\beta(L)$ since otherwise we would have

 $0 \neq bacbau + bacbav + bacbav + bacbav = (bau_k + bav)(cbau + cbav) \in L\beta(L) = 0,$

a contradiction. If a = 0, then $c = \sum_{i=1}^{k-1} a_i \neq 0$ and, since A is a semiprime ring, we have $cdc \neq 0$ for some $d \in A$. Hence $0 \neq dcu_{k-1} + da_ku_k = du_{k-1}x \in L \setminus \beta(L)$ since otherwise we would have

 $0 \neq cdcu_{k-1} + a_k dcu_k = x(dcu_{k-1} + da_k u_k) \in L \setminus \beta(L) = 0,$

a contradiction. Let $f \in A$ be such that $dcfdc \neq 0$. Then for every $w \in S$ such that $u_{k-1} < w < u_k$ we have $0 \neq fdcw + fda_ku_k = fw(dcu_{k-1} + da_ku_k) \in L \setminus \beta(L)$ since otherwise we would have

$$0 \neq dcfdcw + dcfda_ku_k + da_kfdcu_k + da_kfda_ku_k$$
$$= (dcu_{k-1} + da_ku_k)(fdcw + fda_ku_k) \in L\beta(L) = 0,$$

a contradiction. In any case there are $s, t \in S$, s < t and nonzero $g, h \in A$ such that $gs + ht \in L \setminus \beta(L)$ and such that for every z in the interval [s, t] and some $l \in A$ such that

$$(gl)g \neq 0, \ l(gz) + lht = (lz)(gs + ht) \in L \setminus \beta(L).$$

Let z_1 and z_2 be in the interval [s, t] and suppose

$$l(gz_1) + lht + \beta(L) = l(gz_2) + lht + \beta(L).$$

Then

$$l(gz_1) - l(gz_2) \in \beta(L).$$

Hence

$$(gs+ht)(l(gz_1)-l(gz_2)) \in L\beta(L) = 0$$

Thus

$$gl(gz_1) - gl(gz_2) + (hl)gt - (hl)gt = 0$$

which implies that $z_1 = z_2$. This shows that the mapping $z \mapsto l(gz) + lht + \beta(L)$ is an injection of the interval [s,t] into $L/\beta(L)$ which implies that $|L/\beta(L)| \ge |[s,t]| = \kappa$ and ends the proof.

Let ε denote the class of all rings. A subring S of a ring A is called a left accessible subring of A if there exist subrings S_0, \ldots, S_n of A such that $S = S_0 \subseteq S_1 \subseteq \ldots \subseteq S_n = A$ and $S_i \triangleleft_i S_{i+1}$ for every $i \in \{0, 1, \ldots, n-1\}$.

THEOREM 2. For every radical $\alpha \neq \varepsilon$ there exists a matric-extensible radical α' such that $\alpha \subset l(\alpha \cup \alpha') \subset \varepsilon$.

PROOF: We shall use similar arguments to those of ([1], proof of Theorem 5, pp. 252-253). Let α be a radical such that $\alpha \neq \varepsilon$. Let A be a nonzero semiprime and α -semisimple ring. The existence of such a ring A was shown in [3]. Let η_A be the class of all rings isomorphic to the homomorphic images of the left accessible subrings of A. Let $\mu = \eta_A \cup \beta$ and let $\alpha' = l_s(\mu)$. We shall show that α' is the required matric-extensible radical. Clearly, η_A is a homomorphically closed and left hereditary class of rings and so is β . Thus μ is a homomorphically closed and left hereditary class of rings. Moreover, $\mu \subseteq \{A : A^\circ \in \mu\}$, where A° denotes the ring with zero multiplication on the additive group of A. Therefore, it follows from ([5, Corollary 3]) that α' is left hereditary. Since

 α' is also left strong, it follows from ([4, Theorem 4.9.6]) that α' is matric-extensible. Moreover, since $\alpha' \cup \alpha \subseteq l(\alpha \cup \alpha')$ and $A \in \alpha' \setminus \alpha$, it follows that $\alpha \subset l(\alpha \cup \alpha')$. To show that $l(\alpha \cup \alpha') \subset \varepsilon$, it is sufficient to build a nonzero $l(\alpha \cup \alpha')$ -semisimple ring. Take a cardinal $\kappa > |A|$ and construct the semigroup ring A(S). We shall show that A(S) is $l(\alpha \cup \alpha')$ -semisimple. Since A is semiprime and α -semisimple, Lemma 1 (a) implies that so is A(S). Suppose A(S) is not α' -semisimple. Then, since A(S) is semiprime and the class μ is homomorphically closed and hereditary, it follows from ([6, Lemma 2.1 (ii)]) that A(S) contains a left ideal L such that $0 \neq L/\beta(L) \in \mu$. Then $0 \neq L/\beta(L) \in \eta_A$ because $L/\beta(L) \notin \beta$. Then applying Lemma 1 (c) one gets $|L \setminus \beta(L)| \ge \kappa$. But this is impossible since clearly, for any $R \in \eta_A$ we have $|R| \le |A| < \kappa$. Thus A(S) is α' -semisimple and so A(S) is $l(\alpha \cup \alpha')$ -semisimple because $S(l(\alpha \cup \alpha')) = S(\alpha) \cap S(\alpha')$.

COROLLARY 3. The lattice \mathbb{L}_m of all matric-extensible radicals does not contain coatoms.

PROOF: If $\alpha \neq \varepsilon$ is a matric-extensible radical, then so is the radical $\alpha \lor \alpha' = l(\alpha \cup \alpha')$, where α' is the matric-extensible radical built in the proof of Theorem 2. Moreover, it follows from Theorem 2 that $\alpha \subset \alpha \lor \alpha' \subset \varepsilon$. Thus the result follows.

References

- V.A. Andrunakievich and Yu. M. Ryabukhin, Radicals of algebras and structure theory, (in Russian) (Nauka, Moscow, 1979).
- [2] G.L. Booth and H. France-Jackson, 'On the lattice of matric-extensible radicals', Acta Math. Hungar. 101 (2003), 163-172.
- [3] B.J. Gardner and P.N. Stewart, 'Prime essential rings', Proc. Edinburgh Math. Soc. 34 (1991), 241-250.
- [4] B.J. Gardner and R. Wiegandt, Radical theory of rings (Marcel Dekker, New York, 2004).
- [5] E.R. Puczylowski, 'Hereditariness of strong and stable radicals', Glasgow Math. J. 23 (1982), 85-90.
- [6] E.R. Puczylowski and E. Roszkowska, 'On atoms and coatoms of lattices of radicals of associative rings', Comm. Algebra 20 (1992), 955-977.
- [7] R.L. Snider, 'Lattices of radicals', Pacific. J. Math. 40 (1972), 207-220.

Department of Mathematics and Applied Mathematics Summerstrand Campus (South) PO Box 77000 Nelson Mandela Metropolitan University Port Elizabeth 6031 South Africa e-mail: cbf@easterncape.co.uk