PERTURBATIONS OF TYPE I AW *-ALGEBRAS

MAHMOOD KHOSHKAM

(Received 14 May 1984; revised 2 October 1984)

Communicated by J. H. Chabrowski

Abstract

The distance between two operator algebras acting on a Hilbert space H is defined to be the Hausdorff distance between their unit balls. We investigate the structural similarities between two close AW^{*}-algebras A and B acting on a Hilbert space H. In particular, we prove that if A is of type I and separable, then A and B are $*$-isomorphic.

1980 Mathematics subject classification (Amer. Math. Soc.): 46 L 05.

Introduction

Our main result states that if A and B are AW^{*}-algebras acting on a Hilbert space H and $\|A-B\|$ is sufficiently small (see Section 1 for the definition), then under certain conditions (for example, if A is type I and separable) A and B are *-isomorphic. First we show that if A and B are close AW*-algebras, then their central projections corresponding to various portion of type are also close. This is known for von-Neumann algebras [5] and the proof for AW*-algebras given here is similar. However, Lemma 1.8, which corresponds to Lemma 15 of [5], is done completely differently. We also show that close AW *-algebras have close centers. We prove our main Theorem 2.3 by using these and Kaplansky's Theorem 1 of [7].

[^0]These results are part of the author's Ph.D. dissertation done at Dalhousie University under the supervision of Professor John Phillips.

1. Stability of type

We recall the the distance between C^{*}-algebras A and B acting on a Hilbert space H is defined by

$$
\|A-B\|=\sup \left\{\inf _{a}\|a-b\|, \inf _{b}\|a-b\|: a \in A_{1}, b \in B_{1}\right\}
$$

where A_{1} and B_{1} are the unit balls of A and B respectively.
1.1. Notation. As usual for an AW*-algebra $A, P_{\mathrm{I}}, P_{\mathrm{II}}, P_{\mathrm{III}}$ denote the unique maximal central projections in A such that $P_{\mathrm{I}} A, P_{\mathrm{II}} A$ and $P_{\mathrm{III}} A$ are of type I, II and III respectively. In the case that A is of type I or II we denote by $P_{\mathrm{I}_{1}}, P_{\mathrm{I}_{\infty}}, P_{\mathrm{II}_{1}}, P_{\mathrm{II}_{\infty}}$ the central projections in A corresponding to the finite and properly infinite portions of A. By I_{A} we denote the identity of A. If e is a projection in A, then $c(e)$ denotes the central cover of e in A. Our reference on AW *-algebras is [1].
1.2. Remark. Let A and B be C^{*}-algebras acting on H with $\|A-B\|<\gamma<$ $1 / 2$. By [2, Lemma 2.1], if $p \in A$ is a projection, we can choose a projection $q \in B$ such that $\|p-q\|<2 \gamma$. Moreover, if p is central and $\gamma \leqslant 1 / 6, p$ is abelian and $\gamma \leqslant 1 / 30$ or p is finite and $\gamma \leqslant 1 / 40$, then q is central, abelian or finite respectively (cf. [5] and [8, Lemma 2.3]).
1.3. Lemma. Let A and B be AW*-algebras acting on H such that $\|A-B\|<\gamma$ $<1 / 200$. Let $h_{i}, i=1,2,3,4$ be the unique central projections in A such that
(i) $h_{1} A$ is finite and $\left(\mathrm{I}_{A}-h_{1}\right) A$ is properly infinite,
(ii) $h_{2} A$ is abelian and $\left(\mathrm{I}_{A}-h_{2}\right) A$ is properly non-abelian,
(iii) $h_{3} A$ is semifinite and $\left(\mathrm{I}_{A}-h_{3}\right) A$ is purely infinite,
(iv) $h_{4} A$ is discrete and $\left(\mathrm{I}_{A}-h_{4}\right) A$ is continous.

If $g_{i}, i=1,2,3,4$ are the corresponding projections in B, then $\left\|h_{i}-g_{i}\right\|<2 \gamma$, $i=1,2,3,4$.

Proof. Let $\left\{h_{\alpha}\right\}$ be a maximal orthogonal family of non-zero finite central projections in A. By $\left[1, \S 15\right.$, Theorem 1], $h_{1}=\sup h_{\alpha}$. Now by 1.2 we can choose for each α a finite central projection $k_{\alpha} \in B$ such that $\left\|h_{\alpha}-k_{\alpha}\right\|<2 \gamma$. If $\alpha \neq \beta$, then $h_{\alpha} h_{\beta}=0$ and we have

$$
\left\|k_{\alpha} k_{\beta}\right\| \leqslant\left\|k_{\alpha} k_{\beta}-h_{\alpha} k_{\beta}\right\|+\left\|h_{\alpha} k_{\beta}-h_{\alpha} h_{\beta}\right\|<4 \gamma<1 .
$$

Thus $k_{\alpha} k_{\beta}=0$ and $\left\{k_{\alpha}\right\}$ is an orthogonal family of projections in B. Suppose for some finite central projection $k \in B, k k_{\alpha}=0$ for every α. Choose a finite central projection $h \in A$ such that $\|k-h\|<2 \gamma$. Then it follows that $h h_{\alpha}=0$ for every α, which is in contradiction with the maximality of $\left\{h_{\alpha}\right\}$. This shows that $\left\{k_{\alpha}\right\}$ is a maximal family of finite central projections and $[1, \S 15$, Theorem 1] implies that $k_{1}=\sup k_{\alpha}$. Let $\hat{k} \in B$ be a finite projection such that $\left\|h-h_{1}\right\|<2 \gamma$. We show that $\hat{k}=k_{1}$. Now $\hat{k} \leqslant k_{1}$ and

$$
\begin{aligned}
\left\|k_{\alpha}-\hat{k} k_{\alpha}\right\| & \leqslant\left\|k_{\alpha}-h_{\alpha}\right\|+\left\|h_{1} h_{\alpha}-h_{1} k_{\alpha}\right\|+\left\|h_{1} k_{\alpha}-\hat{k} k_{\alpha}\right\| \\
& \leqslant\left\|k_{\alpha}-h_{\alpha}\right\|+\left\|h_{\alpha}-k_{\alpha}\right\|+\left\|h_{1}-\hat{k}\right\|<6 \gamma<1
\end{aligned}
$$

Hence $k_{\alpha}=\hat{k} k_{\alpha}$, i.e. $\hat{k} \geqslant k_{\alpha}$ for every α. Therefore $\hat{k} \geqslant k_{1}$. This together with $\hat{k} \leqslant k_{1}$ implies that $\hat{k}=k_{1}$.

Next we show that $\left\|h_{3}-k_{3}\right\|<2 \gamma$. By [1, §15, Theorem 1], $h_{3}=\sup h_{\alpha}$ for a maximal orthogonal family $\left\{h_{\alpha}\right\}$ of semifinite central projections. For each α choose a projection $k_{\alpha} \in B$ such that $\left\|k_{\alpha}-h_{\alpha}\right\|<2 \gamma$. We show that k_{α} is semifinite. Since h_{α} is semifinite $h_{\alpha}=c\left(e_{\alpha}\right)$ for some finite projection e_{α}. Now it follows from $\left\|h_{\alpha}-k_{\alpha}\right\|<2 \gamma$ and $\|A-B\|<\gamma$ that $\left\|h_{\alpha} A-k_{\alpha} B\right\|<5 \gamma \leqslant$ $1 / 40$. Hence, as mentioned in 1.2 , we can choose a finite projection $f_{\alpha} \in k_{\alpha} B$ such that $\left\|f_{\alpha}-e_{\alpha}\right\|<10 \gamma$. Then it follows from [5, Lemma 7] that $\| c\left(e_{\alpha}\right)-$ $c\left(f_{\alpha}\right) \|<20 \gamma$. Now

$$
\left\|k_{\alpha}-c\left(f_{\alpha}\right)\right\| \leqslant\left\|k_{\alpha}-h_{\alpha}\right\|+\left\|c\left(e_{\alpha}\right)-c\left(f_{\alpha}\right)\right\|<22 \gamma<1,
$$

so that $c\left(f_{\alpha}\right)=k_{\alpha}$. Hence k_{α} is a semifinite projection. Moreover $k_{3}=\sup k_{\alpha}$ and the rest of the proof goes as in the first paragraph. Similar arguments can be used in order to show that $\left\|h_{2}-k_{2}\right\|<2 \gamma$ and $\left\|h_{4}-k_{4}\right\|<2 \gamma$, and we omit the details.
1.4. Lemma. Let A and B be AW*-algebras acting on H with $\|A-B\|<\gamma \leqslant$ 1/200. Let $P_{\mathrm{I}}, P_{\mathrm{II}}, P_{\mathrm{III}}, P_{\mathrm{I}_{1}}, P_{\mathrm{I}_{\infty}}, P_{\mathrm{II}_{1}}, P_{\mathrm{II}_{\infty}}$ be the unique maximal central projections described in 1.1 and let $Q_{\mathrm{I}}, Q_{\mathrm{II}}, Q_{\mathrm{II}}, Q_{\mathrm{I}_{1}}, Q_{\mathrm{I}_{\infty}}, Q_{\mathrm{II}_{1}}, Q_{\mathrm{II}_{\infty}}$ be the corresponding projections in B. Then

$$
\left\|P_{x}-Q_{x}\right\|<2 \gamma \quad \text { for } x \in \Gamma=\left\{\mathrm{I}, \mathrm{II}, \mathrm{III}, \mathrm{I}_{1}, \mathrm{I}_{\infty}, \mathrm{II}_{1}, \mathrm{II}_{\infty}\right\} .
$$

Proof. By [1, Section 15, Theorems 2 and 3], we have $P_{\mathrm{I}}=h_{4}, P_{\mathrm{II}}=h_{3}\left(\mathrm{I}_{A}-\right.$ $\left.h_{4}\right), \quad P_{\mathrm{III}}=\mathrm{I}_{A}-h_{3}, \quad P_{\mathrm{I}_{1}}=P_{\mathrm{I}} h_{1}, P_{\mathrm{I}_{\infty}}=P_{\mathrm{I}}\left(\mathrm{I}_{A}-h_{1}\right), P_{\mathrm{II}_{1}}=P_{\mathrm{II}} h_{1}$ and $P_{\mathrm{II}_{\infty}}=$ $P_{\mathrm{II}}\left(\mathrm{I}_{A}-h_{1}\right)$. Now from 1.4 and the fact that $\left\|\mathrm{I}_{A}-\mathrm{I}_{B}\right\|<2 \gamma$ one can easily verify that $\left\|P_{x}-Q_{x}\right\|<6 \gamma$ for every $x \in \Gamma$. Now by 1.2 , for each $x \in \Gamma$, we can choose a central projection $Q_{x}^{\prime} \in B$ such that $\left\|P_{x}-Q_{x}^{\prime}\right\|<2 \gamma$. Hence

$$
\left\|Q_{x}-Q_{x}^{\prime}\right\| \leqslant\left\|Q_{x}-P_{x}\right\|+\left\|P_{x}-Q_{x}^{\prime}\right\|<8 \gamma \leqslant 1
$$

This implies that $Q_{x}=Q_{x}^{\prime}$ and hence $\left\|Q_{x}-P_{x}\right\|<2 \gamma$, as desired.
1.5. Remark. We recall that an AW *-algebra A is said to be \boldsymbol{K}-homogeneous if there exists an orthogonal family $\left\{e_{\alpha}\right\}_{\alpha \in \Omega}$ of pairwise equivalent abelian projections in A such that $\mathrm{I}_{A}=\sup e_{\alpha}$, where card $\Omega=\boldsymbol{K}$. In this case we say that A is of type $I_{\mathbb{N}}$. We note that a homogeneous $A W^{*}$-algebra is necessarily of type I.
1.6. Remark. Let A be a C^{*}-algebra and $e, f \in A$ be projections. We write $e \sim f$ if e and f are Murray von-Neumann equivalent. The equivalence class of e under ~ is denoted by [e]. The set of these equivalence classes, denoted by $S(A)$, is equipped with a partial addition as follows: $[e],[f] \in S(A)$ can be added if there exist projections $e^{\prime}, f^{\prime} \in A$ such that $e^{\prime} \sim e, f^{\prime} \sim f$ and $e^{\prime} f^{\prime}=0$. Then we set $[e]+[f]=\left[e^{\prime}+f^{\prime}\right]$. If A and B are C^{*}-algebras acting on H and $\|A-B\|<\gamma \leqslant 1 / 8$, then by [8, Theorem 2.6], there exists an isomorphism ρ : $S(A) \rightarrow S(B)$ defined by closeness, i.e. by $\rho([e])=[f]$ if $\|e-f\|<2 \gamma$. We use these notations in the following lemma without further comments.
1.7. Lemma. Let A and B be AW*-algebras acting on H and $\|A-B\|<\gamma \leqslant$ $1 / 60$. Suppose A is of type $\mathrm{I}_{\aleph_{0}}$ and $\left\{e_{n}\right\}$ is an orthogonal sequence of equivalent abelian projections in A such that $\mathbf{I}_{A}=\sup e_{n}$. Then there exist sequences $\left\{f_{n}\right\}$ and $\left\{f_{n}^{\prime}\right\}$ of projections in B such that
(i) $f_{n} \sim f_{n}^{\prime}$ for every n,
(ii) $\left\|f_{n}^{\prime}-e_{n}\right\|<2 \gamma$ for every n,
(iii) $f_{n} f_{m}=0$, if $n \neq m$,
(iv) the f_{n} are abelian and $f_{n} \sim f_{m}$ for every n and m.

Proof. We use induction in order to construct $\left\{f_{n}\right\}$ and $\left\{f_{n}^{\prime}\right\}$. Suppose f_{1}, \ldots, f_{N} and $f_{1}^{\prime}, \ldots, f_{N}^{\prime}$ satisfy the conditions of the lemma. Let $f=f_{1}$ $+\cdots+f_{N}$ and choose a projection $e \in A$ such that $\|e-f\|<2 \gamma$ (see 1.2). Then

$$
\begin{aligned}
{[e] } & =\rho[f]=\rho\left[f_{1}+\cdots+f_{N}\right] \\
& =\rho\left(\left[f_{1}\right]\right)+\cdots+\rho\left(\left[f_{N}\right]\right) \\
& =\rho\left(\left[f_{1}^{\prime}\right]\right)+\cdots+\rho\left(\left[f_{N}^{\prime}\right]\right) \\
& =\left[e_{1}\right]+\cdots+\left[e_{n}\right]=\left[e_{1}+\cdots+e_{N}\right]
\end{aligned}
$$

(see 1.6 for notation). Hence $e \sim e_{1}+\cdots+e_{N}$. By [1, §17, Theorem 2], e_{1} $+\cdots+e_{n}$ is a finite projection and [1,§17, Proposition 5] implies that

$$
\mathrm{I}_{A}-e-\mathrm{I}_{A}-\left(e_{1}+\cdots+e_{N}\right)=\sup _{n>N} e_{n}
$$

Let $V \in A$ be a partial isometry such that $V V^{*}=\mathrm{I}_{A}-e$ and $V^{*} V=\mathrm{I}_{A}-\left(e_{1}\right.$ $\left.+\cdots+e_{N}\right)$. Then $\left(V e_{N+1} V^{*}\right)\left(\mathrm{I}_{A}-e\right)=V e_{N+1} V^{*}$ and we conclude that
$V e_{N+1} V^{*}$ is orthogonal to e. Now since $\|e-f\|<2 \gamma<1 / 6$, by [8. Lemma 2.4] we can choose a projection $\hat{f} \in B$ such that $\hat{f f}=0$ and $\left\|V e_{N+1} V^{*}-\hat{f}\right\|<6 \gamma$. Let $f_{n+1}=\hat{f}$ and choose $f^{\prime}\left(=f_{N+1}^{\prime}\right)$ in B such that $\left\|f_{N+1}^{\prime}-e_{N+1}\right\|<2 \gamma$. Now f_{1}, \ldots, f_{N+1} and $f_{1}^{\prime}, \ldots, f_{N+1}^{\prime}$ satisfy conditions (ii) and (iii). Conditions (i) and (iv) follow from [8, Lemma 2.3] and [5, Corollary D]. We note that we need $\gamma \leqslant 1 / 60$ in order to be able to use Corollary D of [5].
1.8. Lemma. Let A and B be AW^{*}-algebras acting on H and suppose that $\|A-B\|<\gamma \leqslant 1 / 300$. If A is of type $\mathrm{I}_{\boldsymbol{N}}$, with $\boldsymbol{\aleph} \leqslant \boldsymbol{N}_{0}$, then B is also of type $\mathrm{I}_{\boldsymbol{N}}$.

Proof. We consider the case that A is of type $I_{\Sigma_{0}}$. The case that A is finite can be dealt with in the same way. Suppose $\mathrm{I}_{A}=\sup e_{n}$, where $\left\{e_{n}\right\}$ is an orthogonal sequence of abelian equivalent projections in A. Let $\left\{f_{n}\right\}$ and $\left\{f_{n}^{\prime}\right\}$ be as constructed in 1.7. Let $F=\sup f_{n}$ and choose a projection $G \in A$ such that $\|F-G\|<2 \gamma$. Then one verifies that $\|F B F-G A G\|<5 \gamma \leqslant 1 / 60$. Now 1.7 can be applied to the AW*-algebras $F B F$ and $G A G$ in order to get sequences $\left\{g_{n}\right\}$ and $\left\{g_{n}^{\prime}\right\}$ of projections in $G A G$ for which the conditions of Lemma 1.7 are fulfilled. Then $\left\|e_{n}-f_{n}^{\prime}\right\|<2 \gamma$ and $\left\|g_{n}^{\prime}-f_{n}\right\|<2 \gamma$, and [8, Lemma 2.3] implies that $g_{n} \sim g_{n}^{\prime} \sim e_{n}$. Now $\left\{e_{n}\right\}$ and $\left\{g_{n}\right\}$ are sequences of pairwise orthogonal projections, and $e_{n} \sim g_{n}$ for every n. By [6, Theorem 5.5], we have sup $e_{n} \sim \sup g_{n}$, i.e. $\mathrm{I}_{A} \sim \sup g_{n} \leqslant G$. Therefore $\mathrm{I}_{A} \leqslant G$ and since $G \leqslant \mathrm{I}_{A}$ we must have $G \sim \mathrm{I}_{A}$. Now standard arguments imply that $\left\|\mathrm{I}_{A}-\mathrm{I}_{B}\right\|<2 \gamma$, and we have $\|F-G\|<2 \gamma$. Hence it follows from [8, Lemma 2.3] that $F \sim \mathrm{I}_{B}$. If $w \in B$ is a partial isometry such that $w^{*} w=F$ and $w w^{*}=\mathrm{I}_{B}$, then $\mathrm{I}_{B}=\sup \left\{w f_{n} w^{*}\right\}$ and this shows that B is of type $\mathrm{I}_{\mathbf{N}_{0}}$.

2. Main result

2.1. Proposition. Let A and B be AW*-algebras acting on Hilbert space H and suppose that $\|A-B\|<\gamma$. Then $\|Z(A)-Z(B)\|<6 \gamma$, where $Z(A)$ and $Z(B)$ are the centers of A and B respectively.

Proof. Let $a \in Z(A)$ and $\|a\|<1$. We must show that there exists an element $b \in Z(B),\|b\| \leqslant 1$, such that; $\|a-b\|<6 \gamma$. Choose $c \in B_{1}$ such that $\|a-c\|$ $<\gamma$. Now let $y \in B_{1}$ and choose $x \in A_{1}$ such that $\|x-y\|<\gamma$. Then

$$
\left\|a d_{c}(y)\right\|=\|c y-y c\| \leqslant\|c y-c x\|+\|c x-a x\|+\|x a-y a\|+\|y a-y c\|<4 \gamma
$$

Hence $\left\|a d_{c}\right\|<4 \gamma$. By [4, Corollary 4.8] there exists an element $b^{\prime} \in Z(B)$ such that $\left\|a d_{c}\right\|=2\left\|c-b^{\prime}\right\|$. Therefore

$$
\left\|a-b^{\prime}\right\| \leqslant\|a-c\|+\left\|c-b^{\prime}\right\|<\gamma+1 / 2\left\|a d_{c}\right\|<3 \gamma .
$$

Let $b=b^{\prime} /\left\|b^{\prime}\right\|$. Then $\left\|b^{\prime}-b\right\|<3 \gamma$ and we get

$$
\|a-b\| \leqslant\|a-b\|+\left\|b-b^{\prime}\right\|<6 \gamma .
$$

By reversing the argument we can show that for any element $b \in Z(B),\|b\| \leqslant 1$, there exists an element a in the unit ball of $Z(A)$ such that $\|a-b\|<6 \gamma$. Hence $\|Z(A)-Z(B)\|<6 \gamma$ as desired.
2.2. Proposition. Let A and B be AW*-algebras acting on a Hilbert space H with $\|A-B\|<\gamma \leqslant 1 / 300$. If A is of type $\mathrm{I}_{\mathcal{N}}\left(\boldsymbol{N} \leqslant \mathcal{N}_{0}\right)$, then A and B are *-isomorphic.

Proof. By 2.1, $\|Z(A)-Z(B)\|<6 \gamma<1 / 10$, and [3, Theorem 5.3] implies that $Z(A)=U Z(B) U^{*}$ for some unitary operator U. Also Lemma 1.8 implies that B is of type $\mathrm{I}_{\mathbf{N}}$. Now it follows from [7, Theorem 1] that A and B are *-isomorphic.
2.3. Theorem. Let A and B be AW*-algebras acting on a Hilbert space H such that $\|A-B\|<\gamma \leqslant 1 / 6300$. If A is of type I and its properly infinite portion is of type $\mathrm{I}_{\kappa_{0}}$, then A and B are *-isomorphic.

Proof. Let $h_{1} \in A$ and $k_{1} \in B$ be the unique central projections as described in the statement of Lemma 1.3. Then $\left\|h_{1}-k_{1}\right\|<2 \gamma$ and one easily verifies that $\left\|h_{1} A-k_{1} B\right\|<5 \gamma$ and $\left\|\left(\mathrm{I}_{A}-h_{1}\right) A-\left(\mathrm{I}_{B}-k_{1}\right) B\right\|<9 \gamma$. Now, since $\left(\mathrm{I}_{A}-h_{1}\right) A$ is of type $\mathrm{I}_{\aleph_{0}}$ by hypothesis, 2.2 implies that $\left(\mathrm{I}_{A}-h_{1}\right) A \cong\left(\mathrm{I}_{B}-k_{1}\right) B$. Also, by [1, §18, Theorem 4], there exists an orthogonal sequence $\left\{\hat{h}_{n}\right\}$ of central projections in $h_{1} A$ such that $h_{1} A$ is the C^{*}-sum of $\hat{h}_{n} A$ and each $\hat{h}_{n} A$ is either 0 or of type I_{n}. Now for each n, we can choose by 1.2 a central projection $\hat{k}_{n} \in k_{1} B$ such that $\left\|\hat{k}_{n}-\hat{h}_{n}\right\|<10 \gamma$. Then $\left\|\hat{k}_{n} B-\hat{h}_{n} A\right\|<21 \gamma \leqslant 1 / 300$ and Lemma 1.8 implies that $\hat{k}_{n} B$ is of type I_{n}. Moreover, one can easily verify that $\hat{k}_{1} B$ is the C^{*}-sum of $\hat{k}_{n} B$. Hence we conclude from 2.2 that $k_{1} B$ is $*$-isomorphic to $h_{1} A$. This ends the proof of the theorem.
2.4. Corollary. Let A and B be AW^{*}-algebras acting on a separable Hilbert space H with $\|A-B\| l<1 / 6300$. If A is of type I , then A and B are $*$-isomorphic.

References

[1] S. K. Berberian, Baer *-rings (Springer-Verlag, Berlin and New York, 1972).
[2] E. Christensen, 'Perturbations of type I von Neumann algebras', J. London Math. Soc. 9 (1975), 395-405.
[3] E. Christensen, 'Perturbation of operator algebras', Invent. Math. 43 (1977), 1-13.
[4] G. A. Elliott, 'On derivations of AW*-algebras', Töhoku Math. J. 30 (1978), 263-276.
[5] R. V. Kadison and D. Kastler, 'Perturbations of von Neumann algebras, stability of type', Amer. J. Math. 94 (1972), 38-45.
[6] I. Kaplansky, 'Projections in Banach algebras', Ann. of Math. (2) 53 (1951), 235-249.
[7] I. Kaplansky, 'Algebras of type I', Ann. of Math. (2) 56 (1952), 460-472.
[8] J. Phillips and I. Raeburn, 'Perturbations of AF-algebras', Canad. J. Math. 31 (1979), 1012-1016.

Department of Mathematics
 University of Saskatchewan
 Saskatoon

Canada

[^0]: © 1986 Australian Mathematical Society 0263-6115/86 \$A2.00 +0.00

