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A NORM RESIDUE MAP FOR CENTRAL EXTENSIONS
OF AN ALGEBRAIC NUMBER FIELD

YOSHIOMI FURUTA

Let K be a finite Galois extension of an algebraic number field %
with G = Gal(K/k), and M be a Galois extension of % containing K. We
denote by K}, resp. Km the genus field resp. the central class field of
K with respect to M/k. By definition, the field K3, is the composite of
K and the maximal abelian extension over k contained in M. The field
I%M,k is the maximal Galois extension of k contained in M satisfying the
condition that the Galois group over K is contained in the center of that
over k. Then it is well known that Gal (I%M,k/K;f,k) is isomorphic to a
factor group of the Schur multiplicator H-¥G, Z), and is isomorphic to
H-%G, Z) when M is sufficiently large. In this case we call M abundant
for K|k (See Heider [3, §4] and Miyake [6, Theorem 5]).

Let G be abelian with a decomposition G = G, X --- X G, to cyclic
factors such that the order of G, is divisible by that of G, for i <j.
Then the Schur multiplicator H-*G, Z) is isomorphic to the second ex-
terior power of G, and hence isomorphic to ® >,; G,.

Corresponded with the above decomposition of H*G, Z), we show in
Section 3 that the central class field KM,k is the composite of central class
fields over bicyclic subextensions of K/k when K is abelian over k& and
M is abundant for K/k (Proposition 5). Then in Section 4 we define a
mapping ¥, via Artin’s reciprocity map, which is a surjective homo-
morphism from a group of certain ideals of & to @ 3 ,.; G, = 4(G) (Theorem).
The mapping ¥, x,, describes the prime decomposition in IE'M/,C/K;,",,C. On
the other hand, in Section 2 we define a surjective homomorphism ¢,/
from A(G) to Gal (I%M,k/K;,“,k) by means of canonical cocycles of class field
theory. The mapping ¥y« is regarded as the inverse of ¢, /.

When K is bicyclic biquadratic over the rational number field, the
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mapping ¥ is given explicitly in [2] by using solutions of certain quadratic
diophantine equations.

§1. Commutator factors of group extensions

Let G be a finite abelian group, and & be a group extension of an
abelian group A by G:®/A = G. Let {U,} be a system of representatives
of G in ®, and {C, .} be the factor system: U,U,= U,.C,, for o¢,7€QG.
Denote by I; the augmentation ideal of the group ring Z[G]. Denote
further by A(G) the second exteror power of G. Then it is well known
that H-%G, Z) = A(G) (See, for instance, Razar [7, Lemma 5]). The fol-
lowing fact is also probably well known, but we prove it here because
it is fundamental in this paper.

ProposiTioN 1. Let A, G and & be as above, and for g N\ = € A(G) let
ple ANt)=C,.C;} modlA.

Then ¢ induces a surjective homomorphism of A(G) to [®, ®)/I;A, where
[®, &) is the commutator subgroup of &.

Proof. Let a,be A and ¢,7€ G. Then since A and G are abelian,
we have (U,a)"'(U.b)"'(U,a)(U.b) = C, .C;lar(bv"") "' = C, .C:! mod I;A.
Hence if we put ¢,(s, 7) = C, .C;} mod I;A, ¢, defines a mapping of G X G
onto [®&, @]/I;A. ¢, is alternative and bilinear. In fact since C,,,C!, =

C,..C., for any g, 7, p€ G, we have

C Ca, 0 —_ Ca, P

__Ine = = . Cl_‘"
T
Ca,pCf,p C:,r a,p C«r,fCa,p
C
=__“»*  modIA.
Ca,'rCa,p

The first form is symmetric for ¢ and z, and the last form is so for =
and p, because G is abelian. Hence we have

Cap,r — Cr,vp

= d I;A .
Co-, GC, E3 Cr,aCT,p e ¢

This implies that ¢, is alternative bilinear map, and the proposition is
implied.

Remark. It is easy to see that ¢ does not depend on the choice of the
factor system {C, .}.

https://doi.org/10.1017/50027763000020730 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020730

CENTRAL EXTENSIONS 63

§2. Mapping ¢y«

We apply Proposition 1 to an abelian Galois tower M/K/k, which
means that both M/K and K/k are abelian extensions and M/k is a Galois
extension of algebraic number fields. Put & = Gal (M/k), A = Gal (M/K)
and G = Gal(K/k). Then the canonical cocycle &, of class field theory
gives a factor system for &/A = G. For any algebraic number field L,
we denote by oJ, the idele group of L, and by L* the group of principal
ideles of L. Denote further by H(L’/L) the subgroup of <JJ, corresponding
to L’ by class field theory when L’ is a Galois extension of L: H(L'/L) =
L*-Nypdy.

Now we define a mapping ¢, of the second exterior power A(G) of
G to Ji/H(K,/K) by

D Do A ©) = Exula, Dexnle, @)t mod H(K,,/K)

for any ¢, 7€ G. Then it follows from Proposition 1 that ¢, induces
a surjective homomorphism of A(G) to G(I%M,,,/K;i,,c) via Artin’s resiprocity
map for H(KJ;;/I:/K)H/(KMM/K) = G(KM/k/K;;/k)-

When ¢ = ((K/k)/a) and 7 = ((K/k)[b) for a, b edJ,, we set

2 owrnla A D) = I CA 7).

Then ¢y, induces a homomorphism of A(J,) to H(K;‘,‘,k/K)/H(I%M,k/K).

For the sake of simplicity, we shall use the following notation in
general: Suppose that H, H, and H, are subgroups of an abelian group
G, and H contains both H, and H, Then by the congruence ¢ = 8 mod H
for « € G/H, and peG/H,, we mean a = b mod H, where a and b are
representatives of « and B in G respectively.

ProrosiTIiON 2.
(i) Let M,D> M,D> K>k be a Galois tower, and K|k be abelian.
Then for any a, b € J, we have

Osl@ A D) = oursa AB)  mod H(K,,./K).

(ii) Let MDD K, D K, D k be a Galois tower, and suppose that both
K\/k and K,[k are abelian. Then for any a, bedJ, we have

§0J{/K2/Ic(a ND) = NKl/I(QSDM/Kl/k(a A D) mod H(K"/KZ) .

(iii) Let M D K Dk, D k, be a Galois tower, and suppose that K|k,
is abelian. Then for any a, b ed,,, we have
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?M/K/kl(a Ab) = ¢M/K/kg(Nk1/kga A Nkl/mb) mod H (I%M/k,/K ).

Proof. (i) The assertion is implied immediately from (1), (2) and
HR i/ K) € HR o/ K). )

(ii) Fori =1, 2, denote by K, the central class field of K, with respect
to M/k. Put G, = Gal(K,/k), A, = Gal(K,/K)), ®, = Gal(K,/k), and let C,
be a factor set for &,/A; = G,. Let further U,, resp. V,, be representatives
of ¢,€G, resp. 0,€G, in &, resp. @, Put B= Gal(K/K,) and D =
Gal (K,/K,), and let W,, be a representative of ¢,€ G, in G,, Then by
Remark after Proposition 1 we may suppose that V,, = (U,, mod B).
We estimate the norm residue symbol as follows:

@ureiWoy A W), BofK) = VIVIV, V.,
= 2(0'2, Tz)Cz(T‘u 0'2)—l = (SDM/Kg/k(Uz A 72), Kz/Kz) .
Hence SDM/Kg/k(ag Nt) = le/KzSDM/Kl/k(Wa, VAN Wrg) mod H (KZ/KZ) This implies
(ii) by setting g, = (K /k)[a) and 7, = ((K,/k)/).
@) For i=1,2, put K, = K., G,= Gal(K/k), A, = Gal (I%i/K),
&, = Gal (I%i/ki) and B = Gal (I%,/Ky). Let U,, resp. V,, be representatives
of ¢, € G, resp. g,€ G, in &, resp. &, Then we have
(Purxio: A ), KiJK) = U;NUU,U,
= VIVIV, V., = (@uxmlo A 1), Kz/K)  mod B.

This implies the assertion, since

7= (5 = () ==t == (50) = (30%)

§3. Decomposition of 4(G) and central extensions
Let M/K/k be a Galois tower, and put G = Gal(X/k) and ®& = Gal(M/k).
Then we have

(3) Gal(K,yx/K#,) = H¥G, Z)[Defy_cH (S, Z).

For this isomorphism, see for instance Kuz’'min [4, § 4] or Razar [7, Proof
of Lemma 3, (b)]. We call M to be abundant for K/k when Gal(I%M,k/Kj;,k)
= H-%G, Z). Then it is known that for any Galois extension K/k there
always exists an abelian extension M/K which is abundant for K/k.

ProrosiTioN 3. Let M/L/K[k be a Galois tower. If M is abundant
for Lk, then M is also abundant for K|k.

https://doi.org/10.1017/50027763000020730 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020730

CENTRAL EXTENSIONS 65

Proof. Put G = Gal(L/k), G, = Gal(K/k) and & = Gal(MJk). If M
is abundant for L[k, then Defy..H %@, Z) =1 by (3). Since Defy.4, =
Def,_;, o Defy_q, the proposition is proved.

The following Proposition is easily obtained.

PrOPOSITION 4. Let L, be a ceniral extension of a Galois extension
Kk for i =1,2. Then

(i) L, N L, is a central extension of K, N K,/k,

(i1) L,L, is a central extension of K ,K,[k.

We call extensions K, ---, K, over k disjoint when K, N K}, --- K|,
=k for any i and any j, (s =1, ---, ?) such that K, = Kj..

Now let M/K/k be as before a Galois tower, and assume that K/k is
abelian. Put G = Gal (K/k), and let

(4) G:GIX"'XGT

be a decomposition to the direct product by cyclic factors G, of G such
that the order of G, is divisible by the order of G; when i <j. Denote
by G, N\ G, the subgroup of A(G) generated by all elements ¢ A ¢ such
that ¢ € G, and 7€ G;,. Then

®) G, NG, =G, for i <j,
and
(6) A(G)E@i;j(Gi/\Gj);@%Gj,

where the sum is taken over all pairs (i, j) satisfying i <jfori,j=1,.--,r.
This corresponds to Lyndon [5, Theorem 6].

Let K, be the subfield of K corresponding to G/G; over k&, and put
K,, = K,K,. Hence Gal (K,/k) = G, and Gal (K,;/k) = G, X G,.

ProprosiTiOoN 5. Notation being as above, assume that M is abundant
for K|k. Let 1%1, be the central class field of K,, with respect to M]k.
Then we have

KM/E = ] I%,.j (disjoint over K},,),
<j
Gal (K,;/K#§,) = G, N\ G, = G, = Gal(K,Jk) fori<j.

Proof. Put A = Gal(M/K), & = Gal(M[k) and &, = Gal (M/]]... K,)
fori=1,.-.,r. Since M is abundant for K/k, the mapping ¢ defined in
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Proposition 1 gives an isomorphism A(G) = [&, &)/I,A. For i < j, put
4G =® > G,NG,.
(s,tgigi,j)

Then by taking account of ®&,-I;A/I;-A to be abelian, we have

oA = I [8,6]LA/LA
(8:0)# (2, 7)
= [©, Lli 8)IA = [6,8,]/I:A,
5%
where ®,; = Gal (M/K,;). Hence the intermediate field of K,,,,‘/K;’;,,c cor-
responding to ¢(4,,(G)) is K,,, and [I%“: K#,.] =G, A\ G,|. Since the inter-
section of all 4,,(G) is {1} and ¢ is an isomorphism, the intersection of all
o(4,(Q) is also {1}. Hence Ky, = [[i; K, Disjointness follows from
[KM/’i: K3l = s Kw: Kl = Ty [K”: Kl = [les|Ge N\ Gy| = [A(G)
= [Kyp: Kif il

§4. Norm residue map ¥, .,

Throughout this section, we assume that K/k is abelian, M/K/k is a
Galois tower and M is abundant for K/k. Put G = Gal(K/k), K = K.
and K* = K%,. Then

) Gal (K/K*) = H-G, Cy) = H¥G, Z) = AG),

where Cj is the idele class group of K. In Section 2 we defined the
mapping @« of A(G) to Je/H(K/K). In the present section we shall
study the inverse mapping of ¢y, /.

Let notation be as in Section 3. It follows from Proposition 5 and
(7) that

(8) Gal(K/K*) = @ 3 Gal (R.,/K*)
i<j
= @;_/_:" Gal (K,/k) = A(G).
J
We denote by I(K*/k) the group of norms of ideals of K* to 2 which are
relatively prime to the discriminants of MJk. Let ac I(K*/k), and % be

an ideal of K* such that a = Ny.,%. We define a mapping « of I(K*[k)
to @ 3., Gal (K;;/K*) by

© WD) =@ (ﬁfé’["-’—*) .

i<J
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Since Gal (K/K *) is contained in the center of Gal (Ii'/k), the value of
Y{(a) does not depend on the choice of %. It follows from (8) and (9) that
4 is a surjective homomorphism.

In order to get the image of ((I%“/K*)/QI) by the isomorphism

Gal(K,,/K*) = Gal (K,/F),

we use the following proposition which is a special case of [1, Proposi-
tion 5.1].

ProrosiTioN 6. Let F[k be a cyclic extension with g = Gal (F/k) gen-
erated by ¢, M D LD F Dk be a Galois tower, and Lk and M/F be abe-
lian. Then

(10) Gal (Ly/e/Li ) = DICOULIF)K = Gal (F'/F),
where D is the ideal class group of F corresponding to M, S(L/F) is the
congruent ideal group of F corresponding to L, C(OQ(L/F)) is the subgroup
of ® represented by (L|F), & is the group of elemenis ¢ of ® such that
¢ = ¢, and F’ is the subfield of L over F corresponding to C(H(L/F))K.
The above isomorphism Gal (IA/,,,,,‘/LE,,‘) = Gal (F'|F) is given by
(L‘M,,c/Lfm ) N ( FIF )

oA* 8 /’
where A* is any ideal of L}, prime to the conductor of M|F and B is an
ideal of F such that 8°"' = Ny ,»U* mod Q(M/F).

We apply the above proposition taking Ki,, K,; and K, instead of M, L
and F respectively. Then L}, in the proposition becomes K% and F’ becomes
K,,, because Gal(F'[F) = G, = Gal(K,;/K,) and Gal (K'“/K;';) = G, owing
to abundantness of M for K/k. For ac I(K*/k), let ¥, and B, be ideals of
K, such that N %, = a and 87 ' = U, mod H(M/K,), where o, is a gen-
erator of the cyclic group Gal(K,/k) and §(M/K,) is the ideal group of
K, corresponding to M. Let further b, = N, B,. We define a mapping
¥,, of I(K*|k) to G, for i <j by

(11) v = (£,
b,
Now Proposition 6 implies immediately the following

TueorReM. Let K|k be an abelian extension with G = Gal(K/k), and
M be a Galois extension over k such that M contains K and abundant for
Kjk. Let G=G, X --- X G, K,, K;; and Ii'i, be as in Section 3 (4) and
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after that. Let the notation K, K*, I(K*|k) and A(G) be as above. We
define a mapping ¥y xn of I(K*[k) to @ 3., G, = A(G) by

yienla) = @ ;J U,(a)  for aeI(K*[k),
where ¥, is the mapping defined by (11). Then ¥, is a surjective

homomorphism of I(K*[k) to @ >,,., G; which is isomorphic to A(G) and
so to Gal(K/K*).

The mapping ¥, is regarded as the inverse of the mapping ¢y,
defined in Section 2. In fact we have the following proposition.

ProrositioN 7. For aecdy denote by [a] an ideal of K such that
(a, I%/K) = ((k/K)/[a]). Then other notation being as above, we have

w'ij(NK/k[SDM/K/k(ai A 0',)]) = 0.

Proof. To simplify the notation, we put K= Km and ¢ = @y
Put further G = Gal(K/k) and A = Gal (K/K). Let U,, resp. U,, be re-
presentatives of ¢; resp. g, in Gal (K/k). Then by (1) in Section 2, we

have
<‘[;0(01i-{£{{ 01)]> - ( [EK/kIgtI:{dj)] >( [&K/ififo‘i)] )_1

= U;3U; U, .U, = U mod LA.

Let 8 be an ideal of K such that U,, = [(K/k)/8], the product of the
Frobenius automorphisms for the prime factors of 8. Then

(o) = L8] = [65] = (&),

where 8 = NK/K% Let B, = Ng/xB. Then
Ny e lolo; N 0;)] = B3 mod H(M/K)),

where (M|/K,) is, as in Proposition 6, the congruent ideal group of K,
corresponding to M. Now let a = Ng[o(a, A ¢;)] and b = N8, = Nz, 8.
Then we have ¥, (a) = ((K,/k)/b) = o; by (11). Thus the proposition is
proved.
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