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THE SOLUTION TO A PROBLEM OF GRUNBAUM 

BY 

PETER SALAMON AND PAUL ERDÔS 

ABSTRACT. The paper characterizes the set of all possible values 
for the number of lines determined by n points for n sufficiently 
large. For (2) = (n — k), the lower bound of Kelly and Moser for the 
number of lines in a configuration with n — k collinear points is 
shown to be sharp and it is shown that all values between M^n{k) 
and Mmax(k) are assumed with the exception of Mmax — 1 and 
A/max — 3. Exact expressions are obtained for the lower end of the 
continuum of values leading down from (2) — 4. In particular, the 
best value of c = 1 is obtained in Erdôs' previous expression en ' 
for this lower end of the continuum. 

In the paper below we characterize for large n the possible values of the 
number of connecting lines determined by a set Pn of n points in the plane, 
where a connecting line is any straight line containing at least two points of Pn. 
This solves a problem posed by B. Grunbaum [5, 6] which asks for the se
quence of all integers m with the property that some configuration of n 
points determine exactly m lines. The approach of the present paper is likely 
to prove useful also for the related problems discussed in Grunbaum [6] and 
Cordovil [2]. 

Besides its significance for combinatorial geometry, the problem is also of 
interest as an example to help elucidate the connection between statistical 
physics and the "spectrum" of values for a combinatorial problem. In fact the 
possible values for n = 22 through n = 28 shown in figure 1 can be seen to bear 
a strong resemblance to physical spectra. A similar structure has been observed 
for the problem of possible values of the permanent for (0, 1) matrices [3]. This 
connection with statistical physics is expected to prove useful in certain 
implementations of simulated annealing. In keeping with this analogy, our 
analysis proceeds in "bands", where the A>th band consists of those 
configurations in which the largest number of collinear points has n — k 
elements. 

The problem requires a careful analysis only for the case when k is small, i.e. 
of order \fn or less. For such k, the values for the number of connecting lines 
determined by configurations in the k-th band do not overlap with values 
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FIGURE 1 — Possible values of m for n between 22 and 28. The values for different k are shown on 
different lines to display the overlap. Below these the overlapped values are shown with each point 
fattened to a vertical bar to display the similarity to physical spectra. This figure may be omitting 
some m values from the lower end of high k bands. 

from other bands. The largest number of lines m in the /c-th band, i.e. with 
n — k points known to lie on a line, can easily be seen to be Mmax(/c) = 
k(n — k) + (2) -f 1, which results when the remaining k points are in general 
position. The smallest m in the fc-th band is known to be bounded below by 
Mmin(k) = k(n — /c) — (2) + 1 [7]. Another purpose of the presentation below 
will be to show that for (2) = (n — k) this lower bound is sharp and that 
m assumes all values between Mmin(k) and Mmax(k) with the exception of 
Mmax ~ 1 and Mmax - 3. 

For larger k, the bands overlap and all values are assumed up to (ij) except 
(2) - 1 and (2) - 3. The fact that (2) - 1 and (") - 3 do not occur was ob
served by Grimbaum and follows by noting that if three of the points are col-
linear while the other points are in general position we get (2) — 2 lines while if 
two sets of three points are collinear we get (2) — 4 and for four collinear points 
we get (2) ~ 5. P. Erdôs has shown that except for these two values, (2) — 1 and 
(2) — 3, all values occur between cn3/2 and (") [5]. The best value of c is one of 
the results presented below. 

The structure of a band for large k still remains elusive. The upper bound 
Mmax(/c) holds sharply for all k. Our methods show that the upper portions 
of the large k bands except for Mmax(k) — 1 and Mmax(/c) — 3 are again 
"continua", i.e. include all integers in an interval. The missing, and apparently 
difficult, information concerns the minimum value in the bands with large 
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values of k. While the bound Mmin(k) of Kelly and Moser remains valid, it loses 
sharpness and eventually becomes negative. For our purposes it will be 
sufficient to show that the large k bands overlap and that they do not stretch 
down into the discrete region. 

We remark that our approach of focusing on the values of m assumed in the 
k-ih band is far easier than the related question of asking for the minimum 
value of m on all bands from some k on. In this direction, Erdôs established that 
if all the points are not collinear, i.e. k ^ 1, then they determine at least n lines. 
He further conjectured that if no n — 1 of the n points are collinear, then the 
resulting configurations define at least 2n — 4 lines. Elliot [4] proved this for 
n ^ 10 while Kelly and Moser [7] proved a more general result to the effect that 
if at most n — k points are collinear with n ^ (3(3/: — 2) + 3k — l)/2, then 
the n points determine at least k(n — k) — (*) + 1 lines. Unfortunately their 
restriction on k is too strong to be useful for us. Instead we will make use of 
another, more recently proved conjecture of Erdôs due to Beck [1,8] which says 
that in any configuration with k ^ x, the number of connecting lines is greater 
than cx(n — x), where c is an absolute constant. 

We now proceed to demonstrate our results through a sequence of lemmas. 
The key technique employed in the proofs will be to slide points on the "large 
line" with n — k points into coincidence with a connecting line determined by 
the k points off the line. (See figure 2.) For convenience in these arguments, we 
let Pn-k denote the set of points on the large line and Pk denote Pn — Pn-k. 
We also drop the adjective "connecting" when referring to the lines of Pn. 

FIGURE 2 - The configuration which achieves Mmax(k) with n — k collinear points and k points in 

general position. These k points determine (*) lines of intersection with the line of Pn_k and thus 
create holes for the points of Pn-k to fill. 

LEMMA 1. For all 0 ~ k = n — 2, the maximum number of lines in the k-ih 
band is Mmâx(k) = k(n - k) + (£) + 1. 
bounded below by M^n{k) = k(n — k) (\) 

The minimum number of lines is 
1. 
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PROOF. AS stated above, the upper bound is trivial. The lower bound is the 
result of Kelly and Moser [7]. Their result follows by counting tie lines of 
the configuration, i.e. lines which connect points of Pn_k and points of Pk. There 
are k(n — k) (possibly coincident) tie lines. We can get a bound on the amount 
of coincidence between such lines by noting that if a, b e Pk9 then they share at 
most one tie line. Thus there are at least k(n — k) — (2) distinct tie lines and 
thus at least k(n — k) — (2) + 1 connecting lines, counting the large line of the 
points in Pn-k. Note that, with the usual interpretation that (2) and (2) are zero, 
the lemma remains valid for k = 0, and k = 1. 

LEMMA 2. All values in the k-th band, for n ^ k{k + l) /2, between the larg
est m value Mmax(k) and the smallest m value Mmin(k) are realized except for 
Mmax - 1 and Mm a x - 3. 

PROOF. We argue from the configuration depicted in figure 2 which achieves 
Mmax, i.e. one in which the points of Pk are in general position, determining (2) 
lines, the points of Pn-k are in general position on their line ensuring k(n — k) 
tie lines plus the large line of the Pn-k giving a total of k(n — fc) + ( 2 ) + l 
lines. We consider the configurations which can be made by moving the points 
in Pn-k into special position so as to become coincident with one of the (2) lines 
determined by the Pk. Each such move decreases the number of lines by two. 
Assuming there are enough points among the Pn-k to move one on to each of 
the (2) lines determined by the points in Pk, then the number of lines decreases 
in increments of two to a value Mmax(k) — 2(2) = Mmin(/c). 

To get the remaining values we start from a configuration with m = Mm a x — 2 
obtained by making three points of Pk collinear. Our moves will still consist 
only of moving points of Pn_k into coincidence with lines determined by the Pk. 
When a point is brought into coincidence with the line containing three points 
of Pk, the number of lines drops by three. When a point is brought into coinci
dence with one of the other lines determined by exactly two of the Pk, the num
ber of lines again drops by two. Thus all values of the form (Mmax — 2) — 2/ 
and (Mmax — 2) — 2/r — 3 for j = 1, . . . (2) — 3 are generated. Except for 
Mm a x — 3, all integers between Mmin + 1 and Mm a x — 2 are of this form. 

By comparing Mmax(k) and Mmin(A: + 1) for small k, we have Mmax(k) < 
Mmin(k + 1). Eventually, the reverse inequality holds. The transition from the 
discrete bands in the low k values to the "continuum" of values up to (2) — 3 
occurs with this first overlap. We note here only that such overlap takes place in 
the k = [ \/n + 2] band and postpone a careful discussion of this first overlap 
until after Lemma 3 which gives some limited information concerning the 
structure of the bands for k values beyond n ^ k(k 4- l) /2. 

LEMMA 3. For n = k(k + l) /2 and k = n — 3 all values in the interval between 
Mmax(/c) and Mmax(/c) — 2(n — k) are taken on except Mm a x — 1 and Mm a x — 3. 
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PROOF. Same as above except that (*) = n — k and thus we run out of points 
on Pn_k which can be move into coincidence with the (*) lines of the Pk. Thus 
these moves can only move us down n — k steps of 2. Although in this case such 
moves do not move us to the bottom of the band, they are sufficient to 
demonstrate the overlap between the bands by noting that Mmax(k) — 3 ^ 
Mmax(£ + 1) ~ 2(/i - k) for all k < n - 2. 

For the bands with k = n — 2 and k = n — 3, these arguments do not give 
information about the bands' structure since moving the points of Pn-k into 
coincidence with the lines of Pk moves us to a configuration belonging to a 
different band. The arguments do however suffice to deduce that all values 
with the exception of Mmax(k) — 1 and MmâX(k) — 3 between Mm3iX(k) and 
Mmax(k) — 2(n — k) occur in some band. In fact for k = n — 2 only the single 
value MmâK(n — 2) = (2) is possible, while for k = n — 3 only values of 
the form Mmax(n — 3) — 2/ are present. 

The problem of the bottoms of these bands need be considered only to show 
that they remain sufficiently large to stay out of the discrete region. 

LEMMA 4. For n sufficiently large, any configuration in a band with k > 
[\/n 4- 2] has more than Mmax( [^/n + 2] — 1) lines. 

PROOF. On reexamining the result of Kelly and Moser which gives a lower 
bound Mmin(k) = k(n — k) — (2) + 1 to the values in a band, we note that 
these lower bounds are increasing until k = [ (n + 0.5)/3]. Furthermore, for 
k > [\/n + 2], they exceed Mmax( [y^n + 2] — 1). Thus we need only worry 
about bands with k > n/3. But by the result of Beck [1] such configurations 
must give rise to at least c(n/3)(2n/3) lines which for sufficiently large n exceeds 
Mmax( [^/n -h 2] — 1) which grows as n ' . 

The structure is thus a sequence of non-overlapping bands until k = 
[\/n 4- 2] at which time a transition occurs to a continuum of values which 
persist until (2) — 4. The remaining two values at the top are (2) — 2 and 
(2). A careful examination of the first overlap requires us to break the an
alysis into five cases according to the extent of the overlap between the 
k = [ \ /« + 2] — 1 band and the k = [ \/n + 2] band. This is conveniently 
done by means of the function f(n) = [\Az + 2] — n ^ 2. As illustrated in 
figure 3, the values of / lead to the cases 

CASE 1 / (« ) = 2 

CASE 2 f(n) = 1 

CASE 3 f(n) = 0 

CASE 4 f(n) = - 1 

CASE 5 f(n) < - 1 

^maxaV^ri] - 1) - 2 = Mminav>r+2]) 
MrnMVn~~+2) - 1) - 1 = Mmin([V^T^]) 

^max([\Ar~4~2] - i) = Mmma^r+2]) 
^max([\ATTT] - 1) + 1 = M m i n ( [ V ^ r ^ ] ) 

Mmax([Vn~^2] - 1) + 1 < Mmin([Vn~+^]). 
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CASE 1 

CASE 2 

CASE 3 

CASE 4 

CASE 5 ' " mmmmammmimimmmmmmmm^_.. 

FIGURE 3 - Overlap between the k = [V" + 2] - 1 and k = [yjn + 2 ] bands illustrating the 

five cases. 

The last gap before the continuum can therefore be seen to be 

CASES 1 & 2 continuum = {m\ M m a x ( [V" 4- 2] - 1) - 3 < m < Q - 3} 

CASES 3 & 4 continuum = {m; Mmax( [V« + 2] - 1) - 1 < m < (2) - 3} 

CASE 5 continuum = {m; Mmin( [V« + 2] ) - 1 < m < (£) - 3}. 

From these expressions we obtain the best value of c = 1 in the en bound to 
the bottom of the continuum proved by Erdôs [5]. We can also get the m^ of 
Grimbaum's problem. We first note that for k ^ 3, the number of values in 
a band is 2(*) — 1. Summing these from 3 to j and adding 4 for the first 
three bands we find that there are h(j) = 4 + j(j + 2 )0 — 2)/3 values in the 
first y ' + l bands for j = 2. 

m^ = 1 

m^ = n 

mW = 2/i - 4 

* 4 W ) = 2w - 2 . 

For 1 > 4, we determine a 7 such that /' is between h(j) and /zO + !)• Provided 
the resulting j is less than [ ̂ /n 4- 2] — 1, we use 

(la) «<"> = M m a x 0) + / - /z(7) - 2 h(j - 1) < i ^ AG") - 2 

(lb) m<"> = M m a x 0 ) - 2 i = h(j) - 1 

(lc) m]n) = Mmax(j) i = h(j). 

For larger j , we again have to distinguish between the five cases. 
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CASES 1 & 2./(it) = [ V ^ T l ] 2 - n = 1, 2. 

For 

/z([\^T+~2] - 2) < / g A( [V«T^] - 1) - 2 

^ " ' = ^ m a x U V ^ 7 ^ ] " 1) + « ~ ^ ( [ V ^ 7 ^ ] - 1) " 2 

for 

h( [ V^T+2] - 1) - 2 < / g h( [ V^T2) - 1) - 3 + (2) - Mmax( [ V^T2] - 1) 

«|B) = ^ m a x C t V ^ ^ l - 1) + I - M f V ^ + ^ J - 1) - 1, 

and finally for 

i = A([VÏ~+~2] - 1) - 2 + (2) - M ^ C t V 7 7 ^ ! ] - 1) 

«<"> = (2) - 2 

and for 

j = A([V5TT1] - 1) - 1 + (2) - Mmax([^/i^^2} - 1) 

«iB ) = (3). 
CASES 3 & 4. /(«) = [ V^~T1]2 - « = - 1 , 0. 

Formulas (1) apply for j = [\/« + 2] — 1. 

For 

h( [yfiTl] - 1) < / â A( [ V^T2] - 1) - 4 + (2) - Mmax( [ VJT+2] - 1) 

m(r] = Mmax( [ V^Tl^] - 1) + i - A( [ V^TFl] - 1), 

and finally for 

i = MIVJTTI] - 1) - 3 + (2) - MmelX([^/i^T2] - 1) 

4n) = (2) " 2 

and for 

/ = /*([\ATT^] - 1) - 2 + (2) - M m a x ( [ V ^ ^ 2 ] - 1) 

^ = (2) . 

C A S E 5 . / ( « ) = [V" + 2]2 - n < - 1 . 

Formulas (1) apply for 7 = [\/n + 2] — 1. 
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For 

h( [ViT+2] - 1) < i =i A( [ VÏT+2] - 1) - 3 + (5) - Mmin( [ y/iï+ï] ) 

m\n) = M„ji[y/im]) + i - Advm] - i) - i, 
and finally for 

i = h([y/ÏTT2] - 1) - 2 + (2) - Mmax([V^+2] - 1) 

4n) = (2) - 2 

and for 

« = M I V ^ T T I ] - 1) - 1 + (J) - Mm a x([v^~+~2] - 1) 

m<"> = (3). 

These formulas allow us to construct tables of m values for sufficiently large 
values of n. A graphic form of such a table is shown in figure 4 where for 
purposes of illustrating the trends embodied in these formulas we have ignored 
the requirement that n be large. We note that as n varies, the bands show up as 
lines of fixed width 2(*) - 1 with slope k. In particular, this implies that they 
move apart by 1 for a unit increase in n. Thus if n0 is case 1, then n0 + 1 is case 2, 

0 100 200 300 400 m 

* = 0 k=\ k = 2 k = 3 k = 4 k = 5 k = 6 k = l 

FIGURE 4 - Values of m versus n showing the structure of the solutions to the large n formulas. 
Actual solutions for small n include additional m values. 
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FIGURE 5 — Possible values of m for n = 12. Values predicted from formulas for large n are shown 
as before; "extra" values from low end of high k bands are shown crosshatched and elongated. 

n0 + 2 is case 3, n0 + 3 is case 4, and «0 4- j is case 5 for 3 < j ^ 
2[ y/riQ + 2] + 1. Another feature which shows up in the figure is that the lines 
formed by the top gaps M^J^k) — 1 of the bands, i.e. m = kn — k2 + (*), 
nearly coincide with the tangents m = kn — k2 + (\) — 1/8 to the parabola 
m = (5). 

Although the above gives a complete answer to Griinbaum's problem for 
n â «*, it leaves the problem for n < n* open. This case requires a detailed 
analysis of the lower end of the high k bands and appears to be difficult. Figure 
5 shows an enlargement of the upper corner of figure 4 showing the values of m 
for « ^ 12. The values predicted from the above formulas for large n are shown 
as before, the "extra" values resulting from the low end of high k bands are 
shaded and elongated for emphasis. Note that these values are all at the lower 
end of the continuum leading down from (2). The size of n* is unknown but it is 
likely to be small. 

We close by mentioning a related and possibly more fundamental question, 
both from the point of view of combinatorial geometry and from the point of 
view of analogies to statistical physics. The question is the characterization 
of the density of states for the problem, i.e. to give each of the possible values 
with appropriate multiplicities. This could be characterized in a fashion similar 
to Griinbaum's problem by asking for all possible values of m for all configura
tions as a sequence m^ S ^l+V 
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