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Abstract

Typhoid fever is a major cause of illness and mortality in low- and middle-income settings.
We investigated the association of typhoid fever and rainfall in Blantyre, Malawi, where
multi-drug-resistant typhoid has been transmitting since 2011. Peak rainfall preceded the
peak in typhoid fever by approximately 15 weeks [95% confidence interval (CI) 13.3, 17.7],
indicating no direct biological link. A quasi-Poisson generalised linear modelling framework
was used to explore the relationship between rainfall and typhoid incidence at biologically
plausible lags of 1–4 weeks. We found a protective effect of rainfall anomalies on typhoid
fever, at a two-week lag (P = 0.006), where a 10 mm lower-than-expected rainfall anomaly
was associated with up to a 16% reduction in cases (95% CI 7.6, 26.5). Extreme flooding
events may cleanse the environment of S. Typhi, while unusually low rainfall may reduce
exposure from sewage overflow. These results add to evidence that rainfall anomalies may
play a role in the transmission of enteric pathogens, and can help direct future water and sani-
tation intervention strategies for the control of typhoid fever.

Introduction

Typhoid fever, caused by Salmonella enterica serovar Typhi, is a major cause of febrile illness
in low- and middle-income countries, with 10–20 million cases occurring annually worldwide
[1]. Available evidence indicates S. Typhi is a human restricted pathogen, however, it has been
isolated outside of the human host, in both drinking water and sewage [2, 3]. Individuals can
be exposed through close interaction with infected individuals via food handling or contam-
ination of other fomites, known as short-cycle transmission. However, typhoid fever infection
can also occur through exposure to the environment, such as through ingestion of contami-
nated drinking water or crops. This form of transmission is referred to as long-cycle
transmission.

In many locations with ongoing transmission of S. Typhi, the specific mechanisms of
long-cycle transmission are unknown, however in some locations, the mechanisms have
been elucidated. In Chile, irrigation of crops with wastewater was identified as a risk factor
for typhoid. After this practice was banned, typhoid incidence declined to near-elimination
levels [4]. In Nepal, transmission through drinking water was posited, and further bolstered
by environmental sampling [3]. Understanding these pathways is important for designing
water and sanitation control measures that are likely to be necessary for the elimination of
the disease alongside the typhoid conjugate vaccine [5, 6]. As climate is a key determinant
of environmental conditions, the analysis of weather events, such as rainfall, on typhoid
could help to identify factors which support both environmental survival and transmission
in endemic locations. Further, if a link to a weather pattern is established, this may help to
understand fluctuations in disease incidence.

Because both disease incidence and meteorology typically exhibit seasonal variation, evi-
dence of a cross-correlation between the two does not establish a causal or mechanistic
link. Typhoid is known to be seasonal [7], therefore it is unsurprising that unadjusted rainfall
and disease incidence exhibit cross-correlation. In previously published analyses of this kind,
in Dhaka, a 3–5 week lag in rainfall was associated with an increase in typhoid cases [8], whilst
in a multi-site investigation, it was observed that rainfall often precedes the disease, and a posi-
tive association with temperature is frequent [7], but this was not a universal finding across the
evaluated study sites.

Whilst time series analysis can be helpful in establishing causality, it is important to make a
distinction between (a) association between rainfall and incidence and (b) association between
rainfall and incidence anomalies, i.e. residuals about the expected values of both series at a
given time of year. A statistical association between rainfall and incidence series, i.e. case
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(a) above, could arise simply because both exhibit seasonal vari-
ation, for whatever reason. An analysis of rainfall and incidence
anomalies addresses the hypothesis that unusual rainfall patterns
are associated with unusual levels of disease incidence. Although
it is still the case that association does not automatically imply
causality, a causal interpretation becomes more plausible, pro-
vided that the temporal lag of a statistical association is compat-
ible with the incubation period of the disease in question,
because it eliminates the possibility that the statistical association
is simply a by-product of the mutual seasonality of the two series.
This approach has previously been used in establishing a link
between rainfall events and diarrhoea [9].

Since 1998, Queen Elizabeth Central Hospital in Blantyre,
Malawi has conducted blood culture surveillance for typhoid
fever. A sharp increase in reported cases occurred in 2011, the
majority of which were multi-drug resistant [10]. Despite ongoing
transmission, the mechanisms of transmission remain unknown.
A risk factor study conducted in 2015 suggested complex interac-
tions between environmental and common social exposures,
including using river water for cooking and cleaning [11].
59.6% of the population in Blantyre use non-flushing latrines
[12], and it has been noted that the rocky soil in Blantyre often
prevents the digging of pit latrines deeper than three metres
[13], providing a hypothesis for a mechanistic link between
heavy rainfall events and subsequent contamination of river
water or the surrounding environment. In this setting, tempera-
ture and rainfall patterns were previously jointly explored in rela-
tion to typhoid fever, and a four-month lagged association with
rainfall was found, along with the protective effects of excessive
rainfall [14]. The goals of the current study expand upon this
work to focus on rainfall anomalies: the association between rain-
fall and case incidence anomalies. We did this by using rainfall
anomalies as an explanatory variable in a model for case-
incidence and estimating the effects of rainfall anomalies, lagged
within a biologically plausible range of 1–4 weeks, adjusting for
both long-term trends and seasonal variation in case-incidence.

Methods

Hospital and rainfall data

Beginning in 1998, laboratory records from Queen Elizabeth
Central Hospital for typhoid fever have been recorded. Cases of
blood culture-confirmed S. Typhi, identified through routine
hospital-based surveillance on both inpatients and outpatients,
were recorded in a logbook (until 2010) or an electronic
Laboratory Information Management System (from October
2010 onwards). We obtained weather data from the Malawi
Meteorological Service, which included daily measurements of rain-
fall (mm) collected from Chichiri weather station in central Blantyre
city. Due to reporting and laboratory time lags based on the day of
the week, we summarised the data into weekly counts of cases and
weekly average rainfall. All data processing and subsequent analyses
were conducted in R version 3.5.1 [15], and a type 1 error rate was
designated as 5%. From inspecting the data beginning in 1998, there
was low transmission of typhoid prior to 2012, therefore analyses
used data beginning 1 January 2012 to focus on the period of
endemic transmission of the disease.

Smoothing of typhoid case time series

We first modelled the time series of typhoid cases. Because we
know typhoid cases are seasonal, and exhibited a large increase

in 2011, we needed to incorporate both a seasonal term and a
smooth time-trend. We did not attempt to explore any predictive
drivers of the increase in 2011, as this has been explored previ-
ously through a dynamic modelling framework. That study attrib-
uted the rise in cases to an increase in shedding duration, possibly
caused by multi-drug resistance [16]. We used a quasi-Poisson
log-linear model, which allows us to model typhoid case-counts
over time while accounting for over-dispersion. We use the pena-
lised regression spline (the default in mgcv package for the R stat-
istical programming language) and an annual seasonal harmonic.

Modelling rainfall and defining anomalies

In order to capture rainfall patterns and define anomalies, we
needed to be able to predict an ‘expected’ amount of rainfall
throughout our study period. We utilised a joint model with
two components. First, we modelled the amount of rain on
days with rainfall using a log-linear model, log(rain(t)) =m(t) +
ϵ(t), where ϵ(t) is a residual series, Normally distributed with
mean zero and variance σ2, and m(t) includes annual and
six-month harmonic terms to describe the seasonal effect
[equation 1].

m(t) = a+ b1 cos
2pt
52

+ b2 sin
2pt
52

+ b3 cos
4pt
52

+ b4 sin
4pt
52

(1)

The six-month harmonic terms in [1] were needed to capture
the asymmetric shape of the seasonal variation. Next, we mod-
elled the probability of rainfall, p(t), in any given week using logis-
tic regression, including the same annual and six-month
harmonic terms [equation 2].

p(t) = log
p

(1-p) = a+ b1 cos
2pt
52

+ b2 sin
2pt
52

+b3 cos
4pt
52

+ b4 sin
4pt
52

(2)

The expectation of total rainfall on any given day is then the
product of the probability of any rain and the conditional expect-
ation of the amount of rain on a day with rain, hence:

E[rain(t)] = p(t) exp (m(t)+ s2/2), (3)

where σ2 is estimated from the fitted rainfall model [equation 1]
and the exponential term follows from the properties of the
log-Normal distribution. A rainfall anomaly was then defined,
for each week in the study period, as the observed rainfall
minus the expected rainfall.

Exploring seasonal relationships

We examined cross-correlations of average weekly rainfall and
typhoid fever cases, in order to characterise seasonal trends in
relation to weather events in the raw data. Cross-correlations
were generated between de-trended case counts, retaining the sea-
sonal component, and average weekly rainfall, for lags spanning
0–24 weeks.

We then aimed to estimate the lag between the seasonal peaks
of case incidence and rainfall. We generated 1000 realisations of
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model parameters using the multivariate Normal sampling distri-
bution of the parameter estimates for the fitted typhoid case and
rainfall models. We then extracted the timing of the seasonal
peaks for cases and rainfall from model predictions using these
parameters. Finally, we took the difference in seasonal peaks for
each set of realisations to estimate the lag between cases and rain-
fall. We summarised the lag in terms of mean and 95% confi-
dence interval (CI).

Relating typhoid and rainfall anomalies

To explore the relationship between rainfall and typhoid anomal-
ies, we used a quasi-Poisson log-linear model [equation 4].

E(Yt) = mt , Var(Yt) = fmt mt = (Offsett) exp

(a+ b1wt-1 + b2wt-2 + b3wt-3 + b4wt-4), (4)

where ws is the rainfall anomaly for week s.
This model accounted for the overall trend in cases by using

the fitted typhoid case model, which includes both seasonal and
time-trend components, as an offset term. By using these model
predictions as an offset in the descriptive model, we are able to
estimate the extent to which lagged rainfall anomalies act as a
dampener or booster of the current transmission level, with a
view to obtaining evidence in support of a causal hypothesis, as
discussed earlier.

We included terms for rainfall anomalies, as defined above, at
lagged weeks 1 to 4. This range of lags was informed by the
known incubation period of typhoid (typically 7–14 days) [17],
and accommodates for potential delay in healthcare-seeking
and case identification. We explored potential relationships
between rainfall anomalies and case anomalies using the model
[equation 4], in which the rainfall anomaly effects are log-linear,
as well as explored a log-quadratic relationship.

We evaluated the overall contribution of the 1 to 4 week lagged
rainfall anomalies to the incidence model using a Wald test [18],
which provided an indication of whether the included model par-
ameter estimates were significantly different from zero.

Results

Typhoid case time series model

The typhoid case model with and without seasonal components is
shown in Figure 1a. The de-trended seasonal case-counts are

Fig. 1. (a) time series of case-counts (black), with long term
trend (blue) and long term plus seasonal trend (red).
(b) Residuals from long-term trend model. (c) Residuals
from long term plus seasonal trend model.

Fig. 2. (a) Average weekly rainfall (black), with fitted log-Gaussian model (red).
(b) Rainfall anomalies.
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shown Figure 1b, and the de-trended, de-seasonalized residuals
are shown in Figure 1c, representing typhoid anomalies with
and without the seasonal component, respectively. The fit to
our joint model for the occurrence and amount of expected
weekly rain is shown in Figure 2a. We used this model to generate

the rainfall anomaly sequence as observed minus expected weekly
rain (Fig. 2b).

Seasonal relationships between cases and rainfall

Correlations between detrended case counts, retaining the sea-
sonal trend (Fig. 1b), and rainfall were calculated, and are
shown in Figure 3a. Rainfall is positively correlated with case
counts at lags between approximately 10 and 20 weeks (Fig. 3a).
Additionally, there is a lag between the seasonal pattern of fitted
rainfall and case model predictions over a single year (Fig. 3b).
The estimated lag between the peak rainfall and cases was 15.46
weeks (95% CI 13.28, 17.65).

Fig. 3. (a) Cross-correlation of detrended cases and rainfall,
(b) Best-fit seasonal amplitude for cases (black line) and
rainfall (blue line), (c) Histogram of the calculated seasonal
lags generated from 1000 realisations of the multivariate
Normal distribution parameterised by model covariates.

Table 1. Summary of estimates from log-quadratic model with all lags included

Coefficient Value Standard error P

Intercepta 0.023 0.027 0.402

wt−1 0.004 0.006 0.445

wt−2 0.008 0.006 0.170

wt−3 0.004 0.005 0.497

wt−4 −0.002 0.005 0.727

w2
t−1 0.0002 0.0005 0.622

w2
t−2 −0.002 0.0006 0.006

w2
t−3 −0.0003 0.0005 0.472

w2
t−4 0.001 0.0005 0.144

aws represents the rainfall anomaly for week s.

Table 2. Summary of the quadratic rainfall anomaly model including only the
two-week lag

Coefficient Value Standard error P

Intercepta 0.039 0.025 0.123

wt−2 0.007 0.005 0.165

w2
t−2 −0.001 0.0005 0.005

aws represents the rainfall anomaly for week s.
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Relationship between case and rainfall anomalies

We did not find a significant overall association between rainfall
anomalies and incidence anomalies when assuming a log-linear
relationship [Wald test, P = 0.18]. Results from the model
assuming a log-quadratic relationship were flagged for further
evaluation [Wald test, P = 0.05]. Investigating the log-quadratic
model further, we identified the association was significant at
the 0.01 level at a lag of two weeks [P = 0.006, Table 1]. We refit-
ted the model including only the 2 week-lagged linear and
quadratic coefficient, resulting in a significantly improved fit
of the model to the data compared with the null model
(likelihood ratio test: scaled deviance = 11.46, degrees of freedom
= 2, P = 0.003, Table 2). The model suggests rainfall anomalies
with extremely lower or higher rainfall than expected are asso-
ciated with reduced typhoid case incidence (Fig. 4).

Discussion

The pathway between shedding of S. Typhi and subsequent inges-
tion by another exposed individual is poorly understood. The pri-
mary reservoir of S. Typhi is humans, however it must survive in
the environment sufficiently to permit transmission to the next
human host. Rainfall may act as a mediator in this process. A
large increase in typhoid fever cases occurred in Blantyre,
Malawi in 2011, and was associated with an increase in multi-
drug resistance [10, 16]. The current study focuses not on these
long-term trends, but fluctuations in cases due to environmental
interactions such as rainfall. Specifically, in this study, we aimed
to explore the relationship between rainfall anomalies and typhoid
anomalies in Blantyre, Malawi.

Daily rainfall and typhoid case incidence both exhibit seasonal
patterns in Blantyre. We found the peak in rainfall precedes the
peak in cases by approximately 15 weeks, consistent with previous
work in this setting [14]. As the incubation period of typhoid
fever is typically between 1 and 4 weeks [17, 19], this is not sup-
portive of rainfall being a primary driver of typhoid incidence in

Blantyre without an unknown intermediate step or steps. It is
unclear what bio-social mechanism could generate the long lag
between total rainfall and typhoid incidence we observe in
Blantyre. However, when two processes are seasonal, they inevit-
ably will exhibit significant correlation at one or more time-lags.
When incorporating weather events as predictive processes, con-
straining lagged effects by known biological processes is critical
for interpretation.

We therefore explored the possibility of deviation from the
seasonal pattern of rainfall – rainfall anomalies – to describe
typhoid cases at biologically plausible lags of 1 to 4 weeks. We
found a significant non-linear association between rainfall anom-
alies and typhoid case anomalies, with the highest typhoid in-
cidence associated with the seasonally expected rainfall. In
translating the coefficients to their impact on case counts, we
found that a 10 mm lower-than-expected rainfall anomaly was
associated with up to a 16% reduction in cases (95% CI 7.6, 26.5).

If rainfall is a mechanism that disseminates S. Typhi by facili-
tating exposure of susceptible humans, for example through
flooding of pit latrines or runoff of sewage into rivers used for
drinking water or domestic use [11], it is plausible that a drier
than expected period could reduce typhoid case incidence.
Conversely, more rainfall than expected may have a cleansing
effect on S. Typhi in the environment, through dilution or
removal of the pathogen from river water sources. After an anom-
alous rainfall event, individuals may be at a lower risk of develop-
ing disease through dilution of the inoculum of S. Typhi to a level
below that which would be expected to cause typhoid fever, a level
which has been quantified through Typhoid live challenge models
[17, 20].

The protective effect of heavy rainfall has been reported for
other enteric diseases, including diarrhoeal disease in Ecuador
[9]. Further, recent global burden estimates for typhoid found
the proportion of the population living in the monsoon belt
was a significant predictor of incidence, indicating that these
extreme events may put individuals at higher risk of typhoid
fever [1]. However, these data are based on large-scale global
models, and do not include rainfall as a time-resolved variable.

Rainfall anomalies are distinct from the overall seasonal pat-
tern of rainfall, which we found was not correlated with typhoid
cases within biologically plausible lags and therefore was not
included in our descriptive model. This poses a question for fur-
ther investigation, as it appears that both extremely lower or
higher rainfall than expected is associated with reduced typhoid
incidence. Better understanding the biological and environmental
responses to seasonally expected vs. anomalous rainfall would aid
in further interpretation of these results.

There are some limitations to this study. The time series of
typhoid cases reflects the date of blood culture diagnosis of a
patient. However, the time at which an individual is infected
precedes this by the incubation period, and to a lesser extent by
individual variations in treatment seeking. Whilst a range of incu-
bation periods have been reported for typhoid in human chal-
lenge studies [17], they infrequently exceed the two-week lagged
effect found in our study. This is therefore a biologically plausible
lag that is keeping with the pathogenesis of typhoid. The geo-
graphic span of Blantyre (approximately 20 km) may indicate dif-
ferential propensities to seek care based on the distance to the
hospital. Our time series does not, therefore, precisely represent
the date of infection. Further, we do not have a precise estimate
of S. Typhi transmission due to short-cycle transmission (trans-
mission independent of the environment) at the time of this

Fig. 4. (a) Effect of 2-week lagged rainfall anomaly on case incidence, (b) Model
predictions with (red) and without (blue) rainfall anomaly included, and total
cases in light grey.
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study, and this may impact the signal from rainfall and environ-
mental interactions. However, from previous studies of typhoid
risk in Blantyre, environmental factors were identified as major
risk factors and therefore likely play a significant role in transmis-
sion in this setting [11].

Overall, this study identified a complex relationship between
rainfall and typhoid fever incidence. We found an extended lag
between the seasonal patterns of typhoid fever and rainfall in
Blantyre, Malawi, though this is likely spurious association lacking
a biological mechanistic explanation. Additionally, we found evi-
dence that rainfall anomalies are associated with reduced typhoid
case incidence. Improved data could help strengthen these obser-
vations, including prioritising the detection of typhoid cases clo-
ser to their time of exposure through active surveillance, and
improved environmental sampling and detection to understand
the distribution of S. Typhi in the environment and over time,
and human exposure and infection risk. Further work to explore
these relationships in other locations, and better understand the
ecological niches of S. Typhi, will help advance our understanding
of the link between weather patterns and typhoid transmission.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268822000759.
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