Y. Furuta Nagoya Math. J. Vol. 93 (1984), 61-69

A NORM RESIDUE MAP FOR CENTRAL EXTENSIONS OF AN ALGEBRAIC NUMBER FIELD

YOSHIOMI FURUTA

Let K be a finite Galois extension of an algebraic number field k with $G = \operatorname{Gal}(K/k)$, and M be a Galois extension of k containing K. We denote by $K_{M/k}^*$ resp. $\hat{K}_{M/k}$ the genus field resp. the central class field of K with respect to M/k. By definition, the field $K_{M/k}^*$ is the composite of K and the maximal abelian extension over k contained in M. The field $\hat{K}_{M/k}$ is the maximal Galois extension of k contained in k satisfying the condition that the Galois group over k is contained in the center of that over k. Then it is well known that $\operatorname{Gal}(\hat{K}_{M/k}/K_{M/k}^*)$ is isomorphic to a factor group of the Schur multiplicator $H^{-3}(G, \mathbb{Z})$, and is isomorphic to $H^{-3}(G, \mathbb{Z})$ when M is sufficiently large. In this case we call M abundant for K/k (See Heider [3, §4] and Miyake [6, Theorem 5]).

Let G be abelian with a decomposition $G = G_1 \times \cdots \times G_r$ to cyclic factors such that the order of G_i is divisible by that of G_j for i < j. Then the Schur multiplicator $H^{-3}(G, \mathbb{Z})$ is isomorphic to the second exterior power of G, and hence isomorphic to $\bigoplus \sum_{i < j} G_j$.

Corresponded with the above decomposition of $H^{-3}(G, \mathbb{Z})$, we show in Section 3 that the central class field $\hat{K}_{M/k}$ is the composite of central class fields over bicyclic subextensions of K/k when K is abelian over k and M is abundant for K/k (Proposition 5). Then in Section 4 we define a mapping $\Psi_{M/K/k}$ via Artin's reciprocity map, which is a surjective homomorphism from a group of certain ideals of k to $\bigoplus \sum_{i < j} G_j \cong \Lambda(G)$ (Theorem). The mapping $\Psi_{M/K/k}$ describes the prime decomposition in $\hat{K}_{M/k}/K_{M/k}^*$. On the other hand, in Section 2 we define a surjective homomorphism $\varphi_{M/K/k}$ from $\Lambda(G)$ to $\operatorname{Gal}(\hat{K}_{M/k}/K_{M/k}^*)$ by means of canonical cocycles of class field theory. The mapping $\Psi_{M/K/k}$ is regarded as the inverse of $\varphi_{M/K/k}$.

When K is bicyclic biquadratic over the rational number field, the

Received September 14, 1982. Revised February 21, 1983.

mapping Ψ is given explicitly in [2] by using solutions of certain quadratic diophantine equations.

§ 1. Commutator factors of group extensions

Let G be a finite abelian group, and \mathfrak{G} be a group extension of an abelian group A by $G: \mathfrak{G}/A \cong G$. Let $\{U_{\sigma}\}$ be a system of representatives of G in \mathfrak{G} , and $\{C_{\sigma,\tau}\}$ be the factor system: $U_{\sigma}U_{\tau} = U_{\sigma\tau}C_{\sigma,\tau}$ for $\sigma, \tau \in G$. Denote by I_{G} the augmentation ideal of the group ring Z[G]. Denote further by $\Lambda(G)$ the second exteror power of G. Then it is well known that $H^{-3}(G,Z) \cong \Lambda(G)$ (See, for instance, Razar [7, Lemma 5]). The following fact is also probably well known, but we prove it here because it is fundamental in this paper.

Proposition 1. Let A, G and S be as above, and for $\sigma \wedge \tau \in \Lambda(G)$ let

$$\varphi(\sigma \wedge \tau) \equiv C_{\sigma,\tau} C_{\tau,\sigma}^{-1} \mod I_G A$$
.

Then φ induces a surjective homomorphism of $\Lambda(G)$ to $[\mathfrak{G}, \mathfrak{G}]/I_GA$, where $[\mathfrak{G}, \mathfrak{G}]$ is the commutator subgroup of \mathfrak{G} .

Proof. Let $a, b \in A$ and $\sigma, \tau \in G$. Then since A and G are abelian, we have $(U_{\sigma}a)^{-1}(U_{\tau}b)^{-1}(U_{\sigma}a)(U_{\tau}b) \equiv C_{\sigma,\tau}C_{\tau,\sigma}^{-1}a^{\tau-1}(b^{\sigma-1})^{-1} \equiv C_{\sigma,\tau}C_{\tau,\sigma}^{-1} \mod I_GA$. Hence if we put $\varphi_1(\sigma, \tau) = C_{\sigma,\tau}C_{\tau,\sigma}^{-1} \mod I_GA$, φ_1 defines a mapping of $G \times G$ onto $[\mathfrak{G}, \mathfrak{G}]/I_GA$. φ_1 is alternative and bilinear. In fact since $C_{\sigma\tau,\rho}C_{\sigma,\tau}^{\rho} = C_{\sigma,\tau\rho}C_{\tau,\rho}$ for any $\sigma, \tau, \rho \in G$, we have

$$egin{aligned} rac{C_{\sigma au,
ho}}{C_{\sigma,
ho}C_{ au,
ho}} &= rac{C_{\sigma, au
ho}}{C_{\sigma, au}^{
ho}} = rac{C_{\sigma, au
ho}}{C_{\sigma, au}C_{\sigma,
ho}} \cdot C_{\sigma, au}^{1-
ho} \ &\equiv rac{C_{\sigma, au
ho}}{C_{\sigma, au}C_{\sigma,
ho}} & mod I_G A \ . \end{aligned}$$

The first form is symmetric for σ and τ , and the last form is so for τ and ρ , because G is abelian. Hence we have

$$rac{C_{\sigma
ho, au}}{C_{\sigma, au}C_{
ho, au}} \equiv rac{C_{ au,\sigma
ho}}{C_{ au,\sigma}C_{ au,\sigma}} \ \mod I_{\scriptscriptstyle G}A \ .$$

This implies that φ_1 is alternative bilinear map, and the proposition is implied.

Remark. It is easy to see that φ does not depend on the choice of the factor system $\{C_{\sigma,\tau}\}$.

§ 2. Mapping $\varphi_{M/K/k}$

We apply Proposition 1 to an abelian Galois tower M/K/k, which means that both M/K and K/k are abelian extensions and M/k is a Galois extension of algebraic number fields. Put $\mathfrak{G} = \operatorname{Gal}(M/k)$, $A = \operatorname{Gal}(M/K)$ and $G = \operatorname{Gal}(K/k)$. Then the canonical cocycle $\xi_{K/k}$ of class field theory gives a factor system for $\mathfrak{G}/A \cong G$. For any algebraic number field L, we denote by J_L the idele group of L, and by L^\times the group of principal ideles of L. Denote further by H(L'/L) the subgroup of J_L corresponding to L' by class field theory when L' is a Galois extension of $L: H(L'/L) = L^\times \cdot N_{L/L} J_L$.

Now we define a mapping $\varphi_{M/K/k}$ of the second exterior power $\Lambda(G)$ of G to $J_k/H(\hat{K}_{M/k}/K)$ by

$$(1) \varphi_{M/K/k}(\sigma \wedge \tau) \equiv \xi_{K/k}(\sigma, \tau) \xi_{K/k}(\tau, \sigma)^{-1} \operatorname{mod} H(\hat{K}_{M/k}/K)$$

for any $\sigma, \tau \in G$. Then it follows from Proposition 1 that $\varphi_{M/K/k}$ induces a surjective homomorphism of $\Lambda(G)$ to $G(\hat{K}_{M/k}/K_{M/k}^*)$ via Artin's resiprocity map for $H(K_{M/k}^*/K)H/(\hat{K}_{M/k}/K) \cong G(\hat{K}_{M/k}/K_{M/k}^*)$.

When $\sigma = ((K/k)/\mathfrak{a})$ and $\tau = ((K/k)/\mathfrak{b})$ for $\mathfrak{a}, \mathfrak{b} \in J_k$, we set

(2)
$$\varphi_{M/K/k}(\mathfrak{a} \wedge \mathfrak{b}) = \varphi_{M/K/k}(\sigma \wedge \tau).$$

Then $\varphi_{M/K/k}$ induces a homomorphism of $\Lambda(J_k)$ to $H(K_{M/k}^*/K)/H(\hat{K}_{M/k}/K)$.

For the sake of simplicity, we shall use the following notation in general: Suppose that H, H_1 and H_2 are subgroups of an abelian group G, and H contains both H_1 and H_2 . Then by the congruence $\alpha \equiv \beta \mod H$ for $\alpha \in G/H_1$ and $\beta \in G/H_2$, we mean $\alpha \equiv b \mod H$, where α and β are representatives of α and β in G respectively.

Proposition 2.

(i) Let $M_1 \supset M_2 \supset K \supset k$ be a Galois tower, and K/k be abelian. Then for any α , $\mathfrak{b} \in J_k$ we have

(ii) Let $M\supset K_1\supset K_2\supset k$ be a Galois tower, and suppose that both K_1/k and K_2/k are abelian. Then for any $\mathfrak{a},\ \mathfrak{b}\in J_k$ we have

(iii) Let $M \supset K \supset k_1 \supset k_2$ be a Galois tower, and suppose that K/k_2 is abelian. Then for any α , $\beta \in J_{k_1}$, we have

$$\varphi_{M/K/k_1}(\mathfrak{a} \wedge \mathfrak{b}) \equiv \varphi_{M/K/k_2}(N_{k_1/k_2}\mathfrak{a} \wedge N_{k_1/k_2}\mathfrak{b}) \mod H(\hat{K}_{M/k_2}/K)$$
.

Proof. (i) The assertion is implied immediately from (1), (2) and $H(\hat{K}_{M_3/k}/K) \subset H(\hat{K}_{M_3/k}/K)$.

(ii) For i=1,2, denote by \hat{K}_i the central class field of K_i with respect to M/k. Put $G_i=\operatorname{Gal}(K_i/k)$, $A_i=\operatorname{Gal}(\hat{K}_i/K_i)$, $\mathfrak{G}_i=\operatorname{Gal}(\hat{K}_i/k)$, and let C_i be a factor set for $\mathfrak{G}_i/A_i\cong G_i$. Let further U_{σ_1} resp. V_{σ_2} be representatives of $\sigma_1\in G_1$ resp. $\sigma_2\in G_2$ in \mathfrak{G}_1 resp. \mathfrak{G}_2 . Put $B=\operatorname{Gal}(\hat{K}_1/\hat{K}_2)$ and $D=\operatorname{Gal}(K_1/K_2)$, and let W_{σ_2} be a representative of $\sigma_2\in G_2$ in G_1 . Then by Remark after Proposition 1 we may suppose that $V_{\sigma_2}=(U_{W_{\sigma_2}} \mod B)$. We estimate the norm residue symbol as follows:

$$egin{aligned} (arphi_{M/K_1/k}(W_{\sigma_2} \wedge W_{ au_2}),\, \hat{K}_2/K_1) &= V_{\sigma_2}^{-1}V_{ au_2}^{-1}V_{\sigma_2}V_{ au_2} \ &= C_2(\sigma_2,\, au_2)C_2(au_2,\, \sigma_2)^{-1} = (arphi_{M/K_2/k}(\sigma_2 \wedge au_2),\, \hat{K}_2/K_2)\,. \end{aligned}$$

Hence $\varphi_{M/K_2/k}(\sigma_2 \wedge \tau_2) \equiv N_{K_1/K_2}\varphi_{M/K_1/k}(W_{\sigma_2} \wedge W_{\tau_2}) \mod H(\hat{K}_2/K_2)$. This implies (ii) by setting $\sigma_2 = ((K_2/k)/a)$ and $\tau_2 = ((K_2/k)/b)$.

(iii) For i=1, 2, put $\hat{K}_i = \hat{K}_{M/k_i}$, $G_i = \operatorname{Gal}(K/k_i)$, $A_i = \operatorname{Gal}(\hat{K}_i/K)$, $\mathfrak{G}_i = \operatorname{Gal}(\hat{K}_i/k_i)$ and $B = \operatorname{Gal}(\hat{K}_1/\hat{K}_2)$. Let U_{σ_1} resp. V_{σ_2} be representatives of $\sigma_1 \in G_1$ resp. $\sigma_2 \in G_2$ in \mathfrak{G}_1 resp. \mathfrak{G}_2 . Then we have

$$egin{aligned} (arphi_{M/K/k_1}\!(\sigma_1 \wedge au_1),\, \hat{K}_1\!/K) &= U_{\sigma_1}^{-1} U_{ au_1}^{-1} U_{\sigma_1} U_{ au_1} \ &\equiv V_{\sigma_1}^{-1} V_{\tau_1}^{-1} V_{\sigma_1} V_{ au_1} \equiv (arphi_{M/K/k_2}\!(\sigma_1 \wedge au_1),\, \hat{K}_2\!/K) \ &\mod B\,. \end{aligned}$$

This implies the assertion, since

$$\sigma_1 = \left(rac{K/k_1}{lpha}
ight) = \left(rac{K/k_2}{N_{k_1/k_2}lpha}
ight) \ \ ext{ and } \ \ au_1 = \left(rac{K/k_1}{rac{b}{1}}
ight) = \left(rac{K/k_2}{N_{k_1/k_2}ar{b}}
ight)$$

§ 3. Decomposition of $\Lambda(G)$ and central extensions

Let M/K/k be a Galois tower, and put G = Gal(K/k) and $\mathfrak{G} = Gal(M/k)$. Then we have

(3)
$$\operatorname{Gal}(\hat{K}_{M/k}/K_{M/k}^*) \cong H^{-3}(G, \mathbb{Z})/\operatorname{Def}_{\mathfrak{G} \to G}H^{-3}(\mathfrak{G}, \mathbb{Z}).$$

For this isomorphism, see for instance Kuz'min [4, § 4] or Razar [7, Proof of Lemma 3, (b)]. We call M to be abundant for K/k when $Gal(\hat{K}_{M/k}/K_{M/k}^*)$ $\cong H^{-3}(G, \mathbb{Z})$. Then it is known that for any Galois extension K/k there always exists an abelian extension M/K which is abundant for K/k.

Proposition 3. Let M/L/K/k be a Galois tower. If M is abundant for L/k, then M is also abundant for K/k.

Proof. Put $G = \operatorname{Gal}(L/k)$, $G_1 = \operatorname{Gal}(K/k)$ and $\mathfrak{G} = \operatorname{Gal}(M/k)$. If M is abundant for L/k, then $\operatorname{Def}_{\mathfrak{G} \to G} H^{-3}(\mathfrak{G}, \mathbb{Z}) = 1$ by (3). Since $\operatorname{Def}_{\mathfrak{G} \to G_1} = \operatorname{Def}_{G \to G_1} \circ \operatorname{Def}_{\mathfrak{G} \to G}$, the proposition is proved.

The following Proposition is easily obtained.

Proposition 4. Let L_i be a central extension of a Galois extension K_i/k for i = 1, 2. Then

- (i) $L_1 \cap L_2$ is a central extension of $K_1 \cap K_2/k$,
- (ii) L_1L_2 is a central extension of K_1K_2/k .

We call extensions K_1, \dots, K_r over k disjoint when $K_i \cap K_{j_1} \dots K_{j_t} = k$ for any i and any j_s $(s = 1, \dots, t)$ such that $K_i \neq K_{j_s}$.

Now let M/K/k be as before a Galois tower, and assume that K/k is abelian. Put G = Gal(K/k), and let

$$G = G_1 \times \cdots \times G_r$$

be a decomposition to the direct product by cyclic factors G_i of G such that the order of G_i is divisible by the order of G_j when i < j. Denote by $G_i \wedge G_j$ the subgroup of $\Lambda(G)$ generated by all elements $\sigma \wedge \tau$ such that $\sigma \in G_i$ and $\tau \in G_j$. Then

(5)
$$G_i \wedge G_j \cong G_j \quad \text{for } i < j$$

and

(6)
$$\Lambda(G) \cong \bigoplus \sum_{i < j} (G_i \wedge G_j) \cong \bigoplus \sum_{i < j} G_j,$$

where the sum is taken over all pairs (i, j) satisfying i < j for $i, j = 1, \dots, r$. This corresponds to Lyndon [5, Theorem 6].

Let K_i be the subfield of K corresponding to G/G_i over k, and put $K_{ij} = K_i K_j$. Hence $\operatorname{Gal}(K_i/k) \cong G_i$ and $\operatorname{Gal}(K_{ij}/k) \cong G_i \times G_j$.

Proposition 5. Notation being as above, assume that M is abundant for K/k. Let \hat{K}_{ij} be the central class field of K_{ij} with respect to M/k. Then we have

$$\hat{K}_{\scriptscriptstyle M/k} = \prod\limits_{i < j} \hat{K}_{ij} \quad (disjoint \,\, over \,\, K_{\scriptscriptstyle M/k}^*),$$
 $\operatorname{Gal}(\hat{K}_{ij}/K_{\scriptscriptstyle M/k}^*) \cong G_i \wedge G_j \cong G_j \cong \operatorname{Gal}(K_j/k) \quad \,\, ext{for} \,\, i < j \,.$

Proof. Put $A = \operatorname{Gal}(M/K)$, $\mathfrak{G} = \operatorname{Gal}(M/k)$ and $\mathfrak{G}_i = \operatorname{Gal}(M/\prod_{i \neq i} K_i)$ for $i = 1, \dots, r$. Since M is abundant for K/k, the mapping φ defined in

Proposition 1 gives an isomorphism $\Lambda(G) \cong [\mathfrak{G}, \mathfrak{G}]/I_G A$. For i < j, put

$$arLambda_{ij}\!(G) = \oplus \sum_{\substack{s < t \ (s,t)
eq (i,j)}} G_s \wedge G_t$$
 .

Then by taking account of $\mathfrak{G}_s \cdot I_c A/I_c \cdot A$ to be abelian, we have

$$\begin{split} \varphi(\varLambda_{ij}(G)) &= \prod_{\substack{s < t \\ (s,t) \neq (i,j)}} [\mathfrak{G}_s,\mathfrak{G}_t] \cdot I_G A / I_G A \\ &= [\mathfrak{G}, \prod_{\substack{s \neq t \\ s \neq j}} \mathfrak{G}_s] / I_G A = [\mathfrak{G},\mathfrak{G}_{ij}] / I_G A \;, \end{split}$$

where $\mathfrak{G}_{ij} = \operatorname{Gal}(M/K_{ij})$. Hence the intermediate field of $\hat{K}_{M/k}/K_{M/k}^*$ corresponding to $\varphi(\Lambda_{ij}(G))$ is \hat{K}_{ij} , and $[\hat{K}_{ij}\colon K_{M/k}^*] = |G_i \wedge G_j|$. Since the intersection of all $\Lambda_{ij}(G)$ is $\{1\}$ and φ is an isomorphism, the intersection of all $\varphi(\Lambda_{ij}(G))$ is also $\{1\}$. Hence $\hat{K}_{M/k} = \prod_{i < j} \hat{K}_{ij}$. Disjointness follows from $[\hat{K}_{M/k}\colon K_{M/k}^*] = [\prod_{i < j} \hat{K}_{ij}\colon K_{M/k}^*] = \prod_{i < j} |G_i \wedge G_j| = |\Lambda(G)| = [\hat{K}_{M/k}\colon K_{M/k}^*]$.

§ 4. Norm residue map $\Psi_{M/K/k}$

Throughout this section, we assume that K/k is abelian, M/K/k is a Galois tower and M is abundant for K/k. Put $G = \operatorname{Gal}(K/k)$, $\hat{K} = \hat{K}_{M/k}$ and $K^* = K_{M/k}^*$. Then

(7)
$$\operatorname{Gal}(\hat{K}/K^*) \cong H^{-1}(G, C_K) \cong H^{-3}(G, \mathbf{Z}) \cong \Lambda(G),$$

where C_K is the idele class group of K. In Section 2 we defined the mapping $\varphi_{M/K/k}$ of $\Lambda(G)$ to $J_K/H(\hat{K}/K)$. In the present section we shall study the inverse mapping of $\varphi_{M/K/k}$.

Let notation be as in Section 3. It follows from Proposition 5 and (7) that

(8)
$$\operatorname{Gal}(\hat{K}/K^*) \cong \bigoplus \sum_{i < j} \operatorname{Gal}(\hat{K}_{ij}/K^*)$$
$$\cong \bigoplus \sum_{i < j} \operatorname{Gal}(K_j/k) \cong \Lambda(G).$$

We denote by $I(K^*/k)$ the group of norms of ideals of K^* to k which are relatively prime to the discriminants of M/k. Let $\alpha \in I(K^*/k)$, and $\mathfrak A$ be an ideal of K^* such that $\alpha = N_{K^*/k}\mathfrak A$. We define a mapping ψ of $I(K^*/k)$ to $\bigoplus \sum_{i < j} \operatorname{Gal}(\hat{K}_{ij}/K^*)$ by

(9)
$$\psi(\alpha) = \bigoplus \sum_{i < j} \left(\frac{\hat{K}_{ij}/K^*}{\mathfrak{A}} \right).$$

Since $\operatorname{Gal}(\hat{K}/K^*)$ is contained in the center of $\operatorname{Gal}(\hat{K}/k)$, the value of $\psi(\mathfrak{a})$ does not depend on the choice of \mathfrak{A} . It follows from (8) and (9) that ψ is a surjective homomorphism.

In order to get the image of $((\hat{K}_{ij}/K^*)/\mathfrak{A})$ by the isomorphism

$$\operatorname{Gal}(\hat{K}_{ij}/K^*) \cong \operatorname{Gal}(K_j/k)$$
,

we use the following proposition which is a special case of [1, Proposition 5.1].

Proposition 6. Let F/k be a cyclic extension with $\mathfrak{g}=\operatorname{Gal}(F/k)$ generated by σ , $M\supset L\supset F\supset k$ be a Galois tower, and L/k and M/F be abelian. Then

(10)
$$\operatorname{Gal}(\hat{L}_{M/k}/L_{M/k}^*) \cong \mathfrak{D}/C(\mathfrak{H}(L/F))\mathfrak{R} \cong \operatorname{Gal}(F'/F),$$

where \mathfrak{D} is the ideal class group of F corresponding to M, $\mathfrak{F}(L/F)$ is the congruent ideal group of F corresponding to F, $C(\mathfrak{F}(L/F))$ is the subgroup of F represented by F is the group of elements F of F such that F is the subfield of F over F corresponding to $C(\mathfrak{F}(L/F))$.

The above isomorphism $\operatorname{Gal}(\hat{L}_{M/k}/L_{M/k}^*) \cong \operatorname{Gal}(F'/F)$ is given by

$$\left(\frac{\hat{L}_{M/k}/L_{M/k}^*}{\mathfrak{A}^*}\right) \longrightarrow \left(\frac{F'/F}{\mathfrak{B}}\right),$$

where \mathfrak{A}^* is any ideal of $L^*_{M/k}$ prime to the conductor of M/F and \mathfrak{B} is an ideal of F such that $\mathfrak{B}^{\sigma-1} \equiv N_{L^*_{M/k}/F}\mathfrak{A}^* \mod \mathfrak{F}(M/F)$.

We apply the above proposition taking \hat{K}_{ij} , K_{ij} and K_i instead of M, L and F respectively. Then $L_{M/k}^*$ in the proposition becomes K_{ij}^* and F' becomes K_{ij} , because $\operatorname{Gal}(F'/F) \cong G_j \cong \operatorname{Gal}(K_{ij}/K_i)$ and $\operatorname{Gal}(\hat{K}_{ij}/K_{ij}^*) = G_j$ owing to abundantness of M for K/k. For $\alpha \in I(K^*/k)$, let \mathfrak{A}_i and \mathfrak{B}_i be ideals of K_i such that $N_{K_i/k}\mathfrak{A}_i = \alpha$ and $\mathfrak{B}_i^{\sigma_i-1} \equiv \mathfrak{A}_i \mod \mathfrak{S}(M/K_i)$, where σ_i is a generator of the cyclic group $\operatorname{Gal}(K_i/k)$ and $\mathfrak{S}(M/K_i)$ is the ideal group of K_i corresponding to M. Let further $\mathfrak{b}_i = N_{K_i/k}\mathfrak{B}_i$. We define a mapping Ψ_{ij} of $I(K^*/k)$ to G_j for i < j by

(11)
$$\Psi_{ij}(\mathfrak{a}) = \left(\frac{K_j/k}{\mathfrak{b}_i}\right).$$

Now Proposition 6 implies immediately the following

THEOREM. Let K/k be an abelian extension with $G = \operatorname{Gal}(K/k)$, and M be a Galois extension over k such that M contains K and abundant for K/k. Let $G = G_1 \times \cdots \times G_r$, K_i , K_{ij} and \hat{K}_{ij} be as in Section 3 (4) and

after that. Let the notation \hat{K} , K^* , $I(K^*/k)$ and $\Lambda(G)$ be as above. We define a mapping $\Psi_{M/K/k}$ of $I(K^*/k)$ to $\bigoplus \sum_{i < j} G_j \cong \Lambda(G)$ by

$$\varPsi_{_{M/K/k}}\!(\mathfrak{a}) = \oplus \sum\limits_{i < j} \varPsi_{ij}\!(\mathfrak{a}) \qquad \textit{for } \mathfrak{a} \in I(K^*/k)$$
 ,

where Ψ_{ij} is the mapping defined by (11). Then $\Psi_{M/K/k}$ is a surjective homomorphism of $I(K^*/k)$ to $\bigoplus \sum_{i < j} G_j$ which is isomorphic to $\Lambda(G)$ and so to $\operatorname{Gal}(\hat{K}/K^*)$.

The mapping $\Psi_{M/K/k}$ is regarded as the inverse of the mapping $\varphi_{M/K/k}$ defined in Section 2. In fact we have the following proposition.

PROPOSITION 7. For $\alpha \in J_K$ denote by $[\alpha]$ an ideal of K such that $(\alpha, \hat{K}/K) = ((\hat{K}/K)/[\alpha])$. Then other notation being as above, we have

$$\Psi_{ij}(N_{K/k}[\varphi_{M/K/k}(\sigma_i \wedge \sigma_j)]) = \sigma_j$$
.

Proof. To simplify the notation, we put $\hat{K} = \hat{K}_{M/k}$ and $\varphi = \varphi_{M/K/k}$. Put further $G = \operatorname{Gal}(K/k)$ and $A = \operatorname{Gal}(\hat{K}/K)$. Let U_{σ_i} resp. U_{σ_j} be representatives of σ_i resp. σ_j in $\operatorname{Gal}(\hat{K}/k)$. Then by (1) in Section 2, we have

$$\begin{split} \Big(\frac{\hat{K}/K}{[\varphi(\sigma_i \wedge \sigma_j)]}\Big) &= \Big(\frac{\hat{K}/K}{[\xi_{K/k}(\sigma_i, \sigma_j)]}\Big) \Big(\frac{\hat{K}/K}{[\xi_{K/k}(\sigma_j, \sigma_i)]}\Big)^{-1} \\ &\equiv U_{\sigma_i}^{-1} U_{\sigma_j}^{-1} U_{\sigma_i} U_{\sigma_j} \equiv U_{\sigma_i}^{\sigma_i-1} \mod I_G A \;. \end{split}$$

Let $\hat{\mathfrak{B}}$ be an ideal of \hat{K} such that $U_{\sigma_j} = [(\hat{K}/k)/\hat{\mathfrak{B}}]$, the product of the Frobenius automorphisms for the prime factors of $\hat{\mathfrak{B}}$. Then

$$\left(rac{\hat{K}/K}{[arphi(\sigma_i \wedge \sigma_j)]}
ight) = \left[rac{\hat{K}/k}{\hat{\mathfrak{B}}}
ight]^{\sigma_i-1} = \left[rac{\hat{K}/k}{\hat{\mathfrak{B}}^{\sigma_i-1}}
ight] = \left(rac{\hat{K}/k}{\mathfrak{B}^{\sigma_i-1}}
ight),$$

where $\mathfrak{B}=N_{\ell/\kappa}\hat{\mathfrak{B}}$. Let $\mathfrak{B}_i=N_{\kappa/\kappa_i}\mathfrak{B}$. Then

$$N_{{\scriptscriptstyle{K/K_i}}}[arphi(\sigma_i \wedge \sigma_j)] \equiv \mathfrak{B}_i^{\sigma_i-1} \ \mod \mathfrak{S}(M/K_i)$$
 ,

where $\mathfrak{H}(M/K_i)$ is, as in Proposition 6, the congruent ideal group of K_i corresponding to M. Now let $\mathfrak{a}=N_{K/k}[\varphi(\sigma_i\wedge\sigma_j)]$ and $\mathfrak{b}=N_{K_i/k}\mathfrak{B}_i=N_{K/k}\mathfrak{B}$. Then we have $\Psi_{ij}(\mathfrak{a})=((K_j/k)/\mathfrak{b})=\sigma_j$ by (11). Thus the proposition is proved.

REFERENCES

[1] Y. Furuta, Note on class number factors and prime decompositions, Nagoya Math. J., 66 (1977), 167-182.

- [2] —, A prime decomposition symbol for a non-abelian central extension which is abelian over a bicyclic biquadratic field, Nagoya Math. J., 79 (1980), 79-109.
- [3] F.-P. Heider, Strahlkonten und Geschlechterkörper mod m, J. reine angew. Math., 320 (1980), 52-67.
- [4] L. V. Kuz'min, Homology of profinite groups, Schur multipliers, and class field theory, Math. USSR-Izv., 3 (1969), 1149-1181.
- [5] R. G. Lyndon, The cohomology theory of group extensions, Duke Math. J., 15 (1948), 271-292.
- [6] K. Miyake, Central extensions and Schur's multiplicators of Galois groups, Nagoya Math. J., 90 (1983), 137-144.
- [7] M. Razar, Central and genus class fields and the Hasse norm theorem, Compositio Math., 35 (1977), 281-298.

Department of Mathematics Kanazawa University Marunouchi, Kanazawa 920 Japan