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Abstract

Let ^jK be a semi-finite von Neumann algebra equipped with a faithful normal trace r. We prove a
Kadec-Pelczyiiski type dichotomy principle for subspaces of symmetric space of measurable operators
of Rademacher type 2. We study subspace structures of non-commutative Lorentz spaces LPJ){M', r),
extending some results of Carothers and Dilworth to the non-commutative settings. In particular, we show
that, under natural conditions on indices, lp cannot be embedded into Lpq(^, r). As applications, we
prove that for 0 < p < oo with p ^ 2, lp cannot be strongly embedded into Lp (M', T). This provides a
non-commutative extension of a result of Kalton for 0 < p < 1 and a result of Rosenthal for 1 < p < 2
onZ,p[0,1].

2000 Mathematics subject classification: primary 46L52, 46L51, 46E30.
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1. Introduction

The study of rearrangement invariant Banach spaces of measurable functions is a
classical theme. Several studies have been devoted to characterizations of subspaces
of rearrangement invariant spaces. Recently, the theory of rearrangement invariant
Banach spaces of measurable operators affiliated with semi-finite von Neumann alge-
bra have emerged as the natural non-commutative generalizations of Kothe functions
spaces. This theory, which is based on the theory of non-commutative integration
introduced by Segal [24], replaces the classical duality (Loo(/it), ^i 0-0) by the duality
between a semi-finite von Neumann algebra and its predual. It provides a unified
approach to the study of unitary ideals and rearrangement invariant spaces. Several
authors have considered these non-commutative spaces of measurable operators (see
for instance, [4, 6, 7, 8, 28]).
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332 Narcisse Randrianantoanina [2]

The purpose of the present paper is to examine subspaces of symmetric spaces of
measurable operators in which the norm topology and the measure topology coincide,
and subspaces generated by disjointly supported basic sequences. Such subspaces are
of particular importance as they represent in many cases the extreme structures. Our
main method is to exploit the notion of uniform integrability of operators introduced
in [21]. One of main results of this paper is a dichotomy type result for subspaces
of symmetric spaces of measurable operators. More precisely, we prove that any
given subspace of a symmetric space of measurable operators either is isomorphic
to a Hilbert space or contains a basic sequence equivalent to a disjointly supported
sequence.

The classical spaces Lp O ) are of central importance and results in their structures
go back to the work of Banach. Since their introduction by Lorentz in 1950, the
Lorentz function spaces Lpq have been found to be of special interests in many
aspects of analysis and probability theory. In [2] and [3], Carothers and Dilworth
studied the spaces Lpq[0, 1] and Lpq[0, oo). They proved, among other things, that
for some appropriate values of the indices p and q, Lpq[0, oo) does not contain lp.
Precisely, for 0 < p,q < oo, p ^ q and p ^ 2, the sequence space ip does not
embed into Lpq[0, oo). Such result, not only is of interest in its own right, but also
provides an alternative proof to some non-trivial results on Lp -spaces.

Motivated by such connections, we examine the subspace structures of non com-
mutative Lorentz spaces Lpq(^, r), where (Jt, r) is a semi-finite von Neumann
algebra. Making use of our dichotomy result and some other results of general nature,
we show that some of the results of [2] and [3] extend to the non-commutative settings.
Our approach relies on a disjointification techniques based on the non-commutative
Khintchine's inequalities ([17, 18]). As noted above, the initial basic question, that
led to the consideration of these Lorentz spaces, is the question of embeddings of lp

into Lp(jft, T). Clearly, any disjointly supported basic sequence in Lp(jft', r) is iso-
morphic to ip. For the commutative case, Rosenthal proved in [23] that if (ft, E, fj.) is
a cr-finite measure space, 1 < p < 2, and X is a subspace of Lp(£l, E, /x) containing
lp, then the norm topology and the measure topology do not coincide on X. For
0 < p < 1, the same result is implicit in a paper of Kalton [14]. This implies that for
0 < p < 2, any basic sequence in Lp (£2, X!, /x.) that is equivalent to lp is essentially a
perturbation of a disjointly supported basic sequence. We establish, as applications of
our results on Lorentz spaces, that Kalton and Rosenthal's results extend to Lp (^#, r).

The paper is organized as follows. In Section 2 below, we gather some necessary
definitions and present some basic facts concerning symmetric spaces of measur-
able operators that will be needed throughout. In Section 3, we present the Kadec-
Petczyiiski type dichotomy for subspaces of symmetric spaces of measurable opera-
tors. The final section is devoted entirely to the study of subspaces of Lorentz spaces
and its applications.
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2. Definitions and preliminaries

We begin by recalling some definitions and facts about function spaces. Let E
be a complex quasi-Banach lattice. If 0 < p < oo, then E is said to be p -convex
(respectively p -concave) if there exists a constant C > 0 such that for every finite
sequence {xn} in E,

I respectively

The least constant C is called the p-convexity (respectively p-concavity) constant of
E and is denoted by M^^E) (respectively M(P)(£')).

For 0 < p < oo, E^ will denote the quasi-Banach lattice defined by

E^ := [x : \x\" e E]

equipped with ||* || £o>> = || \x \p \\ ̂ . It is easy to verify that if E is a-convex and
g-concave then E^ is ap-convex and <#?-concave with M(ap)^Eip)) < MW(E)1/P

and M^P)(E(p)) < M(q)(E)1/p. Consequently, if E is a-convex then E(l/a) is 1-convex
and therefore can be equivalently renormed to be a Banach lattice [16].

The quasi-Banach lattice E is said to satisfy a lower q-estimate (respectively upper
p-estimate) if there exists a positive constant C > 0 such that for all finite sequences
of mutually disjoint elements of E

(respectively Q T I|AT.||'E)'" > C' | Z > . | | £ ) •

We denote by M a semi-finite von Neumann algebra on a Hilbert space 3^, with a
fixed faithful and normal semi-finite trace r. The identity in M is denoted by 1, and
we denote by Mp the set of all projections in jft. A linear operator* : dom(;t) -> ^ ,
with domain dom(x) c Jtf, is called affiliated with ^ if ux = xu for all unitary u
in the commutant Jt' of Jt. The closed and densely defined operator x, affiliated
with M, is called x-measurable if for every e > 0 there exists p G ^tfp such the
p(Jf?) c dom(x) and r ( l — p) < e. With the sum and product defined as the
respective closures of the algebraic sum and product, ^# is a *-algebra. For standard
facts concerning von Neumann algebras, we refer to [13, 26].

We recall the notion of generalized singular value function [10]. Given a self-
adjoint operator* in Jf we denote by e*(-) the spectral measure of*. Now assume
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thatx e J?. Then XB(\X I) e J# for all Borel sets K l , and there exists s > 0 such
that r(x(j-o0)(|;c|)) < oo. For* e ^#and f > 0, we define

/*,(*) = inf \s > 0 : r(Xu,oo)(\x\)) < t}.

The function fi(x) : [0, oo) —• [0, oo] is called the generalized singular value function
(or decreasing rearrangement) of x; note that fi,(x) < oo for all t > 0. Suppose that
a > 0. If we consider ^ = Loo([0, a), m), where m denotes Lebesgue measure on
the interval [0, a), as an abelian von Neumann algebra acting via multiplication on
the Hilbert space 3^ = ^([O, o), m), with the trace given by integration with respect
to m, it is easy to see that Ji consists of all measurable functions on [0, a) which are
bounded except on a set of finite measure. Further, if / € J(, then the generalized
singular value function yn(/) is precisely the classical non-increasing rearrangement
of the function \f |. On the other hand, if {M, r) is the space of all bounded linear
operators in some Hilbert space equipped with the canonical trace tr, then M = M
and, if x e Jt is compact, then the generalized singular value function fx(x) may
be identified in a natural manner with the sequence {nn(x)}%L0 of singular values of
I*| = Vx*x, repeated according to multiplicity and arranged in non-increasing order.
By L0([0, a), m), we denote the space of all C-valued Lebesgue measurable functions
on the interval [0, a) (with identification m-a.e.). A quasi-Banach space (E, \\ • ||£),
where E c Lo([O, a), rri) is called a rearrangement-invariant Banach function space
on the interval [0, a), if it follows f rom/ € E, g 6 L0([0, a), m) and /x(g) < (i(f)
thatg € Eand | | g | | £ < II/IIE- I f ( £ . \\-\\E) is a rearrangement-invariant quasi-Banach
function space on [0, a), then E is said to be symmetric if / , g € E and g << f
imply that \\g\\E < \\f\\E. Here g <-< f denotes submajorization in the sense of
Hardy-Littlewood-Polya

/ fis(g)ds< / (j-s(f)ds, for all t > 0.
Jo Jo

The general theory of rearrangement-invariant spaces may be found in [1] and [16].
Given a semi-finite von Neumann algebra ( ^ , r) and a symmetric quasi-Banach

function space (E, || • ||£) on the measure space ([0, r(l)),m), we define the non-
commutative space E{M', r) by setting

E{J(, r) := {x e Ji : n(x) € E] with

for x e Ei,JC, r).

It is known that if E is ar-convex for some 0 < a < oo with Mia)(E) = 1, then
|| • || t (^t) is a norm for a > 1 and an a-norm if 0 < a < 1. In this case, the space

', r), || • | | £ U t l ) is a a-Banach space. Moreover, the inclusions

, T) n ^T c £(^T, r) c LB(^r, r) +
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hold with continuous embeddings. We remark that if 0 < p < oo and E =
Lp[0, T(1)) then E{Jt', r) coincides with the definition of Lp(Jt, r) as in [19,26]. In
particular, if M = jSf («^) with the standard trace then these Lp-spaces are precisely
the Schatten classes ^p.

We recall that the topology defined by the metric on yft obtained by setting

d(x, y) = inf {t > 0 : /M,(X — y) < t], for x, y 6 J?,

is called the measure topology. It is well known that a net (xa)ae, in jfl converge to
x 6 M in measure topology if and only if for every e > 0, 8 > 0, there exists a0 e /
such that whenever a > aQ, there exists a projection p e JMP such that

| | ( x« -x )p | | ^ < e and r(l-p)<8.

It was shown in [19] that (^,d) is a complete metric, Hausdorff, topological
*-algebra.

For* € M, the right and left support projections of x are denoted by r(x) and l(x)
respectively. Operators x, y e M are said to be right (respectively, left) disjointly
supported if r(x)r{y) = 0 (respectively, l(x)l(y) = 0).

The following definition isolates the topic of this paper.

DEFINITION 2.1. Let £ be a symmetric quasi-Banach function space on [0, r(l)).
We say that a subspace X of E{jft', x) is strongly embedded into E(^, x) if the
II • ll£(^r,r)-topology and the measure topology on X coincide.

The next definition was introduced in [21] as an analogue of the uniform integra-
bility of families of functions.

DEFINITION 2.2. Let E be a symmetric quasi-Banach function space on [0, r(l)).
A bounded subset K of £ ( ^ , r) is said to be E-uniformly-integrable if

lim sup||gBxen||£(^r,r) = 0

for every decreasing sequence {<?„}£!, of projections with en \.n 0.

A non-commutative extension of the Kadec-Pelczynski subsequence splitting lem-
ma relative to the above notion of uniform integrability was considered in [21] (see [21,
Theorem 3.1, Theorem 3.9, Corollary 3.10]) and will be used repeatedly throughout
this paper. For convenience of the reader, we include the version that we need.

THEOREM 2.3 ([21]). Let E be an order continuous symmetric quasi-Banach func-
tion space in [0, r(l)). Assume that E is a Banach function space with the Fatou
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property or E is a-convex with constant 1 for some 0 < a < 1 which satisfies a lower
q-estimate with constant 1 for some q > a.

Let {xjf£_x be a bounded sequence in E(^rff, r) . Then there exist a subsequence
{*/>J£i of{xn]™=i, bounded sequences {<?*}£!, and {&}£!, in E{J%, t) and mutually
disjoint sequence of projections {ek\XL\ sucn tnat

(0 xHk = <pk + Skforallk> 1;

(ii) {(pk : k > 1} is E-uniformly-integrable and e^tek — Ofor all k > 1;

(iii) {&}j£i « « « * '>"*' «*&«» = Kkfor all k > 1.

The following proposition is due to Sukochev [25] in the case where r ( l ) < oo
and will be used in the sequel.

PROPOSITION 2.4. Let E be a-convex with constant 1 and assume that E is order
continuous. Let {xn}™=l be a basic sequence in E{M', r ) such that {jcn}^l, is both
right and left disjointly supported. Then {̂ «}̂ 1] is equivalent to a disjointly supported
basic sequence in E.

PROOF. For each n > l , let^n := l(xn)andpn := r(xn) be the left and right support
projection of xn respectively. Both sequences {qn}™=\ and {/?„}£!, are mutually disjoint
and for every n > 1, xn = qnxnpn. For any finite sequence of scalars {a,}"=1,

1=1

Note that {l*,!}"^ is disjointly supported by the projections {pi}°lv For each i > 1,
the semi-finiteness of/?, implies that the family [ep)p of all projections in p , ^ p , of
finite trace satisfies 0 < ep f/s Pi- Since E is order-continuous, it follows that

For each i > 1, choose a projection pt < pt such that x(pt) < oo and

\\Pi\xi\p~i-\xi\T < 2 " ' .

CLAIM. The sequence {pi\Xi\pi)°^x is equivalent to {|JC,-|}~,.

Let p = Vi=iP'- F ° r a n y x = 12lt]ai\xi\ G span{|jc,-|, i > 1}, we have
HZI aiPi\xi\Pt — P(HZi a<\X<\)P s o t h e s e r i e s 5Z/=i a '^ 'I** \Pi l s convergent when-
ever ^*L\ at\xi\ converges. Conversely, if {<2n}£L, is a bounded sequence of scalars
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such that XXi a'P>\xi\Pi is convergent, then for any subset SofH,

337

iaS i €5

i€S

This shows that the series J2Hia'\x>\ ls convergent. Let C\ and C2 be positive
constants so that for any finite sequence of scalars {a,-}"=1,

E'
1=1

< C 2

(=1

If «! = 0 and <*„ = X!"=i T(^>) < °°< s e t / » : = M()-«„_,(P«kJp«) for n > 1. The
sequence {fn}T=i ™ disjointly supported in £(0 , r ( l ) ) and {/n}^l, is isometrically
isomorphic to {p^x^Pn}^. For any finite sequence of scalars {a,-}"=1,

n

Ea<*< = Q
£(^T,r)

=
n

I
i=

n

E
1=1

a

"t

\Xi\

EU

£ ( O , T ( D )

<

<

)

c2

n

i=l

n

E a'Xi
; = i E(J(,z)

The proof is complete. D

3. Kadec-Prfczyriski dichotomy

The main result of this section is the following theorem.

THEOREM 3.1. Let E be an order continuous rearrangement invariant Banach
function space on [0, T ( 1 ) ) with the Fatou property and assume that E(^(, x) is of
type 2. Then every subspace of E{M, r ) either contains a basic sequence equivalent
to a disjointly supported sequence in E or is isomorphic to a Hilbert space.

REMARK 3.2. For the case of Lp with p > 2, the commutative case is a classical
result of Kadec and Petczyriski [12]; the finite case is a result of Sukochev [25].
Recently, Raynaud and Xu [22] also obtained such dichotomy for the case of Haagerup
Lp -spaces.
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For the proof of Theorem 3.1, we need several results on E(M', r ) , some of which
could be of independent interest.

PROPOSITION 3.3. Let E be a symmetric quasi-Banach function space on [0, T(1))
that is order continuous and is a-convex with constant 1 for some 0 < a < 1.
Suppose that E satisfies a lower q-estimate with constant 1 for some q > a. IfX is
a subspace of E(^rff, r), then either X is strongly embedded into E(^/Jf, r) or there
exist a normalized basic sequence [yn}%L\ in X and a mutually disjoint sequence of
projections {en}^i, in M such that

lim \\yn - enynen\\E(M,r) = 0.
n-K>o

In particular, {ynY£L\ has a subsequence that is equivalent to a disjointly supported
basic sequence in E. Moreover, if X has a basis then the sequence {yn}^ can be
chosen to be a block basis of the basis ofX.

PROOF. Assume that X is not strongly embedded into E(M', r) and set j :
, r) ->• jft the natural inclusion. Since X is not strongly embedded into
, r ) , the restriction j \x is not an isomorphism. There exists a sequence {yn}™=i

in the unit sphere of X which converges to zero in measure. Note that the bounded set
[yn,n > 1} cannot be Zs-uniformly integrable. By Theorem 2.3, there exist a subse-
quence of [yn }Jji, (which we will denote again by {yn}%L\ f° r simplicity) and a mutually
disjoint sequence of projections {en}^, in jtf such that the set [yn — enynen, n > 1} is
E-uniformly integrable. Since [yn — enynen}™=i converges to zero in measure, we get
that lmv+oo \\yn - enynen\\E(^_r) = 0.

Assume now that X has a basis {xn}™=r We will show that the sequence {yn)™=:

above can be chosen to be a block basis of {^n}^,. In fact since j (Bx) cannot be
a neighbourhood of zero for the (relative) measure topology on X, for every e > 0,
Bj?(0, e) D X (£ BX (where Bj>(0, e) denotes the ball centered at zero and with
radius e relative to the metric of the measure topology). Denote by nn the projection
X onto spanfc*, it < n). Fix Z[ e S* fl B^(0, 2~') and choose k\ > 1 so that
\\z\—nkl(z\)\\ < 2"1. The restriction of j on (Id-nkl)(X) cannot be an isomorphism.
As above, one can choose z2 e Sx f~l Bj?(0, 2~2) and nkl (z2) = 0. Inductively, one
can construct a sequence {zn}Jjl, in S* and a strictly increasing sequence of integers

I*.),00-.
(i)

(ii)
(iii)

such

zn e
\ \ Z n -

(ld-

that

Bji(O, 2

-KkSZn)
~ Xk )(Zn

-")

II <
,)

for all n
2~n for
= 0for

>

all
all

1;
n
n

>
>

1;
1.

Set yn := nkn{z.n) for all n > 1. Clearly {yn)T=i ' s a block basic sequence, \\ya\\
a >

1 — 2~na for all n > 1 and {yn}T=\ converges to zero in measure. The proof is
complete. •
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The next result can be viewed as a non-commutative analogue of [16, Proposi-
tion I.e. 10, page 39]. Below, {/•„(•) }£Li denotes the sequence of the Rademacher
functions on [0, 1].

PROPOSITION 3.4. Let E be a symmetric Banach function space on [0, r(l)). As-
sume that E is order continuous and satisfies the Fatou property. Let {*n}£ii be a
sequence in E{^K, r) such that

(i) \\xj = lforalln> 1;
(ii) there exists a projection c e / with r(e) < 00 and exn — xnfor all n > 1.

Then either there exists a constant C > 0 such that for every choice ofscalars [an}™=l,

wehavefc \\Y.U '&)«*$ E ^ dt ± C & > WA2)"2 for every n > 1 or{xn)%x

has a subsequence [xnj }?°=l which is a basic sequence equivalent to a disjoint element
ofE.

PROOF. For* € , r), we set as in [25], a(x, e) := Xkuu^ T),oo)(\x\)

)(e) := {x e E(Jt, r), r(a(x, e)) > e).

Assume first that for every e > 0, there exists ne such that \x*t | does not belong
to ME(j?T)(e). We remark that |JC*| is supported by the finite projection e. There
exists a subsequence {xnj}°°=l such that {\x* \}°°=l converges to zero in measure. In
particular, {xnj J

0?., converge to zero in measure. By Theorem 2.3, there exist a further
subsequence (which we will denote again by {xnj}°°={) and a disjoint sequence of
projections {ej}°°=l so that the set {xnj — ejXnjej,j > 1} is E-uniformly integrable so
by [21, Proposition 2.8], limy^oo \\xnj — ejXnj e; || = 0. This shows that a subsequence
of {xnj }°1, can be taken to be equivalent to a disjoint sequence of E.

On the other hand, if {|JC*|, n > 1} c M£ (^ r ) (e) for some e > 0 then

> IIKIIIz.,(^
> e (max(l,

> (max(l,

-1 r (a(\x*n\, e)) > e2(max(l, - l

So for every* > 1, \\xn\U = K l l , = HKIII, > €2(max(l, r (e ) ) ) - ' . Since,
is of cotype 2 ([27]), there exists A i > 0 such that

el Y^niOaiXi
v 1 = 1

dt

E(M,x)

dt

L-i(J(,x)+Jt

> (max(l, - l fl II / " ^
Jo II \.--i /

dt

https://doi.org/10.1017/S1446788700003359 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003359


340 Narcisse Randrianantoanina [10]

> Aj (max( l ,

The proof is complete. •

REMARKS 3.5. We do not know if condition (ii) can be removed. The same conclu-
sion holds if (ii) is replaced by: (ii)' there exists a projection e e M with x{e) < oo
and xne = xn for all n > 1.

PROPOSITION 3.6. Let E be as in Theorem 3.1. Then every basic sequence [xn}™=1

in E (-#, T) either contains a block basic sequence equivalent to a disjointly supported
sequence in E or [rn(-) <g> Xn}^ is equivalent to Ii.

If r (1) < oo, then Proposition 3.6 is a simple corollary of Proposition 3.4 with the
word 'block basic sequence' replaced by 'subsequence'.

For the semi-finite case, choose a mutually orthogonal family {/,}„=/ of projections
in jtf with Ylteifi = * f°r t n e strong operator topology and T ( / , ) < oo for all i e /.
Let {^nĵ lj be a basic sequence in E{M', r). Using a similar argument as in [28], one
can deduce that there exists a countable subset {/*}£!, or" {//}i€/ s u c n m a t f°r e a c n ft
outside of {/*}£, and n > \,ftxn = xjt = 0. Let / = £*=i/*- For every n > 1,
we have fxn= xj" = xn. Replacing J( by / J(f and r by its restriction on / J(f,
we may assume that / = 1. For every n > 1, set en := £^= 1/ t- The sequence
{en}JJl, is such that en fn 1 and x(en) < oo for all n > 1. Let X := span{xn, n > 1}
and for a e Jf, let aX := {cu:, x e X} and Xa := [xa, x e X}.

LEMMA 3.7. //"/or every n > 1, X is not isomorphic to enX, then there exist a
normalized block basic sequence ty*}^ of[xn}'^'=l and a strictly increasing sequence
of integers {nt}^, so that \\yk — (ent — enk_t)yk^ < 2~k,fork > 1. Similarly, if for
every n > 1, X is not isomorphic to X en, then there exist a normalized block basic
sequence {yk}^ °f{xn\™=\ and a strictly increasing sequence of integers {«*}£!, so
that \\yk - yk(ent - entj\\ < 2-k,fork > 1.

PROOF. Inductively, we will construct a sequence {;y*}£li in the unit sphere of X,
strictly increasing sequences of integers {m^)^, and { H * } ^ such that

(i) yk € span{xn, mk-i < n < mk] for all k > 1;
00 IKy*|| < 2 - ( * + 1 ' f o r a l U > l ;

(iii) \\yk - enkyk\\ < 2~{k+l) for a l l * > 1.
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Fix y>i a finitely supported vector in Sx and let mi > 1 so that yt e spanfx,,, n < m\).
Since (1 — en) in 0, there exists n\ such that ||yi - en,yi || < 2"1.

Assume that the construction is done for 1, 2 , . . . , (j — 1). Let X, = span{xn, n >
«!;_]}. Since Xj is not isomorphic to enj^Xj, there exists y} e SXi such that
IIS-i^ll < 2~0 + 1 ) . By perturbation, we can assume that y7 is finitely supported.
If we fix rij > n,_, so that \\yj - en.yj || < 2~0 + 1 ) then \\yj - (enj - en._,)y, || < 2~i
and the lemma follows. D

PROOF OF PROPOSITION 3.6. Assume first that there exists na > 1 such that X
is isomorphic to enoX. Since r(ena) < oo, the sequence {^jcn}^i, satisfies the
assumptions of Proposition 3.4. Since E(^, r) has type 2, either (rn(-) <g> enoxn}^
is equivalent to i2 or there exists a subsequence [enoxnj }°i, which is equivalent to a
sequence of disjoint elements of E and by isomorphism, the proposition follows.

Assume now that for every n > 1, X is not isomorphic to enX. By the above
lemma, there exist a normalized block basic sequence {y*}^, and a strictly increasing
sequence of integers {w*}^ so that for every k > 1,

(3.1) | |yt - {enk - ent_,)yk\\ < 2~*.

Let Y := span{(en, — enk x)yk, k > 1}. As above, if there exists m0 such that Y is
isomorphic to Yemo, then the conclusion follows. Otherwise, there exist a block basic
sequence {z*}^! of {(ent — ent_,)yjt}£L, and a strictly increasing sequence of integers

£1, such that for every k > 1,

(3.2) l l z t - z t ( e m 4 - « „ , . , ) || < 2 - * .

We remark that since the sequence {Zk}f=x is a block basic sequence of [(enk —
e»k^)yk}<k'=2y there exists a sequence {qt}^ of mutually disjoint projections such that
for every k > 1, z* = ^z^. Therefore, the sequence {Zk(emk — ^mi_,)}^l2 ^

s ^oth right
and left disjointly supported and hence is equivalent to a disjointly supported sequence
in E. By (3.2), we conclude that {z*}^ has a subsequence that is equivalent to a
disjointly supported sequence in E (see for instance, [5, Theorem 9, page 46]). Since
{zd'ZLi is a block basic sequence of {(enk - ent_, )>' i}^2, inequality (3.1) shows that the
corresponding block of {yA}£, is equivalent to {zt}£i,. The proof of Proposition 3.6
is complete. •

PROOF OF THEOREM 3.1. Let X be a subspace of E(^f, r ) and assume that X does
not contain any basic sequence equivalent to a disjointly supported sequence in E.
Let Y be a subspace of X with a basis. From the proof of Proposition 3.6 above, there
exists an n0 e N such that Y is isomorphic to either eno Y or Yena. By Proposition 3.4,
Y is of cotype 2 and therefore is isomorphic to a Hilbert space. •
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4. Subspaces of Lorentz spaces and applications

In this section, we will specialize to the concrete case of Lorentz spaces. We begin
by recalling some definitions and basic facts about Lorentz spaces.

For 0 < p < oo, 0 < q < oo, and / = [0, 1] or [0, oo), the Lorentz function
space Lp<q(I) is the space of all (classes of) Lebesgue measurable functions f on I
for which ||/ H^ < oo, where

1/9
, q < oo;

(4.1) 11/11,.,= " ' '
suptl/"n,(f), 9 = oo.

Clearly, LPP(I) = LP(O for any p > 0. It is well known that for 1 < q < p < oo,
(4.1) defines a norm under which Lpq(I) is a separable rearrangement invariant
Banach function space; otherwise, (4.1) defines a quasi-norm on Lpq(I) (which is
known to be equivalent to a norm if 1 < p < q < oo).

The following lemma was observed in [2]. It contains the technical ingredients for
the construction of the non-commutative counterparts.

LEMMA 4.1. Let 0 < p < oo, 0 < q < oo.

(i) If q < p, then Lpq(I) is q-convex with constant 1 and satisfies a lower
p-estimate with constant 1.

(ii) Lpq (I) satisfies an upper r-estimate and lower s-estimate (with some constant
O, where r = min(p, q) and s — max(/7, q).

For 0 < p < q < oo, LP 9(/) can be equivalently renormed to be a quasi-Banach
lattice, that is, y-convex (for y < p) with constant 1 and satisfies a lower ̂ -estimate of
constant 1. Hence for any 0 < p, q < oo, we can define the non-commutative space
LPiq(~df, r) as in Section 2. Since we are only interested in isomorphic properties,
we will use the quasi-norm defined in (4.1). All results from Section 2 and Section 3
apply to Lp,,(->#, r) with appropriate values of p and q.

The main result of this section extends a result of Carothers and Dilworth [3] to the
non-commutative settings.

THEOREM 4.2. LetO < p < oo, 0<q<oo, p ^ q and p ^ 2. Then lp does

not embed into LP i ( ? (~#, r ) . In particular, the Lorentz-Schatten ideal 5P<7 does not

contain tp.

The following application follows easily from Theorem 4.2. It characterizes
strongly embedded subspaces in LP(M', r) and generalizes results of Rosenthal and
Kalton on Lp[0, 1] to the non-commutative settings.

https://doi.org/10.1017/S1446788700003359 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003359


[13] Non-commutative spaces 343

THEOREM 4.3. Let 0 < p < oo, p ^ 2 and X be a subspace of'LP(JH', x). Then
the following are equivalent:

(1) X contains lp.
(2) X is not strongly embedded into Lp (M', x).

PROOF. Let X be a subspace of LP(JZ, x) and assume that X contains ip. Since
for/? < q, || • \\pq < C\\ • \\p, for some constant C (see [1, Proposition 4.2, page 217]).
There exists an inclusion map from Lp(^f, r ) into Lp>q(^, x). If X is strongly
embedded into L p (^# , r ) , then X is isomorphic to a subspace of Lp,q(^, x). In
particular, tp embeds into Lpq(jfo', T ) . This contradicts Theorem 4.2.

The converse is a direct consequence of Theorem 4.7. •

REMARK 4.4. For 1 < p < 2 and ^ being finite, Theorem 4.3 also appeared in
recent work of Haagerup, Rosenthal and Sukochev [11, Theorem 5.4]. Their approach
is completely different from the one taken in this paper.

For the proof of Theorem 4.2, we need some preparation. First, we recall that for
any given 0 < p < oo and 0 < q < oo, the space Lpq(I) is equal (up to an equivalent
quasi-norm) to the spaces (LPl (/), LP2(I))e,q constructed using the real interpolation
method where 0 < pi < p2 < oo,0 < 6 < 1 and \/p = (1 — d)/p\ + 0/p2. From
general theory of lifting of interpolations to non commutative settings, the same result
remains valid for Lpq{^(, x) (see for instance [20]).

LEMMA 4.5. IfO < pup2, q < oo andO < 9 < 1, then

{LPs{Jt, T ) , LP2(^, r ) ) , , , - L p , , ( ^ , r )

(with equivalentquasi-norms), where \/p = (1 — 9)/p\ + 9/p2.

Combining [3, Lemma 2.4] with Proposition 2.4, we can also state:

LEMMA 4.6. Let 0 < p < oo and 0 < q < oo. Let {xn}™=l be a normalized basic
sequence in Lpq(M', x). If {xn}™=1 is both right and left disjointly supported, then
span{;cn, n > 1} contains a copy of lq.

The next result can be viewed as a particular case of a result of Levy on real-
interpolation [15]. It can also be deduced directly from Proposition 3.3 and Lemma 4.6

PROPOSITION 4.7. Let 0 < p < oo, 0 < q < oo, and let X be a subspace of
Lpq(J(, x). Then either X is strongly embedded into LPtq(Jt', x) or X contains a
copy ofiq.
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For the next result, we need to fix some notation. Let jV be a von Neumann algebra
on a given Hilbert space H with semi-finite trace <p. Define

:= {(«!/•)«; V i,j, atj e JY,

Clearly, [^V] is a von Neumann algebra over the Hilbert space 12(H) and the functional
[<p]((ajj)jj) = 5Z~, <p(au) defines a normal semi-finite trace on | y f ] . The von
Neumann algebra [^V] is formally ^¥®B{12) and [<p] = <p <g> fr, where tr is the usual
trace on B{12).

Let {yt}^! be a sequence in .yK. For each k > 1, we define [)>*] = ([yt]y)y by
setting: [yk]\<k — yk and [yk]ij = 0 for (/, j) / (1, A:), that is, for Jfc > 1,

••• 0 y4 0 •
._ 1 0 ••• 0 0 0 •••

This amounts to placing the sequence {yk)T=\ m t n e ^TSl r o w °f a n infinite matrix i.e
for every k > 1, [yk] = yk<8> euk.

LEMMA 4.8. LetO < p < 2 and {yk}^ be a sequence in Lpq(J/', (p). There exists
an absolute constant C such that for every choice ofscalars {£*}£!, and every n > 1,

(4.2) jf
n

Y^rk^t)akyk

k=\

< Cmin

2

dt

n

^ak[yk]
i =1

2

L J t = l

PROOF. We first remark from non-commutative Kintchine's inequalities ([18] for
1 < p < 2 and [20, Remark 6.3] for 0 < p < 1) that

(4.3)

Note that

k=l

1/2
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k=l

1/2

Hence

and by (4.3),

i: k=l

dt<

SUBLEMMA 4.9. For every 0 < p < I, the map (a,̂  )y -> JZt r t ( 0 a u " bounded
as a linear map from Lp{[jY\, [cp]) into L2([0, 1], LP{J¥, <p)).

Let a = (aij)ij be an element of Lp([jr^], [cp]) and consider |a*|2 = (fey)y. Clearly,
&n = YlT=i fli*a*if ^ e t e t o b e t n e projection in [ ^ ] defined by e = 1 (g> e ^ , that is,
e = (ay)y with an = 1 and ay = 0 for (i,j) ^ (1, 1). We have

*\2so\\e\a*\2e\\Lp/2«^lM) = and as above,

1 °o
1/2

u

The sublemma follows.
By interpolation, the map (a^y -*• J^krk{-)axk is also a bounded map from

Lp.qil-Sr'], [<p]) into L2([0, 1], Lpq{^V, <p)). In particular, there exists an absolute
constant C such that

/ '
Jo

n

£
By taking adjoints, the other inequality follows. The proof of Lemma 4.8 is

complete. •
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Our next result is a disjointification of sequences in Lpq(^rff, r) and could be of
independent interest.

PROPOSITION 4.10. Let(^, r ) be a semi-finite von Neumann algebra. There exists
a semi-finite von Neumann algebra S" equipped with a faithful normal semi-finite trace
co with the following properties:

(i) ^ is a von Neumann subalgebra of 5^\
(ii) T is the restriction of to on ^ ;

(iii) for 0 < p < 2 and 0 < q < oo, there exists a constant K such that for any
given basic sequence {xn}™=} in Lpq{M', r) , there exists a left and right disjointly
supported sequence {sn}%Li in Lpq{y, co) such that for any choice of scalars
and n > 1,

f k=\

dt<K
k=\

PROOF. Using the above notation, let Jf = [JK], <p = [r] . Clearly, {jV, <p) is a
semi-finite von Neumann algebra on the Hilbert space H = £2(JF)- Set 5? = [jV]
and co = [<p]. As above, yft can be identified as a von Neumann subalgebra of Sf
with T being the restriction of co on M.

Let {*„}£!! be a basic sequence in Lpq(^, r ) . Consider the sequence {[x,,]}^, in
Jf = [JC].

CLAIM. The sequence {[xn]}™=x is right disjointly supported.

To verify this claim, recall that elements of Jf are infinite matrices with entries
in M. For n > 1, let nn = (a,y)y- with an%n = 1 and atJ = 0 for (i,j) •£ (n,n).
Clearly, [nn }Jji, is a mutually disjoint sequence of projection in Jf and for each n > 1,
[xn]nn = [xn].

For each n > 1, let zn = [xn] e Lpq(^V, <p) and consider the sequence {sn}
=l

in
Lp,q(y, co) denned by sn := [z*n]*.

CLAIM. The sequence [sn}™=l is left and right disjointly supported.

First note that, as above, the sequence {[z*]}^! is right disjointly supported so its
adjoints {s,,}^, is left disjointly supported. To prove that it is right disjointly supported,
consider the following sequence {en}^=l in y~. en = (a^)^, where a("' = nn and
ay

n) = 0 f o r ( ; , ; ) ^ ( l , l ) .
It is clear that the en's are projections in y and since {TT,,}^, is mutually disjoint

in t/f, [en)T=\ ' s mutually disjoint and one can see that for every n > 1, snen = sn.
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To complete the proof, we use Lemma 4.8,

347

ills dt < C
k=l

k=\

k=\

dt

dt.

Applying Lemma 4.8 on the von Neumann algebra c/K,

£ k=\

dt< C2

k=l

k=\

= C2 E
k=\

The proof is complete D

PROOF OF THEOREM 4.2. The proof will be divided into several cases. First, notice
that since p ^ q, Proposition 4.7 shows that every subspace of Lpq(^, r ) equiv-
alent to lp (and therefore not containing any copy of lq) is strongly embedded into
Lp,q(-4Z, T) . Fix r > q, then || • \\p<r < C\\ • ||p,,, where C is a constant depending only
on p, q and r (see for instance [1, Proposition 4.2, page 217]). In particular, there
exists a continuous inclusion from Lp_q(^f, x) into Lp r(^, r) and if X is a strongly
embedded subspace of Lpq{M', r ) then X is isomorphic to a subspace of L p r ( ^ # , r )
so without loss of generality, we can assume that p < q and 1 < q.

Case 0 < p < q < oo and p < 2.

Assume that there exists a sequence {xn}™=l that is A/-equivalent to lp i n L P 9 ( ^ # , r )
and consider the disjoint sequence [yn}T=i m ^p,?(«^". M) a s m Proposition 4.10. For
every finite sequence of scalars {«„}, we have:

Er"Wa"

<M.SK Efl->-

1/2

dt

N.M.VK
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where {^i}£Ii is a disjoint sequence in Lpq[0, oo) and N > 0. Since p < q, the space
LP 9[0, oo) satisfies an upperp-estimate hence there exists constants Q and C2 such
that

£
But this is a contradiction since span[<pk, k > 1} contains a copy of £9.

Case 2 < p < q < oo.

We remark that combining [9] with [16, Proposition 2g.22, page 230], Lpq(J(, r )
is of type 2 and therefore Theorem 3.1 applies to Lpq{J<(, r ) . Assume that there exists
a sequence {jc,,}^! in Lpq(jfl, r ) that is equivalent to lp. Since p ^ 2, Theorem 3.1
implies that {*„}£!! contains a block basic sequence [yn}^Li that is equivalent to a
disjointly supported normalized sequence in LP 9[0, r ( l ) ) so span{>>n, n > 1} does
not contain £p. This is a contradiction since {y,,}^! is equivalent to lp. •

We conclude the paper with an observation on copies of lp in Lp (^#, r ) . It extends
a well known results for copies of t\ in preduals of von Neumann algebras.

COROLLARY 4.11. Let 1 < p < oo, p £2. If{xn}™=1 is a sequence in LP(J(, r )
that is equivalent to lp and {£„}£!] is a sequence in the interval (0, 1) with £„ in 0,
then there exists a block basis {yn}%L\ of{xn}^=l such that

for all finite sequence (an)n of scalars. In particular, for every k > 1, the sequence

{y»)™=k is (1 + ek)-equivalent to lp.

PROOF. Since tp is not strongly embedded into Lp ( ^ , r ) , Proposition 3.3 implies
the existence of a block basic sequence {zn)™=l of {xn}™=l and a sequence {pn}™=i of
mutually disjoint projections in M such that

Jhn \\zn -pnznpn\\ = 0.

Note that liminf,,..,,*, | |pnznpn| | > 0. By taking a subsequence (if necessary), we will
assume that for every n > 1,

\\Zn - PnZnPnl

\\PnZnPn\\
<en2~
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For n > 1, set yn := zn/\\pnznpn\\- If (an)n is a finite sequence of scalars then

where \/p + \/q = 1. This shows that

The other inequality can be obtained with similar estimates. •
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