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STOCHASTIC AND SUBSTOCHASTIC SOLUTIONS
FOR INFINITE-STATE MARKOV CHAINS WITH
APPLICATIONS TO MATRIX-ANALYTIC METHODS
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Abstract

This paper deals with censoring of infinite-state banded Markov chains. Censoring
involves reducing the time spent in states outside a certain set of states to 0 without
affecting the number of visits within this set. We show that, if all states are transient,
there is, besides the standard censored Markov chain, a nonstandard censored Markov
chain which is stochastic. Both the stochastic and the substochastic solutions are found
by censoring a sequence of finite transition matrices. If all matrices in the sequence are
stochastic, the stochastic solution arises in the limit, whereas the substochastic solution
arises if the matrices in the sequence are substochastic. We also show that, if the Markov
chain is recurrent, the only solution is the stochastic solution. Censoring is particularly
fruitful when applied to quasi-birth-and-death (QBD) processes. It turns out that key
matrices in such processes are not unique, a fact that has been observed by several
authors. We note that the stochastic solution is important for the analysis of finite queues.
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1. Introduction

For an infinite-state, discrete-time Markov chain, much information can be gained by
censoring. Censoring involves ignoring the sample function of a Markov chain when it is
outside of a certain subset E of states, without affecting the visits when the process is in this
subset. Stated differently, the process is embedded into E. It is important to note that censoring
can be used to provide a probabilistic interpretation to Gaussian elimination. In this paper we
assume that the states are the natural numbers, starting at 1, and we will typically censor the
states above a certain state 7.

Censoring also allows us to deal with transient Markov chains which have no equilibrium
probabilities: following Zhao et al. [24], we pick a base state, say state 1, and, for each state
i of the Markov chains, we use v;, the expected number of visits to state i in a cycle, where
a cycle starts before entering the base state and ends before the base state is entered the next
time. This measure obviously also exists if all states are transient, and it can take the place of
the equilibrium probabilities which are only available if the process is positive recurrent. If
the Markov chain is positive recurrent, the variables v;, i = 1,2, ..., are proportional to the
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equilibrium probabilities. Moreover, this measure fits very naturally with the methodology of
censoring.

Clearly, censoring is also applicable for finite or infinite substochastic matrices. Here, as later
in this paper, the term substochastic means strictly substochastic, that is, stochastic matrices
are excluded.

Kemeny et al. [11] pointed out that inverses of infinite-dimensional matrices are not unique,
and this affects the uniqueness of a censored Markov chain. Independently, researchers in
matrix-analytic methods also found that certain key matrices used in this area are nonunique
[1], [9], [14], [17]. As shown in [6], censoring provides the basis of matrix-analytic methods,
and, hence, the nonuniqueness of certain matrices in matrix-analytic methods follows from the
nonuniqueness of inverses in infinite-state Markov chains.

We will mainly consider discrete-time Markov chains, but as we will point out, the derivation
also applies to continuous-time Markov chains. For instance, instead of the number of visits
between two consecutive visits to a base state, we have to consider the expected time spent in
state i between two consecutive visits to the base state, and divide this number by the expected
time spent uninterruptedly in the base state.

To avoid complications, we assume that all states communicate, which implies that all states
are either recurrent or transient. We also assume that the transition matrices are banded, but the
theory should also be applicable in the case in which the matrices are weakly banded, that is,
where a bandwidth can be chosen such that the probability of a transition outside the band is
less than € > 0. Now, let P be the transition matrix of an infinite-state, discrete-time Markov
chain with states 1, 2, 3, ..., let y P be a sequence of finite transition matrices of size N, and let
N — o0o. We require that the transition matrices, y P, have the same transition probabilities as
the original matrix, P, except for states close to N. Of course, since the matrices y P are finite,
all transition probabilities involving any state k > N are removed. The transition probabilities
close to N can essentially be chosen arbitrarily, as long as y P is stochastic or substochastic, and
as long as all states communicate. Now consider the matrices y P™ _ which are obtained from
the matrices y P by censoring above state n, and consider the existence of and the meaning of the
limit of y P™ as N — oo. Here the limits are to be understood pointwise. Since the transition
probabilities of the y P close to N may differ, we can construct many sequences {y P, N > 0},
but if the process is recurrent, all these sequences approach the same limit. However, if the
process is transient, there are typically exactly two limits. If, in the transient case, all the y P
matrices are stochastic, so is the limit of y P™ _but if the matrices are substochastic, a different
limit arises. Hence, there is typically a stochastic limit, which is different from the substochastic
limit. In the literature, people emphasize the substochastic limit. However, the stochastic limit
turns out to be important for the analysis of queueing systems with traffic intensities above 1,
but with a finite waiting room N. In this case, the resulting Markov chain has a stochastic
transition matrix for all N, even as N — 0o. Hence, in this case, it is the stochastic solution
that is of interest, not the substochastic solution.

We have to exclude sequences of matrices where some members are stochastic while other
members are substochastic, because in this case, there may be a subsequence which is stochastic
and another subsequence which is substochastic. We could, of course, allow a mixture of
stochastic and substochastic matrices for the first few elements of the sequence {5 P}, but we
will not do this because no additional insight would be gained.

If a process has only transient states, or if it has absorbing states, then it no longer has
nonzero equilibrium probabilities, but it still has nonzero expected visits in a cycle. On the
other hand, if all states of the original Markov chain P are transient, but y P is stochastic, then
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~ P has nonzero equilibrium probabilities. However, as we let N go to oo, it takes longer and
longer to reach the equilibrium when starting in any state of sufficient distance from N, and in
the limit, it takes an infinite amount of time to reach equilibrium.

The outline of this paper is as follows. In Section 2 we discuss censoring, and in Section 3
we apply this theory to transient and recurrent Markov chains. In Section 4 we show the
connection with matrix-analytic methods, and in Section 5 we expand these considerations by
using eigenvalues. Since the main emphasis of this paper involves connecting different theories,
we will review some results that have appeared in the literature. This means that this paper is
partially a review article, in the sense that it provides a new perspective to known results.

2. Censoring

Consider a discrete-time Markov chain { X, X5, X3, ...}, where the X,,, n > 1, can assume
only the values 1,2,3,..., N, where N may be finite or infinite. We partition the states into
two sets, namely from 1 to n and from n + 1 to N. If we partition the transition matrix P

conformally, we obtain
Py P
P= :
[le Pzz}

After censoring all states above n, we obtain a reduced Markov chain P which becomes,
according to [11],
P™ = Py 4 P 0Py, (D

where
o
0=) P
v=0

As shown in [11], (Q);; gives the expected number of visits to state j > n before returning to
a state k < n, given that the process starts in state i > n. Also, (P12Q);; gives the expected
number of visits to state j > n before returning to a state k < n, given that the process starts
in state i < n.

Note that, if I is the identity matrix, Q is the inverse of I — P»;, because

(I-Pp)Q=(U-P)I+Pp+Ph+-)=1-Py+Pn—Ph+PH— =1

For finite N, the inverse is unique, and (1) really represents block elimination. In the case of
infinite matrices, Kemeny et al. [11, p. 5] have shown that I — P> can have more than one
inverse. We note, however, that Kemeny e al. used the inverse with the smallest entries.

Let the original process be {X1, X», X3, ...}, and let {XY’), Xé"), Xg"), ...} be the process
censored at level n. Hence, if m, indicates the epoch where X, is less than or equal to n for
the vth time then X ,(,") = X,,,. This establishes a one-to-one correspondence of the visits to
any state i < n in the processes {X,,, m > 1} and {Xf,"), v > 1}, that is, the number of visits
to state i < n is not affected by censoring. In particular, if the number of visits to state i
in the original process is finite, so is the number of visits in the censored process. It follows
that, if state i is transient in the original Markov chain, it is also transient in the censored
Markov chain, and if the number of visits is infinite in the original chain, so is the number
of visits in the censored Markov chain. Therefore, if the process {X,,, m > 1} is recurrent,
so is the process {X ‘(,"), v > 1}, and vice-versa. A similar result follows if {X,,, m > 1} is
transient. If the number of states is finite, and if all states communicate, recurrent Markov chains
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have stochastic transition matrices and transient Markov chains have substochastic matrices,
provided that all the rows and columns corresponding to absorbing states are deleted. Hence,
for such Markov chains, censoring converts stochastic matrices into stochastic matrices and
substochastic matrices into substochastic matrices.

As mentioned in the introduction, we use the expected number of visits, v;, to state i, i =
1,2, ..., between two consecutive visits of a particular state, say state 1. Specifically, we start
counting visits immediately after state 1 is entered, and we stop immediately before state 1 is
entered again. It follows thatv; = 1. Note that, for any noncensored state i, the variable v; keeps
its value when the process is censored at n, provided that i < n. To find the values of v; for all
i > 1, we follow Zhao et al. [24] and use (1) with n = 1, in which case P> Q becomes a vector
indicating the expected number of visits to states 2, 3, 4, ... between two consecutive Visits to
state 1. If v™ is defined to be [v2, v3, ...], we have, since Q P»» = Py + P222 +...=0-1,

vV =PppQ =P+ PoQPy»=Pp+v P

Since v; = 1, this expands to

UJ—P11+ZUsz/—ZUsz/, Jj>1 (2)

i=1

This proves that the v;, j > 1, satisfy the equilibrium equations, except for j = 1. In fact, if
P is substochastic, (2) will fail for j = 1. On the other hand, if P is stochastic, (2) also holds
for j = 1, which implies that the equilibrium vector 7 = [n;, i = 1,2, ...] can be found from

the vector v = [vy, vp,...] as
Vi

o
D=1V

From the definition of censoring we conclude that, for any state i < n, the probability of ever
returning to this particular state is not affected by censoring at n. Hence, once a Markov chain
is reduced to a single state, say state 1, then we can conclude that pgll), the only element of PV,

provides the probability that a process starting in state 1 will return to state 1 again. If p{ll) =1,

the process is recurrent, and if p;;’ < 1 the process is transient. In other words, 1 — pill) is
the probability of escape and 1/(1 — p 1 ) is the expected number of visits to state 1 from now
to oo if starting in state 1.

If state 1 is transient, there will be a last visit to state 1. After this visit, other states are

visited, and these are counted when calculating v;. This follows from the equation

T =

P10 = Pip+ PPy + P12P222 + e

To find P™, we can eliminate one variable at a time, rather than through block elimination.
We apply (1) with N finite and n = N — 1 to obtain, provided that pyy # 1,

(N—=1)

PiNDPNj
pij =pij + N ENT

1—pnn’

3)

This equation indicates that in order to go from i to j in the reduced Markov chain we can
either go from i to j directly or we can go from i to N, and from there to j. It follows that,
if there is a path from i to j in the original Markov chain described by P, there is also a path
from i to j in the reduced Markov chain described by PN~ Hence, the application of (3),
which we refer to as state reduction, will preserve paths.
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It is clear that the transition matrix P‘Y~1 can be reduced by using (3), except that N is
replaced by N — 1. This reduction continues, and to express this, we write

(n) (n)
Pin pnj

1-pi

(n=1) _ (n)
Djj = Pjj +

“
This reduction process stops when only state 1 is left. At this point, we set v; = 1. To find the
v, > 1, we use

This relation is true because state reduction essentially amounts to Gaussian elimination; we
leave it to the reader to fill in the details. Since we assumed that all states communicate,
p,g',?, n > 1, cannot be equal to 1.

Even though this is somewhat off the topic of this paper, we note that the method works even
for decomposable Markov chains. In this case, pr(z'rzz = 1 as soon as all recurrent states of the
communicating class of this chain are found. Any state i with p;;, > 0 is transient and can be
deleted. The transition matrix of the remaining Markov chain can then be solved separately.

If the transition matrix is stochastic, 1 — p,(f,? must be equal to Z;’;{ pr(:;.), and (4) can be

written as
p(n)p(n)
(n=1) __ (n) in ¥nj
Djj = Djj + -1 ()" )
k=1 Pnk

This approach has been called the Grassmann—Taksar—-Heyman (GTH) method; for details,

see [18], [19], and [20]. It is known [5] that the GTH method ensures stability by avoiding

subtractions. In our context, it is important to note that, after each step of the GTH algorithm,
i pi=1) _ [, 1= : ~

the matrix P = [p; ) ] is a stochastic matrix.

3. Stochastic and substochastic limits for censored Markov chains

In this section we assume that the Markov chain {X,} is banded, that is, there is a value b
such that
P{|X;+1 — X;| > b} = 0. (6)

In addition to this we require that there exist positive values m and ¢ such that the probability
of reaching j from i in m steps or less is at least g. This makes it impossible that, as i and j
go to oo, with |[i — j| < b, the shortest path between these two states becomes infinite. If this
condition is met, we say that i and j communicate strongly. Thus, we require that all states of
P communicate strongly.

We now consider sequences of finite-dimensional matrices starting at n + 1, say ,41 P,
nt2P, ..., NP, ..., where N is the dimension of y P. We require that these matrices satisfy
the following conditions.

1. They are banded with bandwidth b.
2. Forall N, (yP)ijj = (P)jjfor1 <i,j <N —b.
3. All states of y P communicate strongly.

4. The row sums for all rows at or below N — b must be equal to 1.
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There are many sequences {y P, N > n} that satisfy conditions 1-4. In particular, we can
truncate the matrix P at NN, that is, remove all the rows and columns of P above N without
changing the entries p;;, i, j < N, to obtain y P. If all states are communicating, truncation
will always lead to a substochastic matrix: truncating at N can result in a stochastic matrix
only if no state above N can be reached from the states at or below N. As an alternative to the
truncation, we can do the cut as before, except that column N is changed in such a way that
the row sums are equal to 1. In the first case we obtain a sequence of substochastic matrices,
and in the second case we obtain a sequence of stochastic matrices. Of course, there are other
methods to obtain matrices y P satisfying conditions 1-4, leading to what we call different
types of sequences. As mentioned earlier, we assume that either all members of the sequence
are stochastic or that they are all substochastic. The substochastic matrices will be denoted by
~ P, and the stochastic matrices will be denoted by 5 P. To avoid the y P converging toward a
stochastic matrix, we require that, for all sufficiently large N, y P has at least one row with a
row sum less than 1 — p with p > 0, where p is independent of N.

Equation (1) can be applied to any y P. We will also use the preceding subscript N for the
values corresponding to P>y, Q, and other entities we will need. In other words,  Py; is the
value of the matrix corresponding to P> in (1), and a similar relation exists between » Q and
0, as well as between NP(”) and P If we want to stress that y P is a stochastic matrix, we
will denote the corresponding censored matrix by y P " We also use 'O and other entities
with overbars. Similarly, for the substochastic case, we use y P ) ~ Q, and so on.

We will make extensive use of limits. In the case of finite-dimensional matrices, these limits
must always be understood pointwise. In the case of infinite matrices we will avoid limits
where possible because they lead to mathematical intricacies we do not want to deal with here
(see, e.g. [11, p. 33]). In most cases we can cast the problem such that only finite-dimensional
matrices are needed. For instance, though the matrix Q may be infinite, we only need its first
b rows and columns, and using only these rows and columns leads to a finite matrix, say Q’. In
this way, whether or not Q' has a (pointwise) limit in some context is a well-defined question.
In the case of y P we use the following convention: if we use P without the preceding subscript
then we implicitly assume that P is equal to y P with sufficiently large N. For instance, if we
need a state M such that, for every state above M, a particular statement holds, we implicitly
assume that N >> M.

Our main result is that, if the Markov process is recurrent, every type of sequence {y P,
N > n} of matrices satisfying conditions 1—4 has the limit P, that is,

lim yP™ = lim yP" = p®.
N—o0 N—o00

However, in the case where P is a transient Markov chain, all types of sequences of substochastic
matrices {y P} have the same substochastic limit P, and all sequences of stochastic
matrices have the same stochastic limit, which will be denoted by P " Since, according
to our definition, a substochastic matrix cannot be stochastic, the two limits must be different.
Of course, in both cases we assume that conditions 1—4 are satisfied.

Regarding the recurrent case, we have the following theorem. We presented a similar theorem
earlier [8] (see also [23]), but the following proof is more rigorous than the one in [8].

Theorem 1. If P is recurrent then sequences {y P'0, N > n} of all types satisfying condi-
tions 1—4 converge pointwise to the same limit as N — oo, that is,

lim yP™ = pP".
N—oo
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Proof. Since the process is recurrent, the probability that the process never returns to a state
k < n is 0, which implies that the time 7 until the return has a proper distribution. Hence, we
can find, for each ¢ > 0, at such that P{T" > ¢} < e. If the process is banded with bandwidth b
then, during time ¢, we cannot reach any state above n + bz, that is,

P{n + bt + 1 reached before returntok <n | T <t} =0.

Letd} = (Pi2P5, Py1);j. Clearly,

dY =PX(s +2)=j. X(@) >n, t=2.3,....s+ 1| Xy =i},

Hence,
o0

dij =Y d

s=0

t
N
=) dy +e
s=0
t

=ZP{X(s+2)=j,n<X(t)<n+bt+1|X1=i}+8.
s=0

These probabilities are the same for P and any y P with N > n + bt. Since (1) implies that
pl-(]'-') = pij + d;j, the result follows.

As stated earlier, in the transient case, y P ™) and NF(n) have different limits. We have the
following theorem.

Theorem 2. Let P be the transition matrix of a strongly communicating transient Markov
chain, and suppose that P has a bandwidth of b, as defined in (6). Let {N P} be a sequence
that, for sufficiently large N, consists of substochastic matrices satisfying conditions 1-4. For
all types of such sequences, the limit of the corresponding censored Markov chain is equal to
P, provided that, for sufficiently large N, there exists a p > O such that every y P has at
leastonerowi, i =N —b+1,N —b+2,..., N, with a row sum less than 1 — p.

Proof. Flrst we assume that y P is a truncated version of P = [p;;, i, j > 1], that is,
NP =[pij, i, ] < N]. We also define NP to be the infinite-dimensional matrix obtained by
padding y P with Os, that is, NP [pij, i,j = 1,2,...], with p;; = p;; fori, j < N and
pij =0fori > Norj> N. Wenow use (1) to find P™ and y P™. It is clear that, except
for the padding Os, (1) gives the same value for ~P™ ., whether we use y P or y P. Since the
entries of y P are nondecreasing with N, y P given by (1) is nondecreasing in N. Also,
the entries of y P, being probabilities, are bounded. It follows that in the case where P is
truncated, y ﬂ(”) converges to P®™ a5 N — oo.

To deal with the general case, we show that we can always find an M such that the transition
probabilities of states above M have only a negligible effect after censoring at n < M. Given
such a value M, let Mﬁ [pi;] be an infinite-state Markov chain such that, for i, j < M,
pij = pij.- Fori > M or j > M, the probabilities p;; must be chosen such that m P remains
banded with all states strongly communicating, and at least one row of v P above M must have
arow sum less than or equal to 1 — p. Otherwise, these probabilities can be chosen arbitrarily.
We now prove that, for each ¢ > 0, there exists an M such that the entries of Mﬁ(”) differ
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from the corresponding entries of P by at most &. To prove this, we define d; j to be equal to
(P120Q P1)ij, as we did in Theorem 1, and we write

d,'j = d?;l_ +di1}/1+'

Here, dl./y ~ is the probability that a sample path starting in state i < n will reach a state above n
and, after returning to a state at or below # for the first time, the sample path will hit state j, and
that during this excursion, no state above M is visited. The probability dg[ * must be interpreted
in a similar fashion, except that at least one state above M is visited.

Now it is enough to show that, for each ¢ > 0, we can find an M such that dM t<e.
Obviously, d;; i M+ is Jess than or equal to the probability of ever returning to any state at or below
n once a state above M is visited. Therefore, if we can find an M for each ¢ > 0 such that d 1;/1 +
is less than ¢, then we ensure that d;; and with it p(") change by less than €. To construct such an
M, let ¢;s be the probability of absorption once in statez M — b < i’ < M, without returning
to any state at or below M — b, and let i be an upper limit of the probability that, once a state
at or below M — b is reached, a state at or below n is reached before returning to a state above
M —b. We set ¢ = max; {¢;/} and ¢ = max; {(1 — ¢;/)}. Now consider an excursion, that is a
process starting in state j', M —b < j' < M, visiting states at or below M — b before returning
to a state in (M — b, M], at which time the excursion ends. The probability of having exactly
v such excursions before absorption is bounded by @' ¢. In each excursion, the probability of
visiting a state at or below n has an upper bound v, and the probability of having v excursions
without visiting any state at or below n is (1 — ¥)". Therefore, the probability of visiting a
state at or below n at least once has an upper bound of 1 — (1 — ¢)". If ¥ — 0, this bound
approaches vir. Hence, the probability of visiting a state j < n is bounded by

gy — Y
LI =G G

The probability dily * is less than this expression because, if we do not return to any state
at or below n, we will not return to the state j < n. Hence, if we find an M such that
ooV /(1 — @)% < ¢, we have accomplished what we set out to do. This leads to

(1 — )
oo

To find an M such that v satisfies this condition, note that, owing to our assumption, eventual
absorption is certain, and before absorption, a state in the range (M — b, M] must be visited.
Hence, If T is the length of the time interval between the first moment a state i’ < M — b is
visited and the first moment a state j in (M — b, M] is visited, then T must have a proper
distribution. Therefore, for each &, there exists a ¢ such that P{T" > ¢} < ¢;. In a time interval
of length ¢ or less we cannot decrease the present state i by more than #b. Hence, to go from

M ton — b + 1, which is the worst case, we need at least (M —n — 1)/b + 1 steps. Thus, in
order to have di’;” T < ¢, M must be chosen such that

N2
ph>ﬂ+4<ﬂ;ﬂn
b %0

U<

and this completes the proof.
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The stochastic (nonstandard) solution is also unique, as Theorem 3, below, indicates. To
show this, we need the following lemma together with its proof.

Lemma 1. I[f M > n + (m + v)b then the probability that there are no values T < t™ and
v < v* satisfying Y; = Y], is less than (1 —q)". Here, T* is the smallest value satisfying Y. < n
and v* is the corresponding time for the process Y.

Proof. First considerastatei, n <i < M. If t is the first time Y’ < i then0 < i — YT/ < b.
Hence, the probability that YT/ =i usm, is at least g, provided that no state at or below n
is reached first. Note that the lowest point YT’ 4ys V < u,canreach is above i — mb. Hence, no
state at or below n is reached if M > n 4 (m 4+ v)b. This completes the proof.

Theorem 3. Let P be the transition matrix of a transient Markov chain with bandwidth b and

strongly communicating states. Consider a sequence of any type of stochastic matrices ]E])P
. . o s . —-n . o n

satisfying conditions 1—4. Then, the corresponding sequences {y P "} all have the limit P" .

Proof. For simplicity, we use the matrix P which, as defined earlier, is really the matrix y P,
where N is sufficiently large. We will show that, for each ¢ > 0, there exists an M such that, if
entries of the transition matrix P above M are changed in such a way that the matrix remains
stochastic, the entries of the censored version of P change by at most €. Since the process is
recurrent, both before and after the change, the return to a state at or below n is assured. To
find M such that 2 changes by at most ¢, we need to consider the processes starting atk < n
and ending at j < n. Clearly, all sample functions of this process reaching no state above M
will not be affected by the changes above row M. The sample functions that do reach states
above M must return to a state in the range (M — b, M] on their way down. Hence, we only
need to concern ourselves with what happens after a state i in (M — b, M] is reached. We now
show that, for sufficiently large M, the probability of returning to a particular state j, j < n,
is essentially the same whether the process starts ini or i’ # i, M —b < i,i’ < M. To show
this, consider the two processes Y; and Y,’ with Yy =iand Y 1/ = i/, where both processes are
governed by the transition matrix P. The strong Markov property implies that if there exist

values #; and t, such that ¥;, = Y,/Z,_then Y; 44, is stochastically indistinguishable from Y/ +5
for T > 0. If the states of the matrix P are strongly communicating (that is, if there exist values
m and g > 0 such that there exists a v < m for which pl[})] > q, |i — j| < b), we can choose
an M for each £ > 0 such that the event ¥;, = ¥, will occur before reaching j < n with a
probability greater than 1 — &1.

Since P is banded, there must be a t for each interval givenby (M —kb, M — (k—1)b], k =
1,2,...,suchthat M — kb < Y; < M — (k — 1)b. Let i} be the value assumed by Y; while
in the kth interval for the first time. Clearly, for each i, there exists a T satisfying Y] < iy
for the first time, and, hence, a probability ¢ that the process {Y,} reaches ix. If M > vb + n,
there are v values of iy, k = 1,2, ..., v, above state n. However, before encountering iy, the
process {Y’} could potentially fall below iy — mb. To ensure that this does not occur, we apply
Lemma 1 to set M = (v + m)b, where v is chosen such that (1 — ¢)” < e. This completes the

proof.

In the Markov chain with the transition matrix NF, all states are recurrent and they, therefore,
have equilibrium probabilities. However, as N — 00, it takes longer and longer to reach this
equilibrium when starting in a state less than some fixed value k. To see this, using arguments
similar to the one used to prove Theorem 1, we can find a value k*, which is independent of N
for sufficiently large N, such that the probability of visiting a state i < N — k™* is less than ¢.
Hence, the equilibrium probabilities of states i < N — k* must be small. If we start with a state
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below k then, obviously, it takes at least (N — k* — k) /b steps to reach k*, and if N goes to oo,
(N —k* —k)/b goes to co as well. Hence, even though an equilibrium exists, it may take very
long to reach it when starting from a given state.

We claim that, in transient Markov chains, the stochastic solution is possibly more meaningful
than the substochastic solution. To see this, consider a queueing system with finite waiting room.
No matter how large the waiting room, the system is recurrent, even in the case where the arrival
rate exceeds the service rate. In these cases, from a certain size of the waiting room onward,
certain features of the solution may be independent of the buffer size, and it then makes sense
to let the buffer size go to oo, and this implies that N, the number of states, also goes to co.

If the stochastic solution is useful then we need algorithms to obtain it. One way to do this is
to start with a sufficiently large value of N and apply (4). Unfortunately, if, through rounding,
the sum across the row becomes slightly less than 1, the matrix becomes substochastic rather
than stochastic and, as a consequence, the solution will tend toward the substochastic solution
P rather than ?(n . To avoid this, we can use (5) which, in contrast to (4), will always assure
that the sum across the row remains 1. Hence, when (5) is used, no numerical instability is
expected. This agrees with the findings of [5], [18], and [19] regarding the stability of the GTH
method.

To show the implications of Theorems 1, 2, and 3, consider the M/M/1 queue with an arrival
rate of A and a service rate of u. After uniformization, we obtain p = A/(A + ) for the
probability that the line increases and 1 — p for the probability that the line decreases. Of
course, if the system is empty, the line remains at O with probability 1 — p. Theorem 1 indicates
that, if the process is recurrent (p < 0.5) and if N is sufficiently large, the entries of the
transition matrix P will change by less than ¢ if transition probabilities above N — b are
changed. On the other hand, Theorem 2 indicates that, for p > 0.5, we obtain the substochastic
matrix P ™) if the matrices N P are all substochastic, and Theorem 3 indicates that we obtain
the stochastic matrix NFM) if the matrices y P are all stochastic.

‘We note that p,(,r,’,) is the only entry of the reduced matrix affected by (4), and because of this,

we define d, = p”. Since p" 7" 0, (4) yields

n—1n—1 =

1 —
dn—1=u, n=N,N-1,... 1 (7)

1—d,

This equation has two fixed points, namely d,, = p and d, = 1 — p. The solution resulting in
a stochastic transition matrix is d,, = p.

Note that, since there are exactly two fixed points, one of them must be unstable. If both
were stable, there would have to exist one third unstable fixed point, separating the range of dy
going to the two different stable fixed points. This confirms our observation that, if one of the
row sums is below 1, even if only by a tiny amount, we obtain the substochastic matrix P,

We ran recursion (7) in Microsoft Excel® for different values of p and initial values dy. For
p = 0.4, d,, always converged toward p = 0.4, and it did not matter whether we started with
dy = 0ordy = p, as was to be expected due to Theorem 1. If p = 0.6, the Markov chain is
transient, and we still obtain the stochastic solution if we set dy = 0.6. Indeed, d,, remained 0.6
in Excel. However, starting with dy = 0.599 99 made (7) converge to 0.4 rather than 0.6. The
variable v; for the two cases is also different: if d; approaches 0.4, vo = v =--- = vy =1,
whereas, if d; becomes 0.6, v; = 1.5%, as the reader may verify. This second solution leads
to the standard solution for queues with finite waiting rooms. Note that dy > 0.6 should be
avoided because this causes d,, to increase until 1 — d,, < 0, and this may cause subtractive
cancellation or even a division by 0.
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Of course, using the GTH algorithm, we ensure that the system remains stochastic. Using
(5), 1 —d, in (7) is replaced by the sum across the row, that is, by 1 — p, and we trivially find
d, = p,evenif p > 0.5

The best way to visualize the situation given by Theorems 1, 2, and 3 is by thinking of a gas
in a container which is subject to Brownian motion, which is a continuous Markov chain in time
and space. However, for our analogy, we can think of this continuous chain being discretized.
The variables v;, i > 1, are then the expected number of molecules in state i in relation to the
molecules in state 1. We look at containers of finite height N, and we increase the height. If the
gas in the container is heavier than air, say it is CO», then, as we let N go to oo, hardly any gas
will escape, even if the container is open. Though, theoretically, CO, will eventually diffuse,
this diffusion is so small that we almost have an equilibrium, as indicated by the vector v. This
situation corresponds to Theorem 1. On the other hand, Theorem 2 deals with a container filled
with a gas that is lighter than air, say Hp, which is open at the top. In this case, the gas will
obviously drift out of the container, and there is no meaningful equilibrium, that is, the only
equilibrium is the state in which all the gas has disappeared. Of course, if the container is closed
at the top, Theorem 3 applies, and any gas lighter than air accumulates at the top. Hence, the
gas can be expected to become denser as one goes to the top of the container, and the same
can be expected to hold in Markov chains. We will use the eigenvalues given in Section 5 to
investigate this phenomenon in the case of quasi-birth-and-death (QBD) processes.

Note that an equilibrium is eventually reached for any finite NV, though not in any finite time
if N is infinite. If the container is open, and the gas is lighter than air, then no equilibrium is
reached because the gas drifts out of the container, and this reflects the substochastic solution.
A closed container, on the other hand, will prevent any drift. In fact, since a drift involves a
change in expectations, there cannot be a drift in any system in equilibrium. However, there
can be a potential drift. For CO,, for instance, the potential drift would be to the bottom of the
container and, for Hy, it would be toward the top of the container. Generally, the potential drift
is defined as the drift that will arise once the boundaries are removed, that is, once the container
is opened both at the top and at the bottom.

4. Applications to matrix-analytic methods

We now apply the theory derived in the previous section to matrix-analytic methods, includ-
ing the M/G/1 paradigm, the GI/M/1 paradigm, and the QBD process. In all these paradigms,
there are levels, ranging from 0 to 0o, and phases, ranging from 1 to M, except that in level 0,
the phases range from 1 to M. Level O will be called the boundary level. Also, unless the
process enters or leaves the boundary level, the transition probabilities are independent of the
level.

In the GI/M/1 paradigm we can go at most one level up, and in the M/G/1 paradigm we can
go at most one level down. In the QBD process we can change the level by at most one, which
makes the QBD process satisfy both the M/G/1 and the GI/M/1 paradigms. Even though the
GI/M/1 paradigm allows us to go down any number of levels, for practical reasons, we often
require that we can go down only D levels (see, e.g. [12]). In this case, we can convert the
process into a QBD process by reblocking, that is, we can combine D levels into a single level.
Hence, the analysis of the QBD process covers most cases of interest.

The analysis of matrix-analytic methods was initiated by Wallace [21], but its main proponent
was Neuts, who coined the words M/G/1 and GI/M/1 paradigm. For details of Neuts’ work on
the GI/M/1 paradigm, see [16] and, for the M/G/1 paradigm, see [17]. For a discussion of the
QBD process, see [13]. The first time censoring was applied to matrix-analytic methods was
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in a paper by Grassmann and Heyman [6]. In fact, these authors extended the paradigms to
what they called the GI/G/1 paradigm, a paradigm that allows several steps up or down. We
note that most results derived for the M/G/1 and the GI/M/1 paradigms can be derived from
the results of [6]. In particular, a result given by Latouche [12, Algorithm U, p. 238] follows
directly by specializing equations (26a) and (26b) of [6] to the GI/M/1 paradigm. Only the
notation is different. Latouche did mention the result of Kemeny et al. [11], but he did not use
these results to derive algorithm U.

Note that in [6] block elimination (or will we say block censoring) was used. The state-by-
state elimination was only described later in [7]. Of course, the end results of block elimination
and state-by-state elimination are the same, but the latter allows us to exploit special structures,
such as tridiagonal matrices, leading to faster algorithms.

Here we restrict our attention to the QBD process. By definition, this process has a transition
matrix of the following form:

Ao Ay O 0 ... ... 0
Ao A1 Ay O ... ... O
A=

0 Ay Ay Ay . .0

For simplicity, we assume that Ag + A| 4+ A3 is a nondecomposable stochastic matrix. In many
cases, My = M, with Ag; = Ag and A1p = A».

To decide whether the system is recurrent, we use the potential drift, which, according to [13],
can be obtained as follows. First we find a row vector 7 by solving the following equations:

T =7(Ao+ A1 + A2), e =1.
Here, e is a column vector with all entries equal to 1. The potential drift is now given by
potential drift toward higher levels = 7 Age — T Aje.

It is known that, if the potential drift is negative, the QBD process is positive recurrent, if it
is 0, it is null recurrent, and if it is positive, it is transient. This is what we would expect from
the gas analogy introduced earlier.

Let A® be the matrix A with all levels above n censored. As we apply (1), we find that, for
levels 1 to n — 1, entries of A and A™ coincide. In fact, the lower-right corner of A becomes

0 ... 0 Ay A A
0O ... 0 0 A Y

After eliminating level n, this yields
Y =Ai+ Aol —Y) Ay (8)

Theorem 1 implies that if the Markov chain is recurrent then the value of Y can be obtained with
arbitrary precision by cutting the Markov chain at a level N, and using censoring. Theorems 2
and 3 imply that Y is no longer unique when the Markov chain has a potential drift toward oo,
that is, there are two matrices Y satisfying (8), one corresponding to the stochastic solution and
the other corresponding to the substochastic solution.
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To find the (unique) matrix ¥ when the potential drift is toward level 0, we can start with a
value Yy, where Y can be chosen arbitrarily, and recursively determine (see, e.g. [8])

Yor1 = A1 + Ao — Y,) ' As. 9)

We continue applying this recursion until some prescribed stopping criterion is satisfied. At
this point, we can obtain A@ | the matrix involving only level 0 and 1, as

A A
@ _ |Aoo Aot
e )

Censoring level 1 as well leads to the transition matrix Agg + Ag;(/ — Y)"'Ag9. The v; =
[vi1,vi2,...,vim]l i > 0, can now be found as follows. We solve

vo = vo(Aoo + Ao1 (I — ¥) ™" Ajp)
for vy, using vg,; = 1 also. To find the v;, i > 0,let R = Apg({ — Y)’l. ‘We then have

v = voAor(I —Y)7,
v = V1R, i>1. (10)

Note that if (9) requires N iterations to find ¥ with a given precision then the finite matrix with
N + 1 levels, and the same value of Yy in its lower-right corner, will lead to exactly the same
approximate value for Y once level 1 is reached. However, the back substitution step is different
because v; = v;_1Ag(I — Yy—_;)~! is used rather than v; = v;_1Ao(I — Y)~! = v;_R, as
in (10).

We now compare our approach with the classical treatment of the QBD process. By
specializing the GI/M/1 paradigm to the QBD process, we find that, according to [16],

R = Ag+ RA| + R%A,. an

In fact, the matrix R in (11) is identical to the matrix R in (10). This follows from R =
Ao(I —Y)~! and (8), which implies that Y = A; + RA;. Hence,

Ay=R(I —-Y)=R( — A1 — RAy),

and this is equivalent to (11).
In the M/G/1 paradigm, we use the matrix G. In the context of a QBD process, this matrix
is defined as
G =A1+AIG+ A)G”.

It turns out that G = (I — Y)~'A,. The proof can be conducted along similar lines as the
corresponding proof for R.

Latouche and Taylor [14] obtained G as follows. They started with some initial value G
and recursively calculated values G1, G, . .. using the following relation:

Gui1 = (I — A] — AoGy) "' As. (12)

This recursion is essentially identical to (9). To see this, note that I — A; — AgG,, corresponds
to I — Y, and G, corresponds to (I — Y,) "' A,. With these conventions, (9) and (12) become
identical. The advantage of using (9) is that the connection to the normal elimination procedure
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becomes clear. Indeed, to find Y4+ from Y;,,, we can eliminate one state after the other by
using (4) until the level in question is eliminated. This is particularly advantageous when Ag
and A, are triangular, which occurs frequently when the matrix in question is banded. Of
course, since the two methods are identical, this can also be used in (12), but this is not obvious.

If the QBD process is transient, that is, if there is a potential drift away from the origin,
Theorem 3 indicates that there are two solutions for Y, one making A®™ gtochastic and the
other one making A" substochastic. The effect of this is that there are two solutions for G in
cases where the drift is away from the origin. The existence of two solutions has been observed
by Neuts [17], and discussed by Gail et al. [1], He and Neuts [9], and Latouche and Taylor [14].
To show how this relates to our approach, note that G, is a stochastic matrix if and only if A®
is stochastic, or, equivalently, if (A + Y, )e = e. To see this, note that G, = (I — Yn)_lAz
implies that A, = (I — Y,,)G,, and

0=(A2+Y, —De=(U—-Y)Gn+ (Y, — D))e.

Premultiplying the right-hand side by (I — Y,) ! leads to (G, — Ie = 0, which proves that
G is stochastic if and only if (A2 + Y)e = e, as claimed. Hence, the stochastic solution makes
G stochastic and the substochastic solution makes G substochastic.

If we are interested in finite but long queues, we need the version of Y that makes A
stochastic. Latouche and Taylor [14] showed that the stochastic solution is numerically unstable
if the potential drift is away from the origin. This, of course, matches exactly with our discussion
following Theorem 3. In fact, in the case of the QBD process, this can be proved mathematically
because, according to Gail et al. [2], there are exactly two relevant matrices G, and, hence, one
of them must be unstable. In fact, when using the GTH method, we are always sure to obtain a
stochastic solution, and the algorithm becomes stable, even if the process has a potential drift
away from level 0. Hence, the stochastic version of A® can always be found reliably.

5. Eigenvalues in QBD processes

The v; corresponding to the stochastic solution behave quite differently from the ones in
the substochastic solution. In fact, the v; tend to increase with i in the stochastic solution,
while they tend to constant values in substochastic solutions. To show this, we use eigenvalues.
Specifically, we define the matrix polynomial A(y) = Ag + y(A; — I) + y%A,, and we
consider the vectors s’ and the scalars y; satisfying 0 = s’ A(y;). This problem is really
a generalized eigenvalue problem, with the eigenpairs (s’, y;). Generally, there exist 2M
eigenvalues, counting multiplicities (see, e.g. [4]). Also, as is standard in matrix polynomials,
there may be eigenvalues that are infinite (see, e.g. [4] or [22]).

Since A(1) = Ag+ Ay — I + Ap and 7A(1) = 0, y = 1 is clearly an eigenvalue. Unless
Ao + A1 + A3 is decomposable, a case we want to exclude, the geometric multiplicity of this
eigenvalue is 1. We now prove that the algebraic multiplicity of y = 1 is greater than 1 if and
only if 7 (A — Ag) = 0. The condition for an algebraic multiplicity greater than 1 is that,
for y = 1, both 7A(y) = 0 and 7A'(y) = 0, where A’(y) is the derivative of A(y) with
respect to y. Since, for y # 0, 7 A(y) has the same Os as 7 A(y)/y, we take the derivative of
7 A(y)/v, and the result follows easily. Since 7(Ag — A») is the drift away from the origin,
we have proved that y has an algebraic multiplicity greater than 1 if and only if the process is
null recurrent.
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The location of the other eigenvalues can be conveniently obtained from the following
equation (see [15]):
Aly) =R —=1Iy)(Y = D(Gy = I). 13)

To prove (13), we expand its right-hand side to yield
Ay)=—=RY =D +y(¥ -1 =RY - DG) —y*(¥ = )G,

and it is now easily verified that

—R(Y —I) = Ay,
Y-I-RY—-D1G=Y—1—RAy=A, -1,
—(Y = 1)G = A,.

Equation (13) implies that y is an eigenvalue of A(y) if it is either an eigenvalue of R or
the reciprocal of an eigenvalue of G. If G has eigenvalues of 0, the corresponding eigenvalues
of A(y) are infinite. It is also clear that the factors R — Iy and Gy — I must each have
M eigenvalues. (See also [3] for related results.) If the potential drift is toward O then the
eigenvalues of R are inside the unit circle, and G is stochastic, which implies that the eigenvalues
of the factor Gy — I are outside or on the unit circle. As pointed out by Gail et al. [1], there are
cases where G is periodic, which means that G can have several eigenvalues on the unit circle,
but these cases rarely arise in practical situations. If the potential drift is away from O then it
is known that in the substochastic solution R has a spectral radius of 1 and G is substochastic.
Hence, all eigenvalues of Gy — I are outside the unit circle. In the stochastic solution of
nonrecurrent QBD processes, G is stochastic, that is, Gy — I has to have an eigenvalue of 1.
To make G stochastic, the eigenvalue y = 1 which belonged to R in the substochastic solution
now goes to G, and in exchange, G has to give up one of its eigenvalues, with the effect that R
now obtains an eigenvalue greater than 1. Hence, the matrix R corresponding to the stochastic
solution is no longer the minimal solution of (11).

We note that, once the eigenvalues and eigenvectors of a matrix are known, the matrix
can be reconstructed provided we have the full set of eigenvectors (see, e.g. [10, pp. 46—47]).
Hence, to find R, we identify all eigenvalues y; belonging to R, together with the corresponding
eigenvectors s, and we have

R =S"!AS, (14)

where A = diag(y;) and S is the matrix with row i equal to s’. In the case where the set of
eigenvectors is less than M, Jordan forms must be used, but we will not discuss this further.
Because of (14), v,, can be obtained as

vy = v A",

If y; is the largest eigenvalue of R, it dominates the solution, and if s' is the corresponding
eigenvector, we have
Uy R cslyln.

Here, c is a factor of proportionality which is immaterial to the following discussion. If the
potential drift is toward level 0, the largest eigenvalue of R is less than 1 and v, decreases
eventually. If, on the other hand, the potential drift is away from 0, and the substochastic
solution is used, the largest eigenvalue of R is y; = 1, and the corresponding eigenvector is
s'7. Hence, the v, will reach constant values proportional to 77. This is what we would expect
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because, as the sample function drifts to oo, it visits every level approximately equally often.
If, on the other hand, the stochastic solution is used then the v, increase for sufficiently large n.
This matches with our earlier comparison involving a gas lighter than air in a closed container:
this gas will accumulate at the top of the container.

If the potential drift is O then a simple limit argument demonstrates that both R and G have
an eigenvalue of 1. In this case, there is only the stochastic solution, but at the same time, the
v, asymptotically approach the value of 77, multiplied by some constant.

For any stochastic solution, irrespective if the potential drift is to 0 or to oo, we have to
require that the largest eigenvalue of R must lead to an actual drift of 0 in equilibrium. In other
words, if y is the largest eigenvalue of R, and if s! is the corresponding eigenvector, we must
have

slA()ezs]ylAze.

We tested this for a limited number of processes and found that it holds in all the cases considered,
including stochastic solutions of transient Markov chains. In fact, in our examples, we found
that all eigenpairs of R corresponding to a stochastic solution satisfy this equality.

As pointed out in [3], there are many solutions of (11). In fact, we can select any M out of
the 2M eigenpairs and form R. However, according to [1], at most two of these solutions have
a stochastic meaning in our context.

6. Conclusions and extensions

The main result of this paper is that in cases of a potential drift away from the origin we
have two different censored Markov chains and, as a consequence, two solutions of v,. There
is a stochastic solution, which must be used when dealing with large but finite queues, and a
substochastic solution. It was shown that in QBD processes with a potential drift to oo, and
for sufficiently large i, the v; essentially remain constant in the substochastic solution, but they
increase in the stochastic solution. This result also applies when considering a gas lighter than
air in a closed container. This gas would also collect at the top of the container.

Our analysis was carried out for discrete-time Markov chains, but the results also apply for
continuous-time Markov chains. In this case, the variables v; indicate the expected times in
state i as a multiple of the expected time in state 1. Also, when going to the continuous case,
some of the formulae change slightly, while others remain the same. In particular, (1) remains
unchanged, but with Q being equal to an integral of a matrix exponential. Equation (5) remains
unchanged. When applying the equivalent of (8), one must replace A; by A}, a matrix with
negative diagonal elements, and a similar change affects Y. If we write Y* for this new matrix,
we obtain

Y* = A} + Ag(—=Y*) 714,

Note that this equation can also be used in the discrete case, provided that we set AT = A} — 1
and Y* = Y — I. Hence, all arguments, after obvious modifications, go through for continuous-
time Markov chains, as we would expect because of uniformization.
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