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Abstract

We study the Gowers norm for periodic binary sequences and relate it to correlation measures for such
sequences. The case of periodic binary sequences derived from inversive pseudorandom numbers is
considered in detail.
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1. Introduction

Considerable interest in pseudorandom binary sequences was stimulated by the
paper of Mauduit and Sárközy [4] which introduced several new measures of
pseudorandomness for binary sequences. The present paper is inspired by [4] as
well as by the work of Gowers [2] on combinatorial and additive number theory. In
fact, as can be seen from [2, Section 2], Gowers already had in mind some notion of
pseudorandomness for subsets of Z/NZ. We consider the essentially equivalent case
of periodic binary sequences with period N and we use what is now called the Gowers
norm (see Section 2 below for its definition) as a measure of pseudorandomness for
such sequences.

The link between the Gowers norm and the work of Mauduit and Sárközy [4] is
established via Theorem 6 which bounds the Gowers norm in terms of a suitable
correlation measure in the spirit of [4]. The proof of Theorem 6 leads to interesting
combinatorial problems involving polynomials over the binary field.

To provide an example of how the Gowers norm can be treated for specific periodic
binary sequences, we consider the case of inversive sequences, that is, of binary
sequences derived from inversive pseudorandom numbers. Concretely, we analyse
the inversive generator that was recently introduced by the authors in [7] since it has
advantages over the classical inversive generator.
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2. Gowers norm and correlation

Let d ≥ 1 and N ≥ 2 be integers and identify ZN = Z/NZ with {0, 1, . . . , N − 1}.
For f : ZN → {−1,+1} we define

Gd( f ) :=
∑

x1,...,xd∈ZN

∑
y∈ZN

∏
S⊆{1,...,d}

f

(
y +

∑
i∈S

xi

)
.

Note that |Gd( f )|1/2
d

is the norm ‖ f ‖d introduced by Gowers in [2, Lemma 3.9]. We
observe that we can equivalently view f as a periodic binary sequence with period N .

We can write Gd( f ) as

Gd( f ) =
∑

x1,...,xd∈ZN

∑
y∈ZN

f (y)

( ∏
1≤i1≤d

f (y + xi1)

)( ∏
1≤i1<i2≤d

f (y + xi1 + xi2)

)
· · ·

( ∏
1≤i1<···<id≤d

f (y + xi1 + · · · + xid )

)
. (1)

For fixed x1, . . . , xd ∈ ZN , we define

t1 = 0, t2 = x1, . . . , td+1 = xd , td+2 = x1 + x2, . . . , t2d = x1 + · · · + xd ,

where all these identities are viewed in ZN , that is, they are in fact congruences mod N .
Then ∑

y∈ZN

f (y)

( ∏
1≤i1≤d

f (y + xi1)

)( ∏
1≤i1<i2≤d

f (y + xi1 + xi2)

)
· · ·

( ∏
1≤i1<···<id≤d

f (y + xi1 + · · · + xid )

)
=

∑
y∈ZN

f (y + t1) · · · f (y + t2d ). (2)

With x1, . . . , xd still fixed, we partition the t j ’s according to their values modulo N
and we put for 0≤ i ≤ N − 1,

mi := #{ j ∈ Z | 1≤ j ≤ 2d , t j ≡ i (mod N )},

so that
∑N−1

i=0 mi = 2d . Then

∀y ∈ ZN , f (y + t1) · · · f (y + t2d )=

N−1∏
i=0

f (y + i)mi .

Let k = k(x1, . . . , xd) be the number of i , 0≤ i ≤ N − 1, such that mi is odd, and
let 0≤ d1 < d2 < · · ·< dk ≤ N − 1 be the values of i such that mi is odd. Note that
0≤ k ≤min(N , 2d). Then

∀y ∈ ZN , f (y + t1) · · · f (y + t2d )= f (y + d1) · · · f (y + dk),

with an empty product on the right-hand side being interpreted as 1.
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Now we introduce a correlation measure for the periodic binary sequence en =

f (n), n ∈ ZN , with period N . For k = 0 we define P0( f ) := N and for 1≤ k ≤ N we
define

Pk( f ) :=max
D

∣∣∣∣ ∑
y∈ZN

f (y + d1) · · · f (y + dk)

∣∣∣∣,
where the maximum is over all D = (d1, . . . , dk) ∈ Zk with 0≤ d1 < d2 < · · ·<

dk ≤ N − 1.
With the notation above we have then∣∣∣∣ ∑

y∈ZN

f (y + t1) · · · f (y + t2d )

∣∣∣∣≤ Pk( f )

whenever k(x1, . . . , xd)= k. In view of (1) and (2), this yields

|Gd( f )| ≤
min(N ,2d )∑

k=0

Pk( f ) · #{(x1, . . . , xd) ∈ Zd
N | k(x1, . . . , xd)= k}.

For 0≤ k ≤min(N , 2d), we define

Bd(k, N ) := #{(x1, . . . , xd) ∈ Zd
N | k(x1, . . . , xd)= k}.

Then

|Gd( f )| ≤ Bd(0, N )N +
min(N ,2d )∑

k=1

Bd(k, N )Pk( f ). (3)

Now we define the correlation measure Md( f ) by

Md( f ) := max
1≤k≤min(N ,2d )

Pk( f ). (4)

Then

|Gd( f )| ≤ Bd(0, N )N + Md( f )
min(N ,2d )∑

k=1

Bd(k, N )

= Bd(0, N )N + (N d
− Bd(0, N ))Md( f ). (5)

The numbers Bd(k, N ) can be described in the following equivalent manner. We
write F2 = Z/2Z for the finite field of order 2.

LEMMA 1. For 0≤ k ≤min(N , 2d), Bd(k, N ) is equal to the number of
(x1, . . . , xd) ∈ {0, 1, . . . , N − 1}d such that in the polynomial ring F2[z]

(zx1 − 1) · · · (zxd − 1)≡ k-nomial (of degree < N ) (mod (zN
− 1)).
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PROOF. For given (x1, . . . , xd) ∈ {0, 1, . . . , N − 1}d ,

(zx1 + 1) · · · (zxd + 1) = 1+ zx1 + · · · + zxd + zx1+x2 + · · · + zx1+···+xd

=

2d∑
j=1

zt j .

Consider this polynomial identity modulo zN
− 1. Then by the definition of the mi ,

(zx1 + 1) · · · (zxd + 1)≡
N−1∑
i=0

mi z
i (mod (zN

− 1)).

Now we consider this congruence also modulo 2, that is, we work in the residue class
ring F2[z]/(zN

− 1). Then

(zx1 − 1) · · · (zxd − 1)≡ k-nomial (of degree < N ) (mod (zN
− 1))

by the definition of k. This yields the desired result. 2

Now we study Bd(0, N ) and write Bd(N ) := Bd(0, N ). The determination of
the counting function Bd(N ) seems to be a nontrivial combinatorial problem. The
following lemma is an easy consequence of Lemma 1.

LEMMA 2. For any d ≥ 1 and N ≥ 2,

Bd(N ) = N d
− (N − 1)d + #{(x1, . . . , xd) ∈ {1, . . . , N − 1}d :

zN
− 1 divides (zx1 − 1) · · · (zxd − 1) in F2[z]}.

PROOF. There are N d
− (N − 1)d choices of (x1, . . . , xd) ∈ {0, 1, . . . , N − 1}d

with at least one x j = 0, and for each of these it is trivial that zN
− 1 divides

(zx1 − 1) · · · (zxd − 1) in F2[z]. The rest follows from Lemma 1. 2

Any positive integer x can be written in the form x = 2e y with an integer e ≥ 0 and
an odd integer y. We put

ρ(x) := 2e, λ(x) := y.

LEMMA 3. Let (x1, . . . , xd) ∈ {1, . . . , N − 1}d . Then zN
− 1 divides (zx1 − 1)

· · · (zxd − 1) in F2[z] if and only if

d∑
j=1

λ(N )|λ(x j )

ρ(x j )≥ ρ(N ).

PROOF. Write N = 2en with integers e ≥ 0 and n odd. Note that zN
− 1= (zn

− 1)2
e

in F2[z]. For given (x1, . . . , xd) ∈ {1, . . . , N − 1}d , we can write x j = ρ(x j )λ(x j )

for 1≤ j ≤ d . Then zN
− 1 divides (zx1 − 1) · · · (zxd − 1) in F2[z] if and only if

(zn
− 1)2

e
divides (zλ(x1) − 1)ρ(x1) · · · (zλ(xd ) − 1)ρ(xd ) in F2[z]. (6)
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Note that each of the binomials zn
− 1, zλ(x1) − 1,. . . , zλ(xd ) − 1 has only simple roots

in the algebraic closure F2. Choose a primitive nth root of unity β in F2. Then (6)
holds if and only if each βr , r = 1, . . . , n, is a root of multiplicity at least 2e of
(zλ(x1) − 1)ρ(x1) · · · (zλ(xd ) − 1)ρ(xd ). Now βr is a root of zλ(x j ) − 1 if and only if
βrλ(x j ) = 1, that is, if and only if n | rλ(x j ). Thus, it suffices to take r = 1. This leads
to the condition in the lemma. 2

From Lemmas 2 and 3 it follows that

Bd(N )= N d
− (N − 1)d + Ed(N ), (7)

where

Ed(N ) := #
{
(x1, . . . , xd) ∈ {1, . . . , N − 1}d :

d∑
j=1

λ(N )|λ(x j )

ρ(x j )≥ ρ(N )

}
. (8)

Now we prove an upper bound on Ed(N ).

LEMMA 4. For any d ≥ 1 and N ≥ 2,

Ed(N )≤ cd N d−2

with a constant cd > 0 depending only on d.

PROOF. We proceed by induction on d . For d = 1 we note that if x1 ∈ {1, . . . , N − 1}
is counted by E1(N ), then λ(N ) | λ(x1) and ρ(x1)≥ ρ(N ), hence x1 = ρ(x1)λ(x1)≥

ρ(N )λ(N )= N . Therefore E1(N )= 0.
Assume that the lemma is shown for all dimensions ≤ d , for some d ≥ 1. Now

consider the dimension d + 1. As before, write N = 2en with integers e ≥ 0 and n
odd. For e = 0 we have λ(N )= N , and so it is trivial by (8) that Ed(N )= 0. So we
can assume that e ≥ 1. Note that (x1, . . . , xd+1) ∈ {1, . . . , N − 1}d+1 is counted by
Ed+1(N ) if and only if

d+1∑
j=1

n|λ(x j )

ρ(x j )≥ 2e. (9)

For any j with n | λ(x j ) we must have ρ(x j )≤ 2e−1, since otherwise x j = ρ(x j )

λ(x j )≥ 2en = N . In particular, if m is the number of j , 1≤ j ≤ d + 1, with n | λ(x j ),
then 2≤ m ≤ d + 1. Therefore

Ed+1(N )=
d+1∑
m=2

∑
J⊆{1,...,d+1}
|J |=m

Ed+1(N ; J ),
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where

Ed+1(N ; J ) := #{(x1, . . . , xd+1) ∈ {1, . . . , N − 1}d+1
: (x1, . . . , xd+1)

satisfies (9), n | λ(x j ) for j ∈ J, and n - λ(x j )

for j ∈ {1, . . . , d + 1} \ J }.

By symmetry, it suffices to consider J = {1, . . . , m}. If we write

Ed+1(N ; m) := Ed+1(N ; {1, . . . , m}),

then

Ed+1(N )=
d+1∑
m=2

(
d + 1

m

)
Ed+1(N ; m). (10)

Note that if (x1, . . . , xd+1) ∈ {1, . . . , N − 1}d+1 is counted by Ed+1(N ; m) for a
fixed m, then n | λ(x j ) for 1≤ j ≤ m and n - λ(x j ) for m + 1≤ j ≤ d + 1. Thus, the
condition (9) becomes

m∑
j=1

ρ(x j )≥ 2e. (11)

Let j0 with 1≤ j0 ≤ m be such that

ρ( j0)=max(ρ(x1), . . . , ρ(xm)).

Without loss of generality we assume that j0 = m. Then the condition (11) is
equivalent to

∑m−1
j=1 ρ(x j )≥ 2e

− ρ(xm), and since ρ(xm)≤ 2e−1, a weaker condition

is
∑m−1

j=1 ρ(x j )≥ 2e−1. It follows therefore that

Ed+1(N ; m)≤ m Fm(N )N
d+1−m, (12)

where

Fm(N ) := #
{
(x1, . . . , xm) ∈ {1, . . . , N − 1}m :

m∑
j=1

ρ(x j )≥ 2e,

m−1∑
j=1

ρ(x j )≥ 2e−1,

n | λ(x j ) for 1≤ j ≤ m, and ρ(xm)≥ ρ(x j ) for 1≤ j ≤ m − 1
}

and the factor m on the right-hand side of (12) takes care of the fact that there are m
choices for j0.

We put

Hm−1(N ) := #
{
(x1, . . . , xm−1) ∈ {1, . . . , N − 1}m−1

:

m−1∑
j=1

ρ(x j )≥ 2e−1, n | λ(x j ) for 1≤ j ≤ m − 1
}
.
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Note that in view of Lemmas 2 and 3, Bm−1(N/2)= Bm−1(2e−1n) can be written in
the form

Bm−1

(
N

2

)
= #

{
(x1, . . . , xm−1) ∈

{
1, . . . ,

N

2

}m−1

:

m−1∑
j=1

n|λ(x j )

ρ(x j )≥ 2e−1
}
.

Furthermore, any (x1, . . . , xm−1) ∈ {1, . . . , N − 1}m−1 can be written in the form(
w1 + δ1

N

2
, . . . , wm−1 + δm−1

N

2

)
with (w1, . . . , wm−1) ∈ {1, . . . , N/2}m−1 and δ1, . . . , δm−1 ∈ {0, 1}m−1. If
(x1, . . . , xm−1) is counted by Hm−1(N ), then n | x j for 1≤ j ≤ m − 1, hence
n | (x j − δ j 2e−1n)= w j for 1≤ j ≤ m − 1, and so n | λ(w j ) since n is odd.
Moreover, ρ(w j )= ρ(x j − δ j 2e−1n)≥ ρ(x j ) since ρ(x j )≤ 2e−1 for 1≤ j ≤ m − 1.
Hence (w1, . . . , wm−1) is counted by Bm−1(N/2), and so

Hm−1(N )≤ 2m−1 Bm−1

(
N

2

)
.

By the induction hypothesis we have Em−1(N/2)≤ cm−1(N/2)m−3, hence (7) implies
that Bm−1(N/2)≤ c(1)m−1 N m−2, and so

Hm−1(N )≤ c(2)m−1 N m−2 (13)

with constants c(1)m−1 > 0 and c(2)m−1 > 0 depending only on m − 1.
Now we consider Fm(N ). If (x1, . . . , xm) is counted by Fm(N ), then

(x1, . . . , xm−1) is counted by Hm−1(N ). We fix (x1, . . . , xm−1) and consider the
number of choices for xm . We have 1≤ xm < N = 2en, n | λ(xm), and ρ(xm)≥

(1/m)2e. The latter inequality implies that ρ(xm)≥ 2r with r being the least integer
such that 2r

≥ (1/m)2e. Then both 2r and n divide xm , and so xm = 2r nk with an
integer k satisfying 1≤ k < 2e−r

≤ m. This yields at most m − 1 choices for xm .
Therefore Fm(N )≤ (m − 1)Hm−1(N ), and so (10), (12), and (13) yield the desired
bound on Ed+1(N ). 2

The following result is a consequence of (7) and Lemma 4.

PROPOSITION 5. For any d ≥ 1 and N ≥ 2,

N d
− (N − 1)d ≤ Bd(N )≤ N d

− (N − 1)d + cd N d−2

with a constant cd > 0 depending only on d.

By combining (5) and Proposition 5, we obtain the following theorem which
provides a bound on Gd( f ) in terms of the correlation measure Md( f ) defined in (4).
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THEOREM 6. For any f : ZN → {−1,+1} and any d ≥ 1,

|Gd( f )| ≤ (N − 1)d Md( f )+ d N d
+ cd N d−1

with a constant cd > 0 depending only on d.

3. Pseudorandom numbers defined by inversive methods

Let q be a prime power and let Fq be the finite field of order q . Let α, β ∈ Fq
be such that the quadratic polynomial X2

− βX − α is primitive over Fq . Then by
[7, Lemma 1 and Theorem 1], the sequence R0, R1, . . . of rational functions over Fq
defined by

R0(X)= X, Ri (X)= Ri−1(αX−1
+ β) for i = 1, 2, . . .

is purely periodic of least period q + 1. Furthermore, by [7, (8)], for 1≤ i ≤ q ,

Ri (X)=
(β − εi )X + α

X − εi
,

where ε1, . . . , εq are distinct elements of Fq , with ε1 = 0 and εq = β, such that for
i = 2, . . . , q ,

εi =
α

εi−1 − β
.

We let ε0 be an arbitrary element not in Fq and extend ε0, ε1, . . . , εq to a sequence
with period q + 1. As in [7, (4)], we consider the permutations of Fq defined by
ψ0(γ )= γ , and for 1≤ i ≤ q ,

ψi (γ )=

{
Ri (γ ) if γ 6= εi ,

β − εi if γ = εi .
(14)

We extend the definition of ψi to all i ≥ 0 by periodicity: for all i ≥ 0, ψi+q+1 = ψi .
Then we build from a seed γ0 ∈ Fq a sequence γ0, γ1, . . . of elements of Fq , purely
periodic of least period q + 1, by putting for i ≥ 0,

γi = ψi (γ0). (15)

By [7, Lemma 2] the sequence γ0, γ1, . . . contains all elements of Fq .
The advantage of this construction over the classical inversive generator (see

[6, Section 8.2] and [9] for this generator) is that for i, j ≥ 0,

ψi (ψ j (γ ))= Ri+ j (γ ) for γ 6= ε j and ψ j (γ ) 6= εi . (16)

The price is a slightly more complicated algorithm to compute γi . This construction
allowed us to prove strong distribution and correlation properties of the generated
sequences [7]. Further properties of these sequences were derived in [8] and [11].

https://doi.org/10.1017/S0004972708001184 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708001184


[9] On the Gowers norm of pseudorandom binary sequences 267

In this section our aim is to study the character sum

S :=
q∑

n=0

χ

( k∑
j=1

µ jγn+d j

)
, (17)

where χ is a nontrivial additive character of Fq , µ1, . . . , µk ∈ Fq , and 0≤ d1 < · · ·<

dk ≤ q .
We need the following result which is obtained by combining special cases of

[5, Theorem 2] and [10, Lemma 2] (see also [7, Lemma 3]).

LEMMA 7. Let G(X)= h(X)/g(X) be a nonzero rational function over Fq such
that g is a product of distinct monic linear polynomials over Fq and deg(h) < deg(g)
or deg(h)= deg(g)+ 1. Then for any nontrivial additive character χ of Fq ,∣∣∣∣ ∑

φ∈Fq
g(φ)6=0

χ(G(φ))

∣∣∣∣≤ 2 deg(g)q1/2.

THEOREM 8. If µ1, . . . , µk ∈ Fq are not all 0, then for the character sum in (17) we
have

|S| ≤ 2kq1/2
+ 5k + 5.

PROOF. First we consider

S1 :=

q∑
n=0

χ

( k∑
j=1

µ jψd j (ψn(γ0))

)
.

We have

|S − S1| ≤ 2#{n ∈ {0, . . . , q} : ∃ j ∈ {1, . . . , k}, ψn+d j (γ0) 6= ψd j (ψn(γ0))}.

Since ε1, . . . , εq are distinct elements of Fq , there is exactly one n0 ∈ {1, . . . , q}
such that γ0 = εn0 . By (16) it might happen that ψd j (ψn0(γ0)) 6= Rn0+d j (γ0).
For n ∈ {0, . . . , q} \ {n0} we have ψd j (ψn(γ0))= Rn+d j (γ0) except possibly if
ψn(γ0)= γn = εd j . Since the sequence γ0, . . . , γq contains all elements of Fq ,

#{n ∈ {0, . . . , q} \ {n0} : γn ∈ {εd1, . . . , εdk }} ≤ k + 1.

Thus, we have ψd j (ψn(γ0))= Rn+d j (γ0) for 1≤ j ≤ k, except for at most k + 2
values of n.

For n ∈ {0, . . . , q} we have ψn+d j (γ0)= Rn+d j (γ0) except if γ0 = εn+d j . Since
ε1, . . . , εq are distinct elements of Fq , for each j there is at most one n ∈ {0, . . . , q}
such that γ0 = εn+d j . Thus, we have ψn+d j (γ0)= Rn+d j (γ0) for 1≤ j ≤ k, except for
at most k values of n. Hence we obtain

|S − S1| ≤ 2(2k + 2). (18)
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Since the sequence γ0, γ1, . . . contains all elements of Fq , if we write

S2 :=
∑
φ∈Fq

χ

( k∑
j=1

µ jψd j (φ)

)
,

then
|S1 − S2| ≤ 1.

Let G = {εd1, . . . , εdk } and

S3 :=
∑

φ∈Fq\G
χ(G(φ)),

where for φ ∈ Fq \ G,

G(φ) :=
k∑

j=1

µ j Rd j (φ).

Then
|S2 − S3| ≤ k.

By Lemma 7
|S3| ≤ 2kq1/2,

which implies |S2| ≤ 2kq1/2
+ k, then |S1| ≤ 2kq1/2

+ k + 1, and finally |S| ≤
2kq1/2

+ 5k + 5. 2

4. The Gowers norm of inversive sequences

Let p be an odd prime and let γ0, γ1, . . . be the sequence of elements of Fp of least
period p + 1 constructed in (15). We derive a binary sequence e0, e1, . . . of period
p + 1 by setting

en =

{
+1 if 0≤ γn ≤ (p − 1)/2,
−1 if (p + 1)/2≤ γn ≤ p − 1.

Consider f : Zp+1→ {−1,+1} defined by f (n)= en for all n ∈ Zp+1. We want to
bound the quantity Gd( f ) in (1) for this function f , or equivalently for the sequence
e0, e1, . . . .

The main tools in estimating Gd( f ) are Theorem 6 and a connection between
Md( f ) and discrepancy. For integers 0≤ d1 < · · ·< dk ≤ p, consider the p + 1
points

xn =
1
p
(γn+d1, . . . , γn+dk ) ∈ [0, 1)k, n = 0, 1, . . . , p,

and let Dp+1(x0, x1, . . . , xp) be the discrepancy of x0, x1, . . . , xp. Then
[3, Theorem 1] implies the following result.
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LEMMA 9. For any 0≤ d1 < · · ·< dk ≤ p,∣∣∣∣ p∑
n=0

en+d1 · · · en+dk

∣∣∣∣≤ 2k(p + 1)Dp+1(x0, x1, . . . , xp).

THEOREM 10. Let f : Zp+1→ {−1,+1} be as given above. Then for any d ≥ 1 we
have

|Gd( f )| = O(pd+1/2(log p)2
d
)

with an implied constant depending only on d.

PROOF. Since it is trivial that |Gd( f )| ≤ (p + 1)d+1, we can assume without loss of
generality that 2d

≤ p + 1. For integers 1≤ k ≤ 2d and 0≤ d1 < · · ·< dk ≤ p, we
first consider the discrepancy Dp+1(x0, x1, . . . , xp). We will bound this discrepancy
by means of [6, Corollary 3.11]. To this end, let h= (µ1, . . . , µk) ∈ Fk

p with
µ1, . . . , µk not all 0. Put e(t)= e2π i t for t ∈R and let 〈·, ·〉 denote the standard
inner product in Rk . Then

p∑
n=0

e(〈h, xn〉)=

p∑
n=0

e
(

1
p

k∑
j=1

µ jγn+d j

)
=

p∑
n=0

χ

( k∑
j=1

µ jγn+d j

)
,

where χ is the canonical additive character of Fp. Hence Theorem 8 yields∣∣∣∣ p∑
n=0

e(〈h, xn〉)

∣∣∣∣≤ 2kp1/2
+ 5k + 5.

Thus, we can apply [6, Corollary 3.11] with B = 2kp1/2
+ 5k + 5, and we obtain

Dp+1(x0, x1, . . . , xp)≤
2kp1/2

+ 5k + 5
p + 1

(
4

π2 log p + 1.72
)k

+
k

p
.

Lemma 9 implies that∣∣∣∣ p∑
n=0

en+d1 · · · en+dk

∣∣∣∣≤ 2k(2kp1/2
+ 5k + 5)

(
4

π2 log p + 1.72
)k

+
2kk(p + 1)

p
.

Since this bound does not depend on d1, . . . , dk and since k ≤ 2d
≤ p + 1, we get

Md( f )≤ 22d
(2d+1 p1/2

+ 5 · 2d
+ 5)

(
4

π2 log p + 1.72
)2d

+
22d
+d(p + 1)

p
.

Now an application of Theorem 6 completes the proof. 2

As we have noted in the proof of Theorem 10, the trivial bound on Gd( f ) is
|Gd( f )| ≤ (p + 1)d+1. Thus, for any given d ≥ 1, Theorem 10 yields a nontrivial
bound on Gd( f ) for all sufficiently large primes p.
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5. Concluding remarks

We have chosen to present the estimation of the Gowers norm of inversive
sequences because the estimation of the complete character sums is much sharper
than the estimation of the incomplete character sums we can obtain by present
techniques for this construction. Of course, we can estimate the Gowers norm of
many other sequences, including the Legendre symbol construction en = (n/p) of [4],
its generalisation en = ( f (n)/p) where f is a suitable polynomial [1], and so on. In
all these constructions, the saving in the bound on the Gowers norm in comparison
with that on the correlation measures of Mauduit and Sárközy [4] would be at most a
log factor.
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