
18

Integrability in four-dimensional gauge dynamics

Integrability was discussed in Chapter 5 in the context of two-dimensional mod-
els. In particular solutions of spin chain models based on the Bethe ansatz
approach were described in some detail. Integrable models are characterized by
having the same number of conserved charges as the number of physical degrees
of freedom. Furthermore, the scattering processes of those models always involve
conservation of the number of particles.

A natural question at this point is whether integrability is a property of only
two-dimensional models or whether one can also identify systems in four dimen-
sions that admit integrability. Four-dimensional gauge theories have generically
infinite numbers of degrees of freedom and their interactions do not conserve the
number of particles. Thus four-dimensional gauge theories like the YM theory
are not integrable theories. However, it turns out, as will be shown in this chap-
ter, that various sectors of certain four-dimensional gauge theories, which are
derived upon imposing certain limits, do admit integrability.

The two-dimensional integrable models discussed in Chapter 5 were non-
conformal ones and were characterized by a scale and hence also with particles
and an S-matrix. On the other hand the integrable sectors of four-dimensional
gauge theories that we are about to describe are conformal invariant. The main
idea is that these special conformal invariant sectors can be mapped into two-
dimensional spin chains that were described in Section 5.14.

The investigation of this issue is far from complete. Nevertheless, a large body
of knowledge has already been accumulated. In recent years this has followed
the lines of the AdS/CFT duality [158] which is not covered in this book.1 The
purpose of this section is just to demonstrate the idea of the map between gauge
theories and in particular QCD and integrable spin chain models. This will be
done by describing the following cases:

(i) N = 4 super YM theory in four dimensions.
(ii) Scale dependence of composite operators in QCD.

N = 4 super YM theory is known to be the maximal global supersymmetric
theory in four dimensions. Since supersymmetry is beyond the scope of this book
we will not discuss it in the context of the N = 4 SYM. Thus the description

1 For a review of the AdS/CFT the reader can refer to [10].
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330 Integrability in four-dimensional gauge dynamics

of the integrable aspects of the theory will be incomplete and will be missing
certain essential parts. However, since N = 4 SYM is the simplest interacting
four-dimensional non-abelian gauge theory we start with this and then proceed
to a certain limit in non-supersymmetric QCD.

There are several review papers on integrability in four-dimensional gauge
dynamics. In this chapter we follow [31] about the integrability of N = 4 SYM
theory and [34] for the scale dependence of composite operators of QCD.

18.1 Integrability of large N four-dimensional N = 4 SYM

The Lagrangian of N = 4 SYM is given by,

LN=4 = −1
4
Tr [Fμν Fμν ] +

1
2
Tr [DμΦnDμΦn ]− 1

4
g2Tr

[
[Φm ,Φn ]2

]
+Tr

[
ψ̇a

α̇σα̇β
μ Dμψβa

]
− i

2
gTr
[
ψαaσab

m εαβ [Φm , ψβb ]
]
− i

2
gTr
[
ψ̇a

α̇σm
abε

α̇β̇
[
Φm , ψ̇b

β̇

]]
,

(18.1)

where Fμν is the field strength associated with an SU(N) gauge group, Φm is a
set of six m = 1, . . . , 6 scalar fields, and ψ and ψ̇ are doublets of SU(2)× SU(2).
Both the scalars and the spinors are in the adjoint representation of SU(N). The
matrices σμ and σm are the chiral projections of the gamma matrices in four and
six dimensions, respectively and ε is the totally antisymmetric tensor of SU(2).
It is convenient to write the corresponding action as,

S = N

∫
d4x

4π2 LN=4 , (18.2)

where the coupling constant is taken to be g2 ≡ g 2
Y M N
8π2 .

It is well known that the theory, on top of being invariant under SU(N)
gauge symmetry and SO(6) global symmetry, is also conformal invariant and in
fact superconformal invariant. The β function of the theory which vanishes to
all orders in perturbation theory is believed to vanish also non-perturbatively
and hence the theory is assumed to be conformal also in the quantum level. In
Section 17.1 we have described the conformal symmetry algebra in four dimen-
sions. Recall the SO(2, 4)2 conformal transformations (see 17.7) which are being
generated by Pμ , Sμν , D, Kμ , the generators of space-time translations, Lorentz
transformations, dilation and special conformal transformation, respectively.

A major player in the structure of the N = 4 is the dilatation operator D.
Whereas the generators of the Poincare group do not get quantum corrections,
the dilatation operator does so that in fact,

D = D0 + δD(g), (18.3)

2 In fact the N = 4 SYM admits a superconformal algebra of psu(2, 2|4) which we do not
discuss here.
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18.1 Integrability of large N four-dimensional N = 4 SYM 331

Fig. 18.1. A single trace operator as a spin chain.

where D0 is the classical operator and δD is the anomalous dilation operator
which obviously depends on the gauge coupling g.

The “states” of the theory take the form of multi-trace gauge invariant oper-
ators,

Tr [W . . . .W] . . . Tr [W . . . .W] W ∈ {DkΦ, DkΨ, Dk Ψ̇, DkF}, (18.4)

where D stands for the covariant derivative and F ≡ Fμν is the field strength.
The Hilbert space of states is built, as for any conformal field theory, from
Verma modules each characterized by a highest weight state or a primary state,
which were defined in (2.8). An example of a highest weight state is |K> =
ηmnTr[Φm Φn ]. The rest of the Verma module includes the descendant states
which are derived by acting with lowering operators on primary states. Needless
to say the general structure of correlation functions of four-dimensional conformal
field theories discussed in Section 17.6 applies also for the case of theN = 4 SYM.
In particular recall (2.8) that the two-point function of two operators is given by,

<O(x1)O(x2)> =
M(g)

|x1 − x2 |2D(g) . (18.5)

The anomalous dimension can be computed perturbatively as a power series
in g. As was discussed in Chapter 7 the perturbation expansion becomes much
more tractable in the large N limit, namely, in the planar limit. In this limit the
dominant diagram has a vanishing Euler number χ = 2C − 2G− T = 0 where
C,G, T stand for the number of components, genus, namely the number of
handles, and the number of traces, respectively. Since each component requires
two traces, one incoming and one outgoing, it implies that the planar limit
projects onto diagrams with G = 0 and T = 2C. This means that only single
trace operators are relevant.

We have seen above that in the planar limit we deal with single trace operators.
Pictorially, (see Fig. 18.1) a single trace operator looks like a cyclic spin chain.
This map can be made precise. Spin chain as integrable models were discussed
in Section 5.14. Recall that a spin chain includes a set of L spins with cyclic
adjacency property.3 The spin at each site is a module of the symmetry algebra
of the system. The Hilbert space of the whole system is the tensor product
of L modules. In Section 5.14 we discussed only chains with a fixed number

3 In Section 5.14 we denoted the number of spins by N . Here to avoid confusion with the rank
of the gauge group we will refer to the number of spins as L.
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Table 18.1. N = 4 SYM theory to spin chain dictionary

planar N = 4 SYM spin chain

Single trace operator Cyclic spin chain
Field operator Spin at a site
Anomalous dilatation operator g−2δD Hamiltonian
Anomalous dimension Energy eigenvalue
Cyclicity constraint Zero momentum condition U = 1

of spins. One can generalize this situation to incorporate also a dynamic spin
chain with an unfixed number of spins. In this case the Hilbert space is a tensor
product of all Hilbert spaces of a fixed length. In the Heisenberg model each
spin has two possible states and the Hilbert space is therefore C(2(L ) ) . In general
the spin in the chain can point in more than two directions and in particular
also in infinitely many directions, as is the case for the spin chain of the N = 4
SYM theory. In the latter case the spin is mapped into a field operator and the
possible spin states to the components of the gauge symmetry multiplet. The
cyclicity of the single trace operators maps into a constraint on the spin chain
so that states that differ by a trivial shift are identified and hence states with
non-trivial momentum are unphysical. In the language of Section 5.14 we have to
impose U = 1 as a constraint. In the Heisenberg model this renders the Hilbert

space into C( 2 (L ) )

ZL
. The Hamiltonian of the spin chain model translates into the

dilatation operator and the energy eigenvalues to the anomalous dimensions. The
full correspondence between the spin chain and the planar limit of the N = 4
SYM theory is summarized in Table 18.1.

Once the correspondence with a spin chain model has been established, one
can proceed in a similar way as for the Heisenberg spin chain model. The next
step is to write down the algebraic Bethe ansatz which now corresponds to an
SO(6) symmetry if one considers operators constructed only from the fields Φm

or in general the psu(2, 2|4) for the full N = 4 SYM theory. The algebraic Bethe
ansatz, the analog of (18.6) now reads as follows,

(
λk + i/2Vjk

λk − i/2Vjk

)L

=
K∏

l �=k

λk − λl + iMjk ,jl

λk − λl − iMjk ,jl

, (18.6)

where L is the size of the chain (N in (5.224)), the total number of excitation
is K (l in (5.224)) and where for each of the corresponding Bethe roots λk one
specifies which of the simple roots is excited by jk which takes the values of
1, . . . .,#sr with #sr being the number of simple roots which for the SO(6) case
is three and for the psu(2, 2|4) is seven. M is the Cartan matrix of the algebra
(1 in (5.224)) and V are the Dynkin labels of the representation (s in (5.224)).
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The condition of zero momentum now reads,

1 = U =
K∏

k=1

λk + i
2 Vjk

λk − i
2 Vjk

. (18.7)

The energy of a configuration of roots that satisfies the Bethe equation is,

E =
K∑

k=1

Vjk

λ2
k + 1

4 V 2
jk

. (18.8)

This is of course the analog of (5.225) and the higher conserved charges are,

Qr =
i

r − 1

K∑
k=1

(
1(

λ2
k + i

2 Vjk

)r−1 −
1(

λ2
k − i

2 Vjk

)r−1

)
. (18.9)

The leading order part of the transfer matrix reads,

T (λ) =
K∏

k=1

λ− λk + i
2 Vjk

λ− λk − i
2 Vjk

+ . . . ., (18.10)

It was shown that these generalized Bethe equations provide a solution to the
planar anomalous dimensions of the N = 4 SYM theory [162]. This is just the tip
of the iceberg. The integrable structure of the planarN = 4 has been investigated
very thoroughly in recent years. For an early review on the topic the reader can
consult [31]. As an epilog let us mention that, as was shown in [106], one can
identify in a similar manner with what was done in N = 4 SYM [35], a spin
chain structure in gauge theories which are confining and with less or even no
supersymmetries. In that case the spin chain Hamiltonian would not correspond
to the dilatation operator but was rather associated with the excitation energies
of hadrons.

18.2 High energy scattering and integrability

High energy scattering is characterized by the fact that the Mandelstam parame-
ter s = (pA + pB )2 is the largest scale of the system, and in the limit of s→∞ the
energy dependence corresponds to a renormalization group flow of the dynamical
system that “resides” on the two dimensions transverse to the scattering plane.

It is convenient to study the properties of the high energy scattering amplitude
A(s, t) using the Mellin transform,

A(s, t) = is

∫ δ+i∞

δ−i∞

dw

2πi
sw Ã(w, t), (18.11)

where the integration contour goes to the right of the poles of A(w, t) in the
w complex plane. The high energy asymptotic of A(s, t) is determined by
the poles of the partial wave amplitudes, namely if Ã(w, t) ∼ 1

(w−w 0 (t)) , then
A(s, t) ∼ is1+w 0 (t) . Poles in the w plane are referred to as reggeons and the posi-
tion of the pole is called the reggeon trajectory.
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The partial wave amplitude Ã(w, t) can be written using the impact parameter
representation as follows,

Ã(w, t) =
∫

d2b0ei(qb0 )
∫

d2bAd2bB ΦA (�bA −�b0)Tw (�bA ,�bB )ΦB (�bB )

≡
∫

d2b0ei(qb0 ) <Φ(b0)|Tw |Φ(0)>, (18.12)

where the impact factors ΦA (�bA ) and ΦB (�bB ) are the parton distributions which
are functions of the transverse coordinates �bA = �b1

A ,�b2
A , . . . ,�bn

A for the A col-
liding hadron and �bB = �b1

B ,�b2
B , . . . ,�bn

B for the B hadron, and Tw (�bA ,�bB ) is the
scattering (partial wave) amplitude for a given parton configuration. The idea
behind this representation of the amplitude is that the transverse coordinates
of the partons can be considered as “frozen” during the interaction. It implies
that the structure of the poles in the w-plane does not depend on the parton
distribution in the colliding hadrons but rather on the general properties of the
gluon interaction of the t-channel. It was shown [145], that the propagators of
the t-channel gluons develop their own Regge trajectory due to interactions. A
t-channel gluon “dressed” by the virtual corrections is referred to as reggeized
gluon. The reggeized gluons are the relevant degrees of freedom of the high energy
scattering. The partial waves Tw (�bA ,�bB ) can be classified according to the num-
ber of the reggeized gluons propagating in the t-channel. The minimal number
required to get a colorless exchange is two gluons. We will discuss here only this
case. It can be shown that the amplitude Tw (�b1

A ,�b2
A
�b1

B
�b2

B ) satisfies the so-called
BFKL equation that reads [23], [145],

wTw = T (0)
w +

αsNc

π
HBF K LTw , (18.13)

where T (0)
w corresponds to the free exchange of two gluons. Formally one can

write the solution as,

Tw =
[
w − αsNc

π
HBF K L

]−1

T (0)
w , (18.14)

so that the singularities of Tw are determined by the eigenvalues of the operator,

HBF K LΨα (�b1 ,�b2) = EαΨα (�b1 ,�b2), (18.15)

where Ψα is the eigenstate. The high energy behavior of the scattering ampli-
tude is dominated by the right-most singularity of Tw , namely on the max-
imal eigenvalue (Eα )max . The equation (18.15) has the interpretation of the
two-dimensional Schrödinger equation of two interacting particles. The inter-
acting particles can be identified with reggeized gluons and Ψα (�b1 ,�b2) is the
wavefunction of a colorless bound state of them. Defining the holomorphic and
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anti-holomorphic coordinates of the reggeized gluons as follows,

zj = xj + iyj z̄j = xi − iyi , (18.16)

where �bj = (xj , yj ), we can split the BFKL Hamiltonian into a sum of two terms,
one that acts only on the holomorphic coordinates and another that acts only
on the anti-holomorphic ones, as follow HBF K L = H + H̄ where,

H = ∂−1
z1

ln(z12)∂z1 + ∂−1
z2

ln(z12)∂z2 + ln(∂z1 ∂z2 )− 2ψ(1), (18.17)

where z12 = z1 − z2 , ψ(x) is the Euler digamma function defined by ψ(x) =
d ln Γ(x)

dx and in H̄ we replace all the zis by z̄is.
The BFKL Hamiltonian is further invariant under SL(2, C) transformations.

Denoting the SL(2, C) generators (see Section 2.9) by,

Lj− = −∂zj
Lj0 = zj∂zj

Lj+ = z2
j ∂zj

La = L1a + L2a , (18.18)

and similarly for the anti-holomorphic generators, the invariance takes the form,

[HBF K L , La ] = [HBF K L , L̄a ] = 0. (18.19)

This implies that HBF K L depends only on the Casimir operators of SL(2, C)
algebra of the two particles, namely, with,

L2
12 = −(z1 − z2)2∂z1 ∂z2 L̄2

12 = −(z̄1 − z̄2)2∂z̄1 ∂z̄2 , (18.20)

the Hamiltonian must take the form,

H = H(L2
12) H̄ = H̄(L̄2

12). (18.21)

It thus follows that the eigenstates of the Hamiltonian must also be eigenstates
of L2

12 and of L̄2
12 ,

L2
12Ψn,ν = h(h− 1)Ψn,ν L̄2

12Ψn,ν = h̄(h̄− 1)Ψn,ν , (18.22)

where the complex dimensions h and h̄ are given by,

h =
1 + n

2
+ iν h̄ =

1− n

2
+ iν. (18.23)

The non-negative integer n and the real parameter ν specify the irreducible
representation of the SL(2, C) group to which Ψn,ν belongs. The wave functions
which are eigenstates of the Casimir operators take the form,

Ψn,ν (�b) =
(

z12

z10z20

) 1 + n
2 +iν (

z̄12

z̄10 z̄20

) 1−n
2 +iν

, (18.24)

where zij = zi − zj and �b0 = (z0 , z̄0) is the center of mass of the state. The con-
formal dimension of the state is h + h̄ = 1 + 2iν and the spin h− h̄ = n. Upon
substituting these eigenstates into (18.15) and using the explicit form of the
BFKL kernel we find the following eigenvalues,

En,ν = 2ψ(1)− ψ

(
1 + n

2
+ iν

)
− ψ

(
1 + n

2
− iν

)
. (18.25)
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The maximal eigenvalue corresponds to n = ν = 0 or h = h̄ = 1
2 E0,0 = 4 ln 2.

This maximal eigenstate defines the right-most singularity of the partial wave
amplitude. This determines the asymptotic behavior of the scattering amplitude
in the leading logarithmic approximation,

A(s, t) = is1+ αsN
π 4ln2 (18.26)

which is referred to as the BFKL Pomeron. Using the explicit form of the eigen-
value one can reconstruct the operator form of HBF K L acting on the represen-
tations of the SL(2, C) group,

HBF K L =
1
2
[H(J12) + H(J̄12) H(j) = 2ψ(1)− ψ(j)− ψ(1− j), (18.27)

where L2
12 = J12(J12 − 1), and similarly for L̄2

12 . This is a special case of the
Heisenberg spin chain of spin s operators whose Hamiltonian takes the form,

Hs =
L∑
i

H(Ji,i+1) Ji,i+1(Ji,i+1 + 1) = (�Si + �Si+1)2 , (18.28)

where Ji,i+1 is related to the sum of two spins of the neighboring sites, �S2
i =

s(s + 1) and H(x) is the following harmonic function,

H(x) =
2s−1∑
l=x

1
1 + l

= ψ(2s + 1)− ψ(x + 1). (18.29)

To connect it to the analysis of Section 5.14 we check this for s = 1/2. For this
case Ji,i+1 can take one of the two values 0, 1 for which we have H(0) = 1 and
H(1) = 0, so that the Hamiltonian is a projection into Ji,i+1 = 0 subspace with
H(Ji,i+1) = 1

4 − �Si · �Si+1 which is identical to (5.158).
One can generalize the exchange of colorless boundstates of two reggeized

gluons to exchange of multireggeon boundstates built from Nr reggeized gluons.
This is beyond the scope of this book and can be found for instance in [34].
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