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IS VERTICAL SHEAR IN AN ICE SHELF NEGLIGIBLE? 

By T. J. O. SANDERSON and C. S . M. DOAKE 

(British Antarctic Survey, Natural Environment Research Council , M adingley Road, 
Cambridge CB3 oET, England) 

ABSTRACT. Vertical shea r stress in ice shelves cannot be precisely zer o, s ince the upper and lower surfaces 
are genera lly not parallel. By p erforming stress ba la n ce on a vertical column in an ice shelf we calculate 
wha t. its m agnitude must be. This is done for a n unconfined glacier tongue a nd for a con fin ed bay ice shelf; 
first, using the assumption of con stant temperature and d ensity with d epth, and secondly, using realistic data 
and profiles fo r Erebus Glacie r tongue and for the Amery Ice Shelf. Shcar stresses increa se a lmost linearly 
with depth a nd are proportiona l to surface slope. F or Erebus Glacier to ngue the shear st ress is at most 5% 
of the m agnitude of the d irect stress d eviators a nd its action through the ice shelf should result in differentia l 
movement of 1.8 cm a- I between the top and bottom of the ice shelf. F or the Amery Ice Shelf: the shear stress 
is a t most 0 .4% of the magnitude of the direct stress d eviators and this sh o uld lead to d ifferen t ia l movement 
of 2.5 cm a- I between the top ancl bottom of the ice shelf. Shear stresses a re therefore gen era lly negligible in 
comparison with direct stress d evi a tors and can b e ignored when considering the overa ll dynamics of ice 
shelves. Differential movem ent is unlikely to be cle tecta ble. 

R EsuME. Le eisaillelllent 1'ert ienl da lls IIIle platforme de glace est-il llegligenble? La tension de cisaillement dans les 
pla tformes cle glace ne peut c trc rigoureusement nul, puisque les surfaces superieures et inferi eures ne sont 
generalem ent pas paralldcs. En e ta bl issant le bila n cles contraintes sur une colon ne verticale dans une 
platforme d e glace nous ca lcul o ns ce que peut xtre leur ordre de grandeu r. Ceci est fa it p our une langue 
flottante d e glacier et pour un e pla tfo rme dans une ba ie, d 'abord dan s I' hypothese d ' une d ensite et d 'une 
temperature constante, quelle q ue so it la profondeur, ensuite en utilisant les resultats de pro fil s reels executes 
sur la langu e fl ottante cle l'Erebus G lacier et sur I' Amery Ice Shelf. Les t ensions de cisaillem e nts a ugmentent 
presque linea irement a\TC la pro(o nd eur et sont propo rtionncls it la pente de la surface . Pour la la ngue flottante 
de l'Erebus Glacier, le cisa illcme nt es t au plus d e 5° ~ de I'ord re d e g randeur des clevia te urs clirects d es 
contraintes, e t son action it traye rs la ca lotte p roduit un mouvem en t d ifferentiel de 1,8 cm a- I entre le 
sommet et le fond du glac ier. P our l'Amery Ice Shelf, le cisaillement est a u plus de 0,4 % de I'ordre de 
gra ndeur d es d evia teurs clireCls cles contra in tes et ceci cond uit it un m o u vement differentiel d e 2,5 cm a- I 
entre le h a ut et le fond de la p la tforme. Les cisa ill c lllen ts sont done gene ralement negligeables devan t les 
contraintcs direc tes et reuvent c tre ignores qua nt o n considere la d yna miq ue globale des pla tforlll es. Il est 
peu proba ble que les mouvemc nts d iflerentiels puissen t e tre decelables. 

Z USAMM ENFASSUNG. 1st Vertiknlscherung ill einem Schelfeis 1'emaelzliissigbar ? Die vertikale Sch erspannung in 
Schelfeisen ka nn nicht gena u Null scin , da die obere BegrenzungsAach e irn a llgemeinen ni cht parallel zur 
unteren ist. Aus dem Ansa tz e ines S pann ungsgleich gewichtes in einer vertikalen Saule durch clas Sche1feis 
ergibt sich die Griisse del' vertika le n Scherspan nung . D er Ansatz erst reckt sich auf eine unbegrenzte Glet­
schcrzunge und a uf ein begren ztes Bucht-Schcl feis, wobei zunachst die Anna hme konsta nter T e mpera tur unci 
Dichte Illit d er Tiefe getroffen wird und dann echtes Datenmateria l und Profile fur die Zunge des Erebus­
Glaciers und fUr cl as Amery-l ce S helf herangezogen werden. Die Scherspannungen wach sen nahezu linear 
mit der Tiefe a n und sind proportiona l zur Oberflach enneigung. Fur die Erebus-Zunge b etragt die Scher­
spannung hiichstens 50 0 cl es "" ert es cler unmittel b a ren Spannungsd evia toren ; ihre Wirkung durch das 
Schelfeis sollte zu einer d iffere n t ie lle n Bewegung von 1,8 cm a- I zwisch en Oberflache und U nterseite des 
Schclfeises fuhrcn. HiI' das Amery- Ice Shelf betra gen die entsprech e nden Wertc hiich ste ns 0.4% unci 
2, 5 cm a- I. Sch erspannungen sind daher im a llgem einen gegenuber den unm itteIbaren Spa nnungscleviatoren 
zu vernachl ass igen und brauch en b ei del' U ntcrsu chung der Gesamtdynamik von Schelfeisen nicht beruck­
sichtigt zu we rden. Die diffcrentie lle Bewegung durfte kaum feststellba r sein. 

INTRODUCTION 

It is usua lly a ssumed in discussing the dynamics of ice shelves that vertical shear quantities 
are negligible (W eertman, 1957 ; Budd, 1966 ; Thomas, 1973[b]; Robin, 1975; Sanderson, 
in press) ; in Thomas (1973[b] ) it is the sole restriction. It is worthwhile proving that this 
assumption is justified. 

Early literature on ice shelves considered them to be of uniform thickness (Robin, 1953; 
Weertman, 1957). In this case it is true that vertical shear is zero, since the ice shelf is a 
uniform horizontal slab subject to zero fri ction a t its upper and lower surfaces. It is, however, 
now clear that most ice shelves have appreciable thickness gradients, and in this case shear 
stresses are no longer precisely zero. This can be illustrated by considering ice as a perfectly 
plastic material and looking at the slip-line fi eld through an ice shelf (Fig. I ) . A slip-line 
field is represented by two orthogonal families of curves drawn so that their direc tions at any 
poin't coincide with the two perpendicular directions of maximum shear stress. Since the 
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upper and lower surfaces of the ice shelf are subject to zero friction this means that slip lines 
must meet them at 45 °. For the case of a uniform-slab ice shelf, the slip-line field is simple : 
lines pass straight through the ice shelf at 45 ° to the horizontal (Fig. 1 a ). For the case of a slab 
with varying thickness , however, the slip lines must curve in order to meet both surfaces at 45 ° 
(Fig. 1 b). This curvature of the slip lines is associated with a varying component of shear 
stress in the vertical direction. We shall develop a method for calculating its magnitude by 
using a realistic power flow law for the flow properties of ice. The method involves the 
assumption that velocity is uniform through an ice shelf and the ' demonstration that this 
assumption is not perfectly self-consistent: it requires the existence of small shear stresses and 
hence small shear strain-rates. 

a b 
Fig. [. Schematic diagram qf slip-line field through an ice shelf modelled as a plastic material: a . horizontal, parallel-sided 

ice shelf; h. ice shelf with thickness gradient. The dashed line represents sea-level. 
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Fig. 2 . S.ymbols used in discllssion oJ ice-shelf stresses . The rectangle ABFE lies on the upper surface qf the ice shelf alld the 
rectallgle CDHG is hori ::;olltal at sOllle depth ill the body qf the ice shelf. 

I. SHEAR STRESSES 

Unconfined ice shelves 

We define axes as in Figure 2. The x-axis is horizon tal in the direction of flow and the z­
axis is measured vertically upwards from sea-level. The ice thickness is H and the elevation 
of the upper surface is h. The surface slope is 8. The density of the ice is p which we, for the 
moment, assume to be constant with d epth. Direct stresses are denoted by crxx, cryy , and cr •• , 
and shear stresses are denoted by crx y , cr x z, and cryz . We assume the flow-law form (Paterson, 
1969, chapter 6) 

(i,j = x,y, z ), 

where €ij is the strain-rate. Stress d eviators cry' are defined through 

crii' = crij - OjiP, 
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where p is hydrosta tic pressure, and oil = I if i = j, and Oil = 0 if i ¥- j . The effective stress T 

is defined by 

B is an empirical constant which is temperature dependent; we begin by assuming it to be 
constant through the ice shelf. We take n = 3. 

For quasi-static creep the general conditions of stress equilibrium are : 

oa xx oCJ xy oa xz - +- +- = 0 (4) ox oy 0;:; , 

oayV oayX oayZ 
T +Tx+--az = 0, (5) 

oazz oCJzx oaZY 
--az+Tx+ oy = pg. (6) 

In treating the case of an unconfined ice shelf we make the following assumptions: 

(a) that the ice shelf is floating in hydrostatic equilibrium, so that 

(H-h )pw = Hp, (7) 
where pw is the density of sea-water. 

(b ) tha t the ice shelf is free and uniform in the y -direction; no quantities vary in this 
direction, and shear stresses axy and CJyz are zero. 

(c) that oaxz/ox = o. We shall see later (Equa tion (17)) that this is strictly true if 
oO/ox = o. 

The equilibrium Equations (4), (5) , and (6) then reduce to 

oaxx oaxz } Tx+--az = 0, 

oCJy y 
-- = 0 oy , 

oCJzz Tz = pg. 

Integrating Equation (9) we have, in general, 

azz = pgz+ f(x,y), 

(8) 

(9) 

where f(x ,y) is some arbitrary function of x and y . At the upper surface, ;:; = h(x), vertical 
force balance requires that CJzz = Oazx. However, we a re for the moment assuming that 
azx is zero, therefore, since no quantiti es depend on y, and neglecting a tmospheric pressure, 
we have azz = 0 at the upper surface. Then it follows that 

azz = pg(;:; - h(x)). 

Consider now the stress deviators. W e have 

CJxx' = axx-k( CJxx+ ayv + azz), 

but since the ice shelf is unconfined in the x and y direc tions we must have 

axx = CJyy, 

and hence 

Also, assuming that ice is incompressible we have 

ixx + iyy+ izz = 0, 

( 10) 

(11 ) 
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and, therefore, through the flow law (Equation ( I)) 

aXx' +ayy' + aZz' = o. 

Hence, 

In calculating 7 2 in the flow law we shall treat the shear stress axz as small compared to the 

stress deviators. The result of our calculation will justify this assumption. By Equations (I I) 

and (12) this leads to 
( 13) 

The equation for flow in the x-direction is then, from Equations ( I ) , ( I I ) , and (13) , 

. _.: [ ( axx-azz )] 3 

"xx - 9 B . 

Inserting Equation (10) we then have 

axx = B (gEXX) !+pg(z-h). 

To achieve equilibrium of forces we must balance the total force ofaxx acting over a vertical 

column in the ice shelf with the total force of sea-water pressure acting on it. That is, 

h 0 

faxx dz = f pwgz dz. 

- (H-h) -(H - h) 

Performing these integrations using Equation ( 14) we find , assuming that EXX is uniform with 

depth, that 

€xx = ~(:g~y, 
which we have simplified using Equation (7) . B is the average of B over depth. 

this into Equation (14) and now assuming B uniform with depth, we have: 

crxx = pg(Z -hj2). 

( 15) 

Substituting 

( 16) 

This gives axx as a function of depth for any thickness of ice shelf. The equation was achieved 

by overall balance of total internal force due to weight of ice with total external force due to 

sea-water pressure. We now ask whether stresses exactly balance each other at all depths 

through the ice shelf. We find that they do not, and that a vertical shear stress axz must be 

present to make up the balance. 

Consider the equilibrium of a vertical column ABCDEFGH (Fig. 2 ) . The sum of all forces on 

the six surfaces must be zero. We shall consider forces in the x-direction. There is zero 

traction on the surfaces ABFE, ABCD, and EFGH, so if there is any imbalance between forces on 

AEHD and BFGC it must be counteracted by shear azx along CDHG . This is equivalent to inte­

grating Equation (8) with respect to z. We have: 
h-Ob h 

azxox = J axx(x+ ox) dz- J axx (x) dz. 

z 

Performing these integrations using Equation ( 16) we find 

crzx(Z) = - pg(h j2. 

This shows that on our simple model, in which density and flow parameter are constant with 

depth, shear stress varies linearly with depth, and is independent of flow parameter. It is 

zero at sea-level and maximum at the bottom of the ice shelf. 
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By considering stresses on a small element near the surface, and using Equations (10) and 

(17), it can be shown that the shear traction on the slanting upper and lower surfaces is indeed 
zero, as it should be. Vertical forces at the surfaces do not balance properly, since we earlier 
assumed that crzz = 0 at the upper surface, and yet we have now shown the existence of a 
non-zero shear stress crzx = - pg(Jh/2. Since crzz = (Jazx we should strictly now have 
crzz = -!pgh(J2. The analysis thus contains a slight discrepancy. The error is a second-order 
correction and could be included if the whole procedure were to be iterated further. 

From Equations ( I I) and (16) we find that 

axx' = pgh/6. 

Therefore, 

crzx = -3(J(z /h) crxx'. 

Surface slopes of unconfined ice shelves are generally small. For Erebus Glacier tongue 
(Holdsworth, 1974), (J is approximately 3 X 10- 3. Since z can be at most some six times the 
magnitude of h we see that azx is at most five per cent of the magnitude ofaxx' . azx is therefore 
generally negligible in comparison with axx', especially since we generally find ourselves 
comparing the squares of these quantities, as in Equation (3). 

We can also perform the calculation for a real case in which density and temperature vary 
with depth. The calculation is lengthy and does not lead to a simple analytic answer like 
that of Equation (17) , but it follows the same principles as above. For a particular case we 
look at Erebus Glacier tongue and use data from Holdsworth (1974). We assume that 
density varies with depth according to the model ofSchytt (1958) and we adopt a temperature 
variation similar to those in Wexler (1960). We assume that the flow parameter B has a 
Boltzmann temperature dependence (Paterson, 1969, p. 83) 
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B-3 = A exp (-Q/RT), 
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Fig. 3. Shear stress as a/unction of height z above sea-level for (a) Erebus Glacier Tongue (unconfined); (b) Amery Ice SheL 
(confined ). The solid line shows the result qf assuming density and temperature constant with depth, and the dashed line 
shows the result of allowing them to vary realistically. 
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Q/R = 7.293 X 103 K, 

and T is the absolute temperature. 
We fit the constant A in order to agree with value of B found by Holdsworth from his data . 

The result of the calculation, carried out for a point five kilometres from the hinge zone, is 
shown in Figure 3a. It is shown together with the result obtained by assuming a constant 
density and flow parameter, as in Equation (17). The shear stresses in the two cases are 
significantly different, but show the same form and order of magnitude. 

Confined bay ice shelves 

Consider now an ice shelf in a parallel-sided bay (Thomas, 1973[b), fig. 2). The ice shelf 
is confined in the y-direction and undergoes shear at the sides. We assume that shear stress 
at the sides reaches a limiting value TS (Thomas, 1973[b)) and write 

oaXY 
axy =y-v' 

and, therefore, 

oaXY TS 
ay=""'\' 

where .\ is the half-width of the ice shelf. We still assume that oaXY/ox = 0, since Ts and .\ 
are independent of x, and that oazx/ox = o. We assume that azy = o. We can then write 
Equations (4), (5), and (6) as 

oaxx oaxz Ts 
- +-+-=0 ox a;:. ,\ , 

oayy 
-- = 0 oy , 

oazz 
0;:' = pg. 

Now iyy = 0 and therefore ayy' = 0 by Equation (I) so that we have from Equation (2) 

axx = 2axx' + azz· (19) 

We continue to treat shear stresses as small in the effective stress expression Equation (3) and 
we find this leads to 

T2 = Haxx- azz)2. 

Therefore, by Equations (I), (19), and (20) 

. _ .: (axx-azz)3 
Exx - 8 B . 

From Equation (18) we still have 

azz = pg(;:.-h(x)), 

and so 

axx = 2Bixx~+ pg (;:. -h(x)). 

Creep in a bay ice shelf is given by (Thomas, 1973[b)) 
x 

ixx(x) = [:~ + 2;~ f ~ dX] 3, 
x 
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where x = X m a rks the seawa rd margin of the ice shelf. By considering the d ependence of 
this fun ction o n x wc find that to first order in sm a ll quantities 8x we can write 

.r 

[
pa ( 08X) i\ J' H f S ]3 

Exx (x + 8x) = 471 (lz- 881) I + Tz 2fm ).,dx - 2B >.·8x . 

W e can now, as before, consider the ba lance of stresses on a column in the ice she lf. Consider 
the column AI3CDEFG H (Fig. 2). W e must equate the forces in the x-direction over a ll the 
surfaces of th e volu me, but we now have 10 include horizontal shear stress on the surfaces 
AB CD a nd EFG H . The force due to st resses on th ese surfaces is sim ply 

(f, / >') (II -,:) 8.\ ~)! . 

so we can wri te 
h Obx 

~ J j' " z.r 8x ~)I = -;: (h - <.) 8x ~)I + ~)I G.r.r (.r + 8x) d <; - 8y v,rx(x) d <. . 

W e perform these integrat ions using Eq ua ti ons (2 1) , ( 22 ) , and (23 ) a nd we find tha t 
.r 

Gzx = - ~~ (p~h T ~ J ~ d\) . 
Again , we find th at the simplc model with a cons tan t density and fl ow parame te r leads to a 
shea r stress whic h is li nea rl y d e pendent on dep th a nd zero at sea- level. The two terms in 
Equation (24) a rc of different sig n , since f , is n ega ti ve; the shea r stress may th e refore have 
different senses , d epending on w hich term dom ina tes. In pract ice the term pgh /2 is generall y 
th e greater, w hi c h co rres ponds to the sta te of ex te nding fl ow gen er-a ll y found in ice shelves. 

From Equa tions ( 19), (2 1) , a nd (22 ) we find th a t the hori zonta l st ress dev iato r- is g iven by 
x 

= .: ( pgll j Ts J !! d ¥) 
2 2 H A ' , 

, 
f) .r.r 

a nd thercf()rT 

20<. , 
ITn = - T v.xx . 

Looking a t d a ta fo r the AmlTy Ice Shelf (Thom as , 1973 ra] ) wc see tha t surface slopes a re 
about;» < 10 4 . This means th a t shear st resses a r-e at most some oA"" of direct stress d eviators. 
It is therdor-e again true to' say that they a re neg lig ible. 

As ior th e un con fin ed ice sh elf trea ted a bove wc can also carry ou t thl' calc ul a tion using 
rea list ic ass umptions about densit y a nd tempera ture profi les. Using da ta for sta ti on G2 on 
th e Amery Ice Shelf we find again that shea r st ress is essentia ll y of the same form a nd magni ­
tud e as tha t ca lcu la ted on the simple mode l. Figu re 3b shows shea r stress as a fun ction of 
d e pt h for the t wo models. 

2. S H EAR STRA I N -RATES 

We cons ider now the deforma tion produced b y the calcul a ted shea r stresses. W c writ e the 
fl ow law as 

T l 

fz:r = 8 3 " z.r, 
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and allow B to vary with depth in a realistic manner. For an unconfined ice shelf it is readily 
shown that 

T Z = 3 -~BZExxt, 

where EXX is given by Equation ( IS). For a confined ice shelf we can show similarly that 

T Z = BZExxt , 

where EXX is given by Equation (22 ) . Strain-rates can then be found using these relations 
and the same temperature and flow law assumptions as in Section I. 

Such shear strain-rates lead to differential motion between the top and bottom of the ice 
shelf. For pure shear we have 

EZX = oux/oz , 
where Ux is the x component of velocity, so that 

Ux (s) - ux(b) = f Ezx d z, 
b 

where sand b denote the upper and lower surfaces of the ice shelf. Integrating numerically 
we find that the differential motion between the top and bottom of the shelf is 18 mm a-I 
for the Erebus Glacier tongue and 25 mm a-I for the Amery Ice Shelf; the top is moving 
faster than the bottom. These movements are negligible, perhaps not even detectable. 

MS. received 25 May 1978 and in revised form 26 October 1978 
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