Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-17T08:44:41.467Z Has data issue: false hasContentIssue false

Martingales versus PDEs in finance: an equivalence result with examples

Published online by Cambridge University Press:  14 July 2016

David Heath*
Affiliation:
University of Technology, Sydney
Martin Schweizer*
Affiliation:
Technische Universität Berlin
*
Postal address: University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia.
∗∗ Postal address: Technische Universität Berlin, Fachbereich Mathematik, MA 7–4, Str. des 17. Juni 136, D-10623 Berlin, Germany. Email address: mschweiz@math.tu-berlin.de

Abstract

We provide a set of verifiable sufficient conditions for proving in a number of practical examples the equivalence of the martingale and the PDE approaches to the valuation of derivatives. The key idea is to use a combination of analytic and probabilistic assumptions that covers typical models in finance falling outside the range of standard results from the literature. Applications include Heston's stochastic volatility model and the Black-Karasinski term structure model.

Type
Research Papers
Copyright
Copyright © by the Applied Probability Trust 2000 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Black, F., and Karasinski, P. (1991). Bond and option pricing when short rates are lognormal. Financial Analysts J. Jul./Aug. 1991, 5259.CrossRefGoogle Scholar
Cox, J. C. (1975). Notes on option pricing I: constant elasticity of variance diffusions. Working Paper, Stanford University [unpublished]. Reprinted as Cox, J. C. (1996). The constant elasticity of variance option pricing model. J. Portfolio Management, spec. iss. Dec. 1996, 15–17.Google Scholar
Delbaen, F., and Shirakawa, H. (1995). Option pricing for constant elasticity of variance model. Preprint 96-03, Tokyo Institute of Technology.Google Scholar
Duffie, D. (1992). Dynamic Asset Pricing Theory. Princeton University Press.Google Scholar
Friedman, A. (1975). Stochastic Differential Equations and Applications, Vol. 1. Academic Press, New York.Google Scholar
Heath, D., Platen, E., and Schweizer, M. (1999). A comparison of two quadratic approaches to hedging in incomplete markets. Preprint, Technical University of Berlin.Google Scholar
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Stud. 6, 327343.Google Scholar
Hull, J. C. (1997). Options, Futures, and other Derivatives, 3rd edn. Prentice-Hall, New York.Google Scholar
Ikeda, N., and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam.Google Scholar
Ingersoll, J. E. Jr. (1987). Theory of Financial Decision Making. Rowman & Littlefield, Totowa, New Jersey.Google Scholar
Krylov, N. V. (1980). Controlled Diffusion Processes. Springer, New York.Google Scholar
Kunita, H. (1984). Stochastic differential equations and stochastic flows of diffeomorphisms. In École drqété de Probabilités de Saint-Flour XII–1982 (Lecture Notes in Math. 1097), ed. Hennequin, P. H. Springer, Berlin, pp. 143303.Google Scholar
Laurent, J. P., and Pham, H. (1999). Dynamic programming and mean-variance hedging. Finance Stoch. 3, 83110.Google Scholar
Leblanc, B. (1996). Une approche unifiée pour une forme exacte du prix d'une option dans différents modèles à volatilités stochastiques. Stoch. Stoch. Rep. 57, 135.CrossRefGoogle Scholar
Stroock, D. W., and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes. Springer, New York.Google Scholar