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IS VERTICAL SHEAR IN AN ICE SHELF NEGLIGIBLE?

By T. J. O. Sanperson and C. S. M. Doaxke

(British Antarctic Survey, Natural Environment Research Council, Madingley Road,
Cambridge CB3 oET, England)

AssTRACT. Vertical shear stress in ice shelves cannot be precisely zero, since the upper and lower surfaces
are generally not parallel. By performing stress balance on a vertical column in an ice shelf we calcuiate
what its magnitude must be. This is done for an unconfined glacier tongue and for a confined bay ice shelf;
first, using the assumption of constant temperature and density with depth, and secondly, using realistic data
and profiles for Ercbus Glacier tongue and for the Amery Ice Shelf, Shear stresses increase almost linearly
with depth and are proportional to surface slope. For Erebus Glacier tongue the shear stress is at most 5%,
of the magnitude of the direct stress deviators and its action through the ice shelf should result in differential
movement of 1.8 cm a~! between the top and bottom of the ice shelf, For the Amery Ice Shelf, the shear stress
is at most 0.4%, of the magnitude of the direct stress deviators and this should lead to differential movement
of 2.5 em a=! between the top and bottom of the ice shelf, Shear stresses are therefore generally negligible in
comparison with direct stress deviators and can be ignored when considering the overall dynamics of ice
shelves. Differential movement is unlikely to be detectable.

ReEsume. Le cisaillement vertical dans une platforme de glace est-il négligeable? La tension de cisaillement dans les
platformes de glace ne peut étre rigourcusement nul, puisque les surfaces supéricures et inférieures ne sont
géncralement pas paralleles. En établissant le bilan des contraintes sur une colonne verticale dans une
platforme de glace nous calculons ce que peut stre leur ordre de grandeur. Ceci est fait pour une langue
flottante de glacier et pour une platforme dans unc baie, d’abord dans I’hypothése d’une densité et d’une
température constante, quelle que soit la profondeur, ensuite en utilisant les résultats de profils réels exécutés
sur la langue flottante de I'Ercbus Glacier et sur I'Amery Ice Shelf. Les tensions de cisaillernents augmentent
presque linéairement avec la profondeur et sont proportionnels ala pente de lasurface, Pour la langue flottante
de Erebus Glacier, le cisaillement est au plus de 5%, de Pordre de grandeur des déviateurs directs des
contraintes, et son action A travers la calotte produit un mouvement différentiel de 1,8 cm a1 entre le
sommet et le fond du glacier. Pour I'Amery Ice Shelf, le cisaillement est au plus de 0,49%, de l'ordre de
grandeur des déviateurs directs des contraintes et ceci conduit & un mouvement diflérentiel de 2,5 cm a~!
entre le haut et le fond de la platforme. Les cisaillements sont donc généralement négligeables devant les
contraintes directes et peuvent étre ignorés quant on considére la dynamique globale des platformes. 11 est
peu probable que les mouvements diflérentiels puissent étre décelables.

ZUSAMMENFASSUNG, [st Vertikalscherung in einem Schelfeis vernachldssighar ? Die vertikale Scherspannung in
Schelfeisen kann nicht genau Null sein, da die obere Begrenzungsfliche im allgemeinen nicht parallel zur
unteren ist. Aus dem Ansatz cines Spannungsgleichgewichtes in einer vertikalen Saule durch das Schelfeis
ergibt sich die Grosse der vertikalen Scherspannung. Der Ansatz erstreckt sich auf eine unbegrenzte Glet-
scherzunge und auf ein begrenztes Bucht-Schelfeis, wobei zunichst die Annahme konstanter Temperatur und
Dichte mit der Tiefe getroffen wird und dann echtes Datenmaterial und Profile fir die Zunge des Erebus-
Glaciers und fir das Amery-Ice Shelf herangezogen werden. Die Scherspannungen wachsen nahezu linear
mit der Tiefe an und sind proportional zur Oberflichenncigung, Fiir die Ercbus-Zunge betrigt die Scher-
spannung hachstens 5%, des Wertes der unmittelbaren Spannungsdeviatoren; ihre Wirkung durch das
Schelfeis sollte zu einer differentiellen Bewegung von 1,8 cm a—' zwischen Oberfliche und Unterseite des
Schelfeises fithren. Fir das Amery-Ice Shelf betragen die entsprechenden Werte héchstens 0,4%, und
2,5 cm a~'. Scherspannungen sind daher im allgemeinen gegeniiber den unmittelbaren Spannungsdeviatoren
zu vernachlissigen und brauchen bei der Untersuchung der Gesamtdynamik von Schelfeisen nicht beriick-
sichtigt zu werden. Die differentielle Bewegung diirfte kaum feststellbar sein.

InTRODUCTION

It is usually assumed in discussing the dynamics of ice shelves that vertical shear quantities
are negligible (Weertman, 1957; Budd, 1966; Thomas, 1973[b]; Robin, 1975; Sanderson,
in press); in ‘Thomas (1973[b]) it is the sole restriction. It is worthwhile proving that this
assumption is justified.

Early literature on ice shelves considered them to be of uniform thickness (Robin, 1953;
Weertman, 1957). In this case it is true that vertical shear is zero, since the ice shelf is a
uniform horizontal slab subject to zero friction at its upper and lower surfaces. It is, however,
now clear that most ice shelves have appreciable thickness gradients, and in this case shear
stresses are no longer precisely zero. This can be illustrated by considering ice as a perfectly
plastic material and looking at the slip-line field through an ice shelf (Fig. 1). A slip-line
field is represented by two orthogonal families of curves drawn so that their directions at any
point coincide with the two perpendicular directions of maximum shear stress. Since the
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upper and lower surfaces of the ice shelf are subject to zero friction this means that slip lines
must meet them at 45°. For the case of a uniform-slab ice shelf, the slip-line field is simple:
lines pass straight through the ice shelf at 45° to the horizontal (Fig. 1a). For the case of a slab
with varying thickness, however, the slip lines must curve in order to meet both surfaces at 45°
(Fig. 1b). This curvature of the slip lines is associated with a varying component of shear
stress in the vertical direction. We shall develop a method for calculating its magnitude by
using a realistic power flow law for the flow properties of ice. The method involves the
assumption that velocity is uniform through an ice shelf and the' demonstration that this
assumption is not perfectly self-consistent: it requires the existence of small shear stresses and
hence small shear strain-rates.

a b
Fig. 1. Schematic diagram of slip-line field through an ice shelf modelled as a plastic material : a. horizontal, parallel-sided
ice shelf; b. ice shelf with thickness gradient. The dashed line represents sea-level.

sea

ice shelf

Fig. 2. Symbols used in discussion of ice-shelf stresses. The rectangle ARFE lies on the upper surface of the ice shelf and the
rectangle coMG is horizontal at some depth in the body of the ice shelf.

1. SHEAR STRESSES
Unconfined ice shelves

We define axes as in Figure 2. The x-axis is horizontal in the direction of flow and the z-
axis is measured vertically upwards from sea-level. The ice thickness is H and the elevation
of the upper surface is &. The surface slope is 8. The density of the ice is p which we, for the
moment, assume to be constant with depth. Direct stresses are denoted by 6z, 3yy, and oz,
and shcar stresses are denoted by 62y, 62z, and g,,. We assume the low-law form (Paterson,
1969, chapter 6)

éy = B‘n‘r"_'du' (I,_] = X. ¥ z), ' (1)
where &; is the strain-rate. Stress deviators o, are defined through
aij’ = gij— dip, (2)
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where p is hydrostatic pressure, and 8;; = 1ifi = j, and 8; = oifi # J- The effective stress 7
is defined by
2712 = ay' oy’ (3)
B is an empirical constant which is temperature dependent; we begin by assuming it to be

constant through the ice shelf. We take n = 3,
For quasi-static creep the general conditions of stress equilibrium are:

- ~
0Gzz  00zy €Oz

= = =0
ox & ' 0z : (4)
Ecyy Eﬁy;{; acyz
oy ox oz (5)
E\'O'zz 30‘,1 30‘;_3,

= (6)

oz ' ox oy
In treating the case of an unconfined ice shelf we make the following assumptions:
(a) that the ice shelf is floating in hydrostatic equilibrium, so that
(H—h)pw = Hp, (7)
where py is the density of sea-water.
(b) that the ice shelf is free and uniform in the y-direction; no quantities vary in this
direction, and shear stresses ozy and gy, are zero.
(¢) that fo../0x — 0. We shall see later (Equation (17)) that this is strictly true if
00/ox = o.
The equilibrium Equations (4), (5), and (6) then reduce to
Cazy 06,

0
ox 0z %

(8)
L
ay e )
0622
2z P& (9)

Integrating Equation (g) we have, in general,

62z = pgz+1(x, ),
where f(x, y) is some arbitrary function of x and y. At the upper surface, z = h(x), vertical
force balance requires that o, = fo,,. However, we are for the moment assuming that
o2z is zero, therefore, since no quantities depend on y, and neglecting atmospheric pressure,
we have a;; = 0 at the upper surface. Then it follows that

62z = pg(z—h(x)). (10)
Consider now the stress deviators. We have
0':;:5' = sz—%(dxx+ayy+czz)s
but since the ice shelf is unconfined in the x and y directions we must have
Ozx = Oyy,
and hence
r
Oze = Oyy = }(6zz—02zz). (11)
Also, assuming that ice is incompressible we have

€xztéyytézz = 0,
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and, therefore, through the flow law (Equation (1))

O'xx""‘ﬁyy"i“dzz‘ = 0.
Hence,
G'zz‘ — %(Gzz—o'xz). (12)
In calculating 72 in the flow law we shall treat the shear stress oz as small compared to the
stress deviators. The result of our calculation will justify this assumption. By Equations (11)
and (12) this leads to
72 = }{0zz—0z)* (13)

The equation for flow in the x-direction is then, from Equations (1), (11), and (13),

e L (U'a::c—o'zz) 3
€xx — 9 __-B .

Inserting Equation (10) we then have
6rz = B(9éxz) + pe(2—h). (14)
To achieve equilibrium of forces we must balance the total force of 647 acting over a vertical

column in the ice shelf with the total force of sea-water pressure acting on it. That is,
h o

ozzdz = f pwii dz.
—(H=h) —(H—h)
Performing these integrations using Equation (14) we find, assuming that ézz is uniform with

depth, that
. _ 1 {pehy
€a:a:—g ab]? (15)

which we have simplified using Equation (7). B is the average of B over depth. Substituting
this into Equation (14) and now assuming B uniform with depth, we have:

53 = pa(z—Hhf2). (16)
This gives oz as a function of depth for any thickness of ice shelf. The equation was achieved
by overall balance of total internal force due to weight of ice with total external force due to
sea-water pressure. We now ask whether stresses exactly balance each other at all depths
through the ice shelf. We find that they do not, and that a vertical shear stress oz must be
present to make up the balance.

Consider the equilibrium of a vertical column ABCDEFGH (Fig. 2). The sum of all forces on
the six surfaces must be zero. We shall consider forces in the x-direction. There is zero
traction on the surfaces ABFE, ABCD, and EFGH, so if there is any imbalance between forces on
AEHD and BFGE it must be counteracted by shear oz along couG. This is equivalent to inte-
grating Equation (8) with respect to z. We have:

h—08x h

Gz00% = J ozz(x+8x) dz— f oxz(x) dz.
z z
Performing these integrations using Equation (16) we find
022(2) = —pgdz/2. (17)
This shows that on our simple model, in which density and flow parameter are constant with

depth, shear stress varies linearly with depth, and is independent of flow parameter. It is
zero at sea-level and maximum at the bottom of the ice shelf.
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By considering stresses on a small element near the surface, and using Equations (10) and
(17), it can be shown that the shear traction on the slanting upper and lower surfaces is indeed
zero, as it should be. Vertical forces at the surfaces do not balance properly, since we earlier
assumed that o;; = o at the upper surface, and yet we have now shown the existence of a
non-zero shear stress o,; = —pgfh/2. Since o6, = fo,, we should strictly now have
azz = —4pgh2. The analysis thus contains a slight discrepancy. The error is a second-order
correction and could be included if the whole procedure were to be iterated further.

From Equations (11) and (16) we find that

orz’ = pgh/6.

Therefore,
o2z = —30(2/h) azz".

Surface slopes of unconfined ice shelves are generally small. For Erebus Glacier tongue
(Holdsworth, 1974), 6 is approximately g 1073. Since z can be at most some six times the
magnitude of & we see that 6 is at most five per cent of the magnitude of 62". 62 is therefore
generally negligible in comparison with a7, especially since we generally find ourselves
comparing the squares of these quantities, as in Equation (3).

We can also perform the calculation for a real case in which density and temperature vary
with depth. The calculation is lengthy and does not lead to a simple analytic answer like
that of Equation (17), but it follows the same principles as above. For a particular case we
look at Erebus Glacier tongue and use data from Holdsworth (1974). We assume that
density varies with depth according to the model of Schytt (1958) and we adopt a temperature
variation similar to those in Wexler (1960). We assume that the flow parameter B has a
Boltzmann temperature dependence (Paterson, 1969, p. 83)

B3 = Aexp (—Q|RT),
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Fig. 3. Shear stress as a function of height z above sea-level for (a) Erebus Glacier Tongue (unconfined) ; (b) Amery Ice Shel
(confined). The solid line shows the result of assuming density and temperature constant with depth, and the dashed line
shows the result of allowing them to vary realistically.
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where
Q/R = 7.203 x 103 K,
and T is the absolute temperature.

We fit the constant 4 in order to agree with value of B found by Holdsworth from his data.
The result of the calculation, carried out for a point five kilometres from the hinge zone, is
shown in Figure ga. It is shown together with the result obtained by assuming a constant
density and flow parameter, as in Equation (17). The shear stresses in the two cases are
significantly different, but show the same form and order of magnitude.

Confined bay ice shelves

Consider now an ice shelf in a parallel-sided bay (Thomas, 1973[b], fig. 2). The ice shelf
is confined in the y-direction and undergoes shear at the sides. We assume that shear stress
at the sides reaches a limiting value 75 (Thomas, 1973[b]) and write

062y
Ogy =V a—y )
and, therefore,
eﬁzy 'l_'s
ey b i

where A is the half-width of the ice shelf. We still assume that 2o5,/@x = o, since #; and A
are independent of x, and that fo,2/2x = 0. We assume that oz, = 0. We can then write

Equations (4), (5), and (6) as

-

aﬁxg; E-‘O'g:z fs
B o
ox r cz +/\ 2
oo 18
. SRR ¥ LEe)
oy
0622
P

~

Now éyy = o and therefore oy, = 0 by Equation (1) so that we have from Equation (2)
Orz = 207z + 02z (19)
We continue to treat shear stresses as small in the effective stress expression Equation (3) and
we find this leads to
= i(ﬁ';;;c—o'zz)z- (20)

From Equation (18) we still have
02z = pg(2—h(x)),

and so
oze = 2Bézst +pe(z—h(x)). (21)
Creep in a bay ice shelf is given by (Thomas, 1973[b])
X
il =[BRSt [T
Ennlx) = [4B+23Hf 3 dx] . (22)
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where x —= X marks the scaward margin of the ice shell. By considering the dependence of
this function on x we find that to first order in small quantities §x we can write

seetri b = [ gy [ 08 B [H 7w o]
érr(x+0x) - [43(11—88‘&4,(1# Iz)zBHJ /\rl.x—QB(\ Sx]. (23)

A
We can now, as before, consider the balance of stresses on a column in the ice shelf. Consider
the column ascorren (Fig. 2). We must equate the forces in the x-direction over all the
surfaces of the volume, but we now have to include horizontal shear stress on the surfaces
apcp and ErGH. The force due to stresses on these surfaces is simply
(7s/A) (h—2z) Bx &y,
SO We can write

I 8éx h
. .

Gz O By = % (h—2z) 8x dy+ 8y J Grr(x+8x) dz— 8y J ari(x) dz.

We perform these integrations using Equations (21), (22), and (23) and we find that

X
0z (pch 7o [ H .
Gz = "F( o ! ﬁ _/\ d“) . (24)

Again, we find that the simple model with a constant density and flow parameter leads to a
shear stress which is linearly dependent on depth and zero at sea-level. The two terms in
Equation (24) are of different sign, since 7, is negative; the shear stress may therefore have
different senses, depending on which term dominates. In practice the term pgh/2 is generally
the greater, which corresponds to the state of extending flow generally found in ice shelves.
I'rom Equations (1g), (21), and (22) we find that the horizontal stress deviator is given by

»

., Lfpsh = Hd- :
e =2la HJ) AT

and therefore

20z

e =TTF
Looking at data for the Amery lce Shell (Thomas, 1973a]) we see that surface slopes are
about 3 » 10 4. "T'his means that shear stresses are at most some 0.4, of direct stress deviators.
It is therefore again true to say that they are negligible.

As for the unconfined ice shelf treated above we can also carry out the calculation using
realistic assumptions about density and temperature profiles. Using data for station G2 on
the Amery Ice Shelf we find again that shear stress is essentially of the same form and magni-
tude as that calculated on the simple model. Figure 3b shows shear stress as a function of
depth for the two models.

Grx .

2. SHEAR STRAIN-RATES
We consider now the deformation produced by the calculated shear stresses. We write the
How law as
. T-z e
€zr - E Ozrs (25)
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and allow B to vary with depth in a realistic manner. For an unconfined ice shelf it is readily
shown that
T2 = 3-%Bze'xx‘§’
where ¢, is given by Equation (15). For a confined ice shelf we can show similarly that
T2 = Bzéngy

where é;, is given by Equation (22). Strain-rates can then be found using these relations
and the same temperature and flow law assumptions as in Section 1.

Such shear strain-rates lead to differential motion between the top and bottom of the ice
shelf. For pure shear we have

€z = au:;,llaz,
where u, is the x component of velocity, so that
s

Uz (5) —tz(b) = f ézz dz,

where s and b denote the upper and lower surfaces of the ice shelf. Integrating numerically
we find that the differential motion between the top and bottom of the shelf is 18 mm a="
for the Erebus Glacier tongue and 25 mma~! for the Amery Ice Shelf; the top is moving
faster than the bottom. These movements are negligible, perhaps not even detectable.

MS. received 25 May 1978 and in revised form 26 October 1978
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