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1. Introduction

In this paper we are concerned with stochastic processes with drifts of the form

S(t) =
∑
n≥1

F(t − Tn)Zn 1(0,t](Tn)− ct, (1.1)

where {Tn}n≥1, T0 = 0, are the points (epochs) of a renewal process whose interarrival times,
Un = Tn − Tn−1, have finite mean, {Zn}n≥1 is a sequence of independent and identically
distributed positive random variables independent of {Tn}n≥1, c > 0 is a positive constant, and
F(·) is a distribution function (DF) such that F(t) = 0 for t < 0.

An important example of the stochastic model considered above arises in insurance risk
theory; see Klüppelberg and Mikosch (1995a), (1995b), Mikosch and Nagaev (1998), Brémaud
(2000), and Klüppelberg et al. (2003), where Poisson shot noise processes were considered.
In Brémaud (2000), large deviations theory was used to give Cramér–Lundberg-type estimates
of the infinite-horizon ruin probability. Other models of delayed claims (not based on shot
noise processes) were considered by Waters and Papatriandafylou (1985) and, more recently,
by Yuen et al. (2005), where a martingale approach was used to estimate the infinite-horizon
ruin probability under light tail conditions.

The interpretation of the process {S(t)}t≥0 in the insurance context is as follows. Suppose
that claims {Zn}n≥1 occur according to a renewal process {Tn}n≥1, and that the insurance
company honors the claim Zn, which occurs at time Tn, at the rate f (· − Tn)Zn, with f (·)
being a probability density on (0,∞). The total claim paid in the time interval (0, t] is then∑

n≥1

F(t − Tn)Zn 1(0,t](Tn),
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A class of risk processes with delayed claims 917

where F(·) is the DF with density f (·). If the insurance company receives premium income
at constant rate c > 0, then S(t) as defined above is the excess of claims over premiums. If we
assume that the insurance company has an initial capital u > 0, then we say that ruin occurs at
the first time, t , that S(t) ≥ u, if there is such a time. This leads us to define the infinite-horizon
ruin probability

ψ(u) = P
(

sup
t≥0

S(t) ≥ u
)

(1.2)

and the finite-horizon ruin probability

ψ(u, T ) = P
(

sup
t∈[0,T ]

S(t) ≥ u
)
,

where T > 0 is a positive constant.
In this paper, under heavy tail assumptions on the distribution of Z1, we give asymptotic

estimates for ψ(u) and ψ(u, e(u)T ) as u → ∞, where e(u) = E[Z1 − u | Z1 > u] is
the mean excess function of Z1. Our results exploit the heavy tail intuition which predicts
exceedances of level u > 0 to occur as the consequence of one big jump. In particular, we show
that the classical ruin probability estimate (see Teugels and Veraverbeke (1973), Veraverbeke
(1977), and Embrechts andVeraverbeke (1982)) holds unchanged forψ(u). Likewise, assuming
Poisson claim arrivals, we show that some well-known estimates of the finite-horizon ruin
probability of the Cramér–Lundberg model (see Asmussen and Klüppelberg (1996)) hold also
forψ(u, e(u)T ). This is an insensitivity property of the model considered, in that the asymptotic
behavior of ψ(u) and ψ(u, e(u)T ) depends only on the distribution of Z1, not on the shape
or nature of the shot. It is an analogue of an insensitivity property in the light tail case with
Poisson claim arrivals (see Brémaud (2000) for the infinite-horizon case and Macci et al. (2005)
for the finite-horizon case) where the large deviation rate functions of ψ(u) and ψ(u, uT ) do
not depend on the shape of the shot. We also give a short proof of the insensitivity property in
the light tail case, for completeness.

Our technique is based on a recent work, Albrecher and Asmussen (2006), in which risk
processes with shot noise Cox claim arrivals were considered. A closely related work is
Asmussen et al. (1999), where the heavy-tailed behavior of the infinite-horizon ruin probability
of risk processes with ergodic or regenerative input was studied.

In the literature on shot noise models, one usually deals with shot shapes of the form h(t, z)

(in place of the multiplicative form F(t)z), where h(·, z) is a nondecreasing function for each z.
The extension of the results of this paper to this more general situation is an open problem.

The paper is structured as follows. We recall some preliminaries and introduce some
notation in Section 2. Our results on ruin probabilities with heavy-tailed claim sizes are given
in Section 3. Finally, we provide ruin probability estimates for light-tailed claim sizes in
Appendix A; while these estimates coincide with those of Brémaud (2000), their derivation is
simpler.

2. Preliminaries

Recall that a DF G(·) is said to be subexponential if its support is (0,∞) and G
∗2 ∼ 2G

(see, for instance, Rolski et al. (1999)). HereG = 1 −G denotes the tail ofG,G
∗2
(·) denotes

the two-fold convolution of G(·), and we write g1 ∼ g2 if the functions g1(·) and g2(·) are
such that limx→∞ g1(x)/g2(x) = 1; we write g1(x) = o(g2(x)) if limx→∞ g1(x)/g2(x) = 0.
We say that a positive function g(·) on (0,∞) is regularly varying at infinity of index α ∈ R,
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918 A. GANESH AND G. L. TORRISI

written g ∈ R(α), if g(x) ∼ xαL(x) as x → ∞. Here L(·) is a slowly varying function, that
is, limx→∞ L(tx)/L(x) = 1 for each t > 0.

The family of subexponential DFs will be denoted by S. It can be further classified using
extreme value theory. Goldie and Resnick (1988) showed that if G ∈ S satisfies some
smoothness conditions, then G belongs to the maximum domain of attraction of either the
Fréchet distribution �α(x) = e−x−α

or the Gumbel distribution �(x) = e−e−x
. Moreover, in

the former case, it has a regularly varying tail of index −α.
Throughout this paper we denote by B(·) the DF of Z1 and by B0(·) its integrated tail DF:

B0(u) = 1

µ

∫ ∞

u

B(x) dx, u > 0, where µ = E[Z1].

We assume that B0 ∈ S and that either B ∈ R(−α− 1) or B belongs to the maximum domain
of attraction of the Gumbel distribution, written B ∈ MDA(�). We also assume the classical
net profit condition,

ρ = µ/cν < 1, where ν = E[U1],
to hold. This condition says that the mean rate, c, at which premium income is earned exceeds
the mean rate, µ/ν, at which claims need to be paid out. If this condition does not hold, then
ruin is certain.

3. Ruin probabilities

In this section we derive asymptotic estimates for ψ(u) and ψ(u, e(u)T ) as u → ∞, under
heavy tail conditions on Z1. To this end, we compare the process {S(t)}t≥0 defined in (1.1)
with the process {C(t)}t≥0 given by

C(t) =
∑
n≥1

Zn 1(0,t](Tn)− ct. (3.1)

Clearly, the following domination holds:

S(t) ≤ C(t) almost surely, for all t ≥ 0. (3.2)

We shall use this to obtain upper bounds on the ruin probabilities in both the infinite- and finite-
horizon settings. Lower bounds will be obtained by comparing S(·) with a different classical
risk process.

3.1. The infinite-horizon case

Let �(·) denote the infinite-horizon ruin probability for the risk process {C(t)}t≥0. By
(3.2), ψ(u) ≤ �(u) for all u > 0. Therefore, by the classical ruin estimate (see Teugels
and Veraverbeke (1973), Veraverbeke (1977), and Embrechts and Veraverbeke (1982); see also
Theorem 6.5.11 of Rolski et al. (1999)), for an arbitrary B0 ∈ S we have

lim sup
u→∞

ψ(u)

B0(u)
≤ lim
u→∞

�(u)

B0(u)
= ρ

1 − ρ
. (3.3)

We shall obtain matching lower bounds, adapting to our context the techniques of Albrecher
and Asmussen (2006). We begin by bounding the risk process S(·) from below. For all t ≥ 0
and a > 0, define the risk processes

Ša(t) =
∑
n≥1

F(a)Zn 1(0,t](Tn)− ct
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and
Ča(t) =

∑
n≥1

Zn 1(0,t](Tn)− c

F (a)
t. (3.4)

It is clear from the monotonicity of F(·) that

S(t) ≥ Ša(t − a)− ca almost surely, for all t > a. (3.5)

Therefore, letting �̌a(·) denote the infinite-horizon ruin probability relative to the risk process
{Ča(t)}t≥0, we obtain

ψ(u) ≥ �̌a((u+ ca)/F (a)) for all u > 0. (3.6)

We shall use this to obtain asymptotic lower bounds on the ruin probability matching the upper
bound in (3.3) under additional conditions on the claim size distribution.

Our first result states that if the claim sizes have regularly varying tails, then the ruin
probability with delayed claims is insensitive to the shape of the shot, in the sense that it
is asymptotically equivalent to the ruin probability in the classical model. We state this more
precisely as follows.

Proposition 3.1. If B ∈ R(−α − 1) for some α > 0, then

lim
u→∞

ψ(u)

B0(u)
= ρ

1 − ρ
. (3.7)

If the claim size distribution has lighter tails, then we need additional assumptions on the
shape of the shot in order to retain asymptotic equivalence with the classical model. The first
part of our next result shows that if the shot has compact support, then (3.7) holds so long as the
claim size distribution has an integrated tail which is subexponential. The second part shows
that if the tail of the shot decays sufficiently rapidly relative to the mean excess function of the
claim size distribution, then (3.7) continues to hold.

Proposition 3.2. (a) If B0 ∈ S and F(·) has compact support, then (3.7) holds.

(b) Suppose that B ∈ MDA(�), B0 ∈ S, and that e(u) ∼ g(u) as u → ∞, for some eventually
nondecreasing function g(·). Suppose further that there is a γ > 0 such that

uF(u1/γ ) = o(e(u)) (3.8)

and
u1/γ = o(e(u)) (3.9)

as u → ∞. Then (3.7) holds.

Before proving Propositions 3.1 and 3.2, we work out some examples of the conditions
imposed on the shot shape, under part (b) of Proposition 3.2, by some heavy-tailed distributions
of practical interest. These examples show that the assumptions of part (b) are not too restrictive.

Example 3.1. (Weibull distribution.) Suppose that the claim size distribution has tail B(u) =
e−uα for u ≥ 0, where α ∈ (0, 1) is the shape parameter of the Weibull distribution. It is well
known that B ∈ MDA(�) and B0 ∈ S (see, for instance, Embrechts et al. (1997)). Moreover,
by partial integration we obtain

e(u) ∼ u1−α

α
as u → ∞;
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therefore, e(u) is asymptotically equivalent to a nondecreasing function. Now, (3.8) can be
rewritten as F(u) = o(e(uγ )/uγ ) = o(u−γα). Hence, (3.8) and (3.9) hold provided that there
is a γ > 1/(1 − α) such that F(u) = o(u−γα). In particular, this is the case if F is either light
tailed or has a regularly varying tail of index −β, β > α/(1 − α).

Example 3.2. (Lognormal distribution.) Denote by �(·) the DF of the standard normal
distribution and take B(u) = �((ln u − ω)/σ), u > 0, where ω ∈ R and σ > 0 are given
constants. It is well known that B ∈ MDA(�) and B0 ∈ S (see, for instance, Asmussen and
Klüppelberg (1996)). Furthermore, using Mill’s ratio and l’Hôpital’s rule, we obtain

e(u) ∼ σ 2u

ln u− ω
as u → ∞.

Hence, e(u) is asymptotically equivalent to an eventually nondecreasing function, and (3.9) is
satisfied for any γ > 1. Also, (3.8) is satisfied ifF(u1/γ ) = o(1/ln u), that is,F(u) = o(1/ln u)
irrespective of γ . In other words, the conditions of Proposition 3.2(b) are satisfied provided
that the shot has a tail decaying faster than logarithmically.

Example 3.3. (Benktander distributions.) We first consider the so-called Benktander distribu-
tion of type I (see, for instance, Embrechts et al. (1997)):

B(u) = (1 + 2(δ/α) ln u) exp{−(δ(ln u)2 + (α + 1) ln u)}, u ≥ 1, α, δ > 0.

We have B ∈ MDA(�), B0 ∈ S, and

e(u) = u

α + 2δ ln u
for all u ≥ 1

(see Embrechts et al. (1997)). In particular, e(u) is eventually nondecreasing and condition
(3.9) is satisfied for all γ > 1. Hence, the conditions of the proposition are met if (3.8) holds
for some γ > 1. Again, this does not depend on γ , and is equivalent to F(u) = o(1/ln u).

Finally, assume thatB(·) is a Benktander distribution of type II (see, for instance, Embrechts
et al. (1997)) of the form

B(u) = eα/δu−(1−δ) exp

{
−α
δ
uδ

}
, u ≥ 1, 0 < α < 1, 0 < δ < 1.

In this case B ∈ MDA(�), B0 ∈ S, and e(u) = u1−δ/α, u ≥ 1 (see, for instance, Embrechts
et al. (1997)). Therefore, e(u) is nondecreasing and condition (3.9) is met for all γ > 1/(1−δ).
As (3.8) can be rewritten as F(u) = o(u−γ δ), the conditions of the proposition are satisfied if
this holds for some γ > 1/(1 − δ). This is the case if F is either light tailed or has a regularly
varying tail of index −β, β > δ/(1 − δ).

Proof of Proposition 3.1. In view of (3.3), it only remains to prove the corresponding lower
bound. By (3.6), we have

lim inf
u→∞

ψ(u)

B0(u)
≥ lim
u→∞

�̌a((u+ ca)/F (a))

B0((u+ ca)/F (a))
lim
u→∞

B0((u+ ca)/F (a))

B0(u)
. (3.10)

Now, since B ∈ R(−α− 1), it follows from Karamata’s theorem (see, for instance, Embrechts
et al. (1997)) that B0 ∈ R(−α). Hence, by the definition of a regularly varying function,

lim
u→∞

B0((u+ ca)/F (a))

B0(u)
= F(a)α. (3.11)
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Since F(a) ≤ 1 for all a, it follows from the net profit condition that ρ(a) := F(a)µ/cν < 1.
Hence, by the classical ruin estimate,

lim
u→∞

�̌a((u+ ca)/F (a))

B0((u+ ca)/F (a))
= ρ(a)

1 − ρ(a)
. (3.12)

Substituting (3.11) and (3.12) into (3.10) yields

lim inf
u→∞

ψ(u)

B0(u)
≥ ρ(a)F (a)α

1 − ρ(a)
for all a > 0.

Letting a tend to ∞, we notice that F(a) tends to 1 and that ρ(a) tends to ρ, which yields the
desired lower bound and, thus, the claim of the proposition.

Proof of Proposition 3.2. For part (a), note that if F has compact support then there is an
a < ∞ such that F(a) = 1. Consequently, from (3.10) we obtain

lim inf
u→∞

ψ(u)

B0(u)
≥ lim
u→∞

�̌a(u+ ca)

B0(u+ ca)
lim
u→∞

B0(u+ ca)

B0(u)
.

The first limit in the product above equals ρ/(1 − ρ) by the classical ruin estimate, while the
second limit equals 1 by the long tail property of subexponential distributions (see, for instance,
Embrechts et al. (1997)). Thus, we obtain a lower bound on ψ(u) matching the asymptotic
upper bound in (3.3) and equal to the limit in (3.7), as claimed.

Next we turn to the proof of part (b). We can generalize (3.10) to let a depend on u, that
is, to have a ≡ a(u). Also, note that, for any x > 0 and a ≤ a(u), �̌a(x) ≤ �̌a(u)(x). This
is obvious on recalling that �̌a(x) denotes the ruin probability subject to initial capital x and
premium rate c/F (a), as the ruin probability is nonincreasing in the premium rate. In other
words,

ψ(u) ≥ �̌a(u)

(
u+ ca(u)

F (a(u))

)
≥ �̌a

(
u+ ca(u)

F (a(u))

)
.

Therefore, we can rewrite (3.10) as

lim inf
u→∞

ψ(u)

B0(u)
≥ lim inf

u→∞
�̌a((u+ ca(u))/F (a(u)))

B0((u+ ca(u))/F (a(u)))
lim inf
u→∞

B0((u+ ca(u))/F (a(u)))

B0(u)

for any a > 0. Hence, using the classical ruin estimate applied to �̌a ,

lim inf
u→∞

ψ(u)

B0(u)
≥ ρ(a)

1 − ρ(a)
lim inf
u→∞

B0((u+ ca(u))/F (a(u)))

B0(u)
for all a > 0. (3.13)

We now use a representation of B0 for B ∈ MDA(�) given in Asmussen and Klüppelberg
(1996):

B0(u) = exp

{
−

∫ u

0

1

e(t)
dt

}
, u > 0.

It follows that

B0((u+ ca(u))/F (a(u)))

B0(u)
= exp

{
−

∫ (u+ca(u))/F (a(u))

u

1

e(t)
dt

}
.
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By the assumption of Proposition 3.2(b), e(t) ∼ g(t) for a function g(·) which is eventually
nondecreasing. Hence, for all ε > 0 we have

lim inf
u→∞

B0((u+ ca(u))/F (a(u)))

B0(u)
≥ lim inf

u→∞ exp

{
−

(
u+ ca(u)

F (a(u))
− u

)
1 + ε

g(u)

}
. (3.14)

Since B ∈ MDA(�) and B0 ∈ S, the mean excess function e(u) goes to ∞ as u goes to
∞ (see Goldie and Resnick (1988)). Let γ > 0 be such that (3.8) and (3.9) hold, and take
a(u) = u1/γ . Then

(
u+ ca(u)

F (a(u))
− u

)
1

g(u)
= uF(u1/γ )

g(u)F (u1/γ )
+ cu1/γ

g(u)F (u1/γ )
→ 0 as u → ∞,

since g(u) ∼ e(u). Therefore, by (3.14) and the fact that B0(·) is nonincreasing, we have

lim
u→∞

B0((u+ cu1/γ )/F (u1/γ ))

B0(u)
= 1 (3.15)

whenever γ satisfies (3.8) and (3.9). Substituting this into (3.13) yields

lim inf
u→∞

ψ(u)

B0(u)
≥ ρ(a)

1 − ρ(a)

for all a > 0. Now, by letting a → ∞, and noting that ρ(a) → ρ, we obtain

lim inf
u→∞

ψ(u)

B0(u)
≥ ρ

1 − ρ
.

Combined with the upper bound in (3.3), this yields (3.7).

3.2. The finite-horizon case

Throughout this section we assume that {Tn}n≥1, with T0 = 0, is a homogeneous Poisson
process with intensity ν−1. The following proposition holds.

Proposition 3.3. (a) If B ∈ R(−α − 1), α > 0, then

lim
u→∞

ψ(u, uT )

ψ(u)
= 1 − (1 + (1 − ρ)T )−α. (3.16)

(b) Suppose that the assumptions of Proposition 3.2(b) are satisfied for some γ > 1 and with
the function g(·) being regularly varying at infinity. Then

lim
u→∞

ψ(u, e(u)T )

ψ(u)
= 1 − e−(1−ρ)T . (3.17)

Remark 3.1. Note that e(u) ∼ g(u)with g(·) regularly varying at infinity is satisfied in all the
examples considered above.

Remark 3.2. Proposition 3.3 says that, starting with initial capital u and conditional on ruin
occurring, the time to ruin scales like u or e(u) under the assumptions of part (a) or part (b),
respectively. More precisely, the time to ruin divided by u converges in distribution to a Pareto
random variable under the assumptions of part (a), while the time to ruin divided by e(u)
converges in distribution to an exponential random variable under the assumptions of part (b).
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Proof of Proposition 3.3. We first show the upper bounds for (3.16) and (3.17). Respectively
denote by�(u, T ) and�(u) the finite-horizon and the infinite-horizon ruin probabilities relative
to the classical risk process {C(t)}t≥0 defined in (3.1). By Corollary 1.6 of Asmussen and
Klüppelberg (1996) (see also Asmussen (2000, p. 275–279)), we have

lim
u→∞

�(u, uT )

�(u)
= 1 − (1 + (1 − ρ)T )−α (3.18)

if B ∈ R(−α − 1) and

lim
u→∞

�(u, e(u)T )

�(u)
= 1 − e−(1−ρ)T (3.19)

ifB ∈ MDA(�) andB0 ∈ S. By Propositions 3.1 and 3.2,ψ(u) ∼ �(u) under the assumptions
of this proposition. Since (3.2) implies that ψ(u, g̃(u)T ) ≤ �(u, g̃(u)T ) for all u and all
nonnegative functions g̃(·), the upper bounds follow by (3.18) and (3.19).

It remains to prove the matching lower bounds. We first show part (a). For each a > 0,
respectively denote by �̌a(u, T ) and �̌a(u) the finite-horizon and the infinite-horizon ruin
probabilities relative to the risk process {Ča(t)}t≥0 defined in (3.4). As in the proof of
Proposition 3.1, we obtain (3.5), which yields, for each a > 0,

ψ(u, uT ) ≥ �̌a

(
u+ ca

F (a)
, uT − a

)
for all u > 0, (3.20)

where �̌a(u, t) is defined to equal 0 if t < 0. Since u− (a/T ) ∼ u+ ca as u → ∞, by (3.20)
it follows that for any ε > 0 there exists a ū ≡ ū(ε) such that

ψ(u, uT ) ≥ �̌a

(
u+ ca

F (a)
, (u+ ca)(1 − ε)T

)
for all u ≥ ū and all a > 0. (3.21)

Since (3.18) also holds with �̌a in place of � (the former is simply the ruin probability for the
risk process modified to have premium rate c/F (a)), we obtain

lim
u→∞

�̌a((u+ ca)/F (a), (u+ ca)(1 − ε)T )

�̌a((u+ ca)/F (a))
= 1−(1+(1−ρ(a))(1−ε)T F (a))−α, (3.22)

where ρ(a) = F(a)µ/cν = ρF(a). Arguing as in the proof of Proposition 3.1, we have

lim
u→∞

�̌a((u+ ca)/F (a))

ψ(u)
= ρ(a)F (a)α

1 − ρ(a)

(
ρ

1 − ρ

)−1

. (3.23)

The matching lower bound follows upon combining (3.21), (3.22), and (3.23), letting ε tend to
0, and letting a tend to ∞.

Finally, we show part (b). It follows from (3.5) that, for an arbitrary positive function a(·),
an arbitrary constant a > 0, and all u > 0 such that a(u) ≥ a,

ψ(u, e(u)T ) ≥ �̌a(u)

(
u+ ca(u)

F (a(u))
, e(u)T−a(u)

)
≥ �̌a

(
u+ ca(u)

F (a(u))
, e(u)T−a(u)

)
. (3.24)

Recall that e(·) was assumed to be asymptotically equivalent to a regularly varying function
g(·). Let β denote the index of variation of g at infinity, let γ > 1 be such that (3.8) and (3.9)
hold, and take a(u) = u1/γ . Then

lim
u→∞

e((u+ ca(u))/F (a(u)))

e(u)
= lim
u→∞

(
u+ cu1/γ

uF (u1/γ )

)β
= 1,
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where we have used the fact that γ > 1 to obtain the second equality. Since u1/γ = o(e(u)),
by (3.9), it follows that

lim
u→∞

e(u)T − a(u)

e((u+ ca(u))/F (a(u)))
= T .

Therefore, by (3.19), for all ε > 0 we obtain

lim inf
u→∞

�̌a((u+ ca(u))/F (a(u)), e(u)T − a(u))

�̌a((u+ ca(u))/F (a(u)))
≥ 1 − e−(1−ε)(1−ρ(a))T .

Combining the above with (3.24) and letting ε decrease to 0 yields

lim inf
u→∞

ψ(u, e(u)T )

�̌a((u+ ca(u))/F (a(u)))
≥ 1 − e−(1−ρ(a))T . (3.25)

It remains only to compare the denominator of the left-hand side with�(u). Using the classical
ruin estimate, we have

lim inf
u→∞

�̌a((u+ ca(u))/F (a(u))

�(u)
= ρ(a)

1 − ρ(a)

1 − ρ

ρ
lim inf
u→∞

B0((u+ ca(u))/F (a(u)))

B0(u)
.

If we take a(u) = u1/γ with a γ > 1 that satisfies the assumptions of Proposition 3.2(b), then
(3.15) holds. Therefore,

lim inf
u→∞

�̌a((u+ cu1/γ )/F (u1/γ ))

�(u)
= ρ(a)

1 − ρ(a)

1 − ρ

ρ
.

By substituting this into (3.25) and using the asymptotic equivalence of ψ(u) and �(u)

established in Proposition 3.2, we obtain

lim inf
u→∞

ψ(u, e(u)T )

ψ(u)
≥ ρ(a)

1 − ρ(a)

1 − ρ

ρ
(1 − e−(1−ρ(a))T )

for all a > 0. By now letting a tend to ∞, and noting that ρ(a) tends to ρ, we obtain the lower
bound

lim inf
u→∞

ψ(u, e(u)T )

ψ(u)
≥ 1 − e−(1−ρ)T .

Combining this with the upper bound established earlier completes the proof of the proposition.

Appendix A.

In this section we obtain logarithmic asymptotics for the infinite-horizon ruin probability
when the claim sizes have exponential tails and the claim arrival process is Poisson. As in
Brémaud (2000), we consider the more general form of the risk process with delayed claims,
namely

S(t) =
∑
n≥1

H(t − Tn, Zn)1(0,t](Tn)− ct.

Here T0 = 0 and {Tn}n≥1 are the points of a Poisson process of rate λ, independent of the
independent, identically distributed sequence of marks {Zn}n≥1 taking values in a measure
space (E, E), and H : R+ × E → [0,∞) is a measurable function such that H(·, z) is
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nondecreasing and càdlàg (right continuous with left limits) for all z ∈ E. We defineH(∞, z) =
limt→∞H(t, z), noting that the limit exists but may be infinite. The ruin probability ψ(u) for
u > 0 is as defined in (1.2).

We compare the risk process S(·) with the classical risk process C(·) defined by

C(t) =
∑
n≥1

H(∞, Zn)1(0,t](Tn)− ct,

with corresponding ruin probability�(u) = P(supt≥0 C(t) > u). We are interested in the case
where the claim size distribution has exponentially decaying tails, that is, E[exp{θH(∞, Z1)}]
is finite for θ in a neighborhood of 0. If Cramér’s condition is satisfied, that is, if

there exists an w > 0 such that λ(E[ewH(∞,Z1)] − 1)− cw = 0,

then we have the classical result

lim
u→∞

1

u
log�(u) = −w.

It was shown in Brémaud (2000) that ψ(u) satisfies the same logarithmic asymptotics, that is,

lim
u→∞

1

u
logψ(u) = −w. (A.1)

We now give an alternative proof of this result. Since ψ(u) ≤ �(u) for all u > 0, it suffices to
prove the asymptotic lower bound. To this end, observe that, for all a > 0,

S(t) ≥
∑
n≥1

H(a,Zn)1(0,t−a](Tn)− c(t − a)− ca = Ca(t − a)− ca,

whereCa(·) is defined analogously toC(·), but withH(∞, Z1) replaced withH(a,Z1). Define
�a to be the ruin probability associated with the risk process Ca(·). It follows from the above
that

ψ(u) ≥ �a(u+ ca) for all u > 0 and all a > 0. (A.2)

Also, by the Cramér–Lundberg theorem, for each a > 0 we have

lim
u→∞

1

u
log�a(u) = −wa, (A.3)

where wa is the unique positive solution to

λ(E[ewaH(a,Z1)] − 1)− cwa = 0,

if one exists; otherwisewa = ∞. SinceH(a,Z1) increases toH(∞, Z1) as a → ∞, it readily
follows that wa decreases to w. Therefore, it is immediate from (A.2) and (A.3) that

lim inf
u→∞

1

u
logψ(u) ≥ − lim sup

a→∞
wa = −w.

Combined with the upper bound established earlier, this completes the proof of (A.1).
Finally, we remark that the extension of the results to the case when {Tn}n≥1 constitute a

renewal process is straightforward. The results can also be extended to allow certain kinds of
dependence between Tn and Zn, by following the methods of Albrecher and Teugels (2006).
As the heavy tail case is the main focus of this paper, we do not pursue these extensions here.
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