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ABSTRACT

A differential algebra of finite type over a field k is a filtered algebra A, such that the
associated graded algebra is finite over its center, and the center is a finitely generated
k-algebra. The prototypical example is the algebra of differential operators on a smooth
affine variety, when chark = 0. We study homological and geometric properties of differ-
ential algebras of finite type. The main results concern the rigid dualizing complex over
such an algebra A: its existence, structure and variance properties. We also define and
study perverse A-modules, and show how they are related to the Auslander property of
the rigid dualizing complex of A.

0. Introduction

The ‘classical’ Grothendieck Duality theory, dealing with dualizing complexes over schemes, was
developed in the book Residues and Duality by Hartshorne [Ha66]. A duality theory for noncom-
mutative noetherian algebras over a base field k was introduced in [Ye92]. Roughly speaking, a
dualizing complex over a k-algebra A is a complex R € Db(Mod A®), such the functor

RHom 4(—, R) : DP(Mod A) — DP(Mod A°P)

is a duality, with inverse RHom 4op (—, R). Here A°P is the opposite algebra, A® := A ®y A°P, and
DP(I\/Iod A) is the derived category of bounded complexes of A-modules with finite cohomologies.
See Definition 4.1 for details. In the decade since its introduction, this noncommutative duality

theory has progressed in several directions; cf. [vdB97, Jo98, MY01, WZ00, Ch04].

One of the biggest problems in noncommutative duality theory is existence of dualizing com-
plexes. The most effective existence criterion to date is due to Van den Bergh [vdB97]. It states the
following: suppose the k-algebra A has some exhaustive nonnegative filtration G = {G; A} such that
the graded algebra gr®A is connected, noetherian and commutative. Then A has a rigid dualizing
complex Ry (see Definition 4.10). Moreover, in [YZ99] we proved that the dualizing complex R4
has the Auslander property (see Definition 4.6), and it is unique up to a unique isomorphism.

Let us remind the reader that a graded k-algebra A is called connected if A = Dicn A;, Ag =k
and each A; is a finite k-module. An exhaustive nonnegative filtration G' on A, such that the
graded algebra A := gr®A is a noetherian connected graded k-algebra, can be considered as a
‘noncommutative compactification of Spec A’. Indeed, when A is commutative, let A := Rees®A C
A[t] be the Rees algebra. Then Proj A is a projective scheme over k, the divisor {t = 0} is ample,
and its complement is isomorphic to Spec A.
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We have observed that often in the literature one encounters algebras A that are equipped
with an exhaustive nonnegative filtration F' = {F;A}, such that gr’ A is noetherian and finite over
its center, yet is not connected. The main goal of this paper is to prove that Van den Bergh’s
existence criterion also applies to such algebras, and furthermore the rigid dualizing complex R4
has especially good homological and geometric properties. These properties shall be used in our
sequel paper [YZ02] to construct rigid dualizing complexes over noncommutative ringed schemes.

Let us now introduce some conventions. Throughout the paper k is a field. By default all
k-algebras are associative unital algebras, all modules are left modules, and all bimodules are central
over k. Given a k-algebra A, we denote by Mod A the category of A-modules. The unadorned tensor
product ® will mean ®y.

Let C be a finitely generated commutative k-algebra and let A be a C-ring (i.e. there is a ring
homomorphism C' — A). We call A a differential C-ring of finite type if there exists a nonnegative
exhaustive filtration F' = {F;A};cz of A such that gr’’ A is a finite module over its center Z(grf"A),
and Z(grf"A) is a finitely generated C-algebra. We also call A a differential k-algebra of finite type.
See Definitions 2.1 and 2.2 for a precise formulation. The prototypical examples are:

(1) Ais a finite C-algebra (e.g. an Azumaya algebra);
(2) A is the ring D(C) of differential operators of C, where C' is smooth and chark = 0; and
(3) A is the universal enveloping algebra U(C; L) of a finite Lie algebroid L over C.

In (1) and (3) there are no regularity assumptions on C, A or L. It is not hard to see that any
quotient A/I is also a differential k-algebra of finite type. Also if A; and A, are differential k-algebras
of finite type then so is the tensor product A; ® As.

The key technical result is the following ‘Theorem on the T'wo Filtrations’.

THEOREM 0.1. Let A be a differential k-algebra of finite type. Then there is a nonnegative exhaustive
filtration G = {G;A};cz of A such that gr” A is a commutative, finitely generated, connected graded
k-algebra.

Theorem 0.1 is proved in § 3, where it is restated as Theorem 3.1.

Since Van den Bergh’s criterion can now be applied, and using results from [YZ99], we obtain
the following corollary.

COROLLARY 0.2. Let A be a differential k-algebra of finite type. Then A has an Auslander rigid
dualizing complex R 4. For any finite A-module M one has Cdim M = GKdim M.

The corollary is proved in § 8, where it is restated as Theorem 8.1. We remind that GKdim M
is the Gelfand—Kirillov dimension of M. The canonical dimension Cdim M is defined by

Cdim M := —inf{q | Ext% (M, Ra) # 0} € Z U {—o0}
for a finite A-module M, and by
Cdim M := sup {Cdim M’ | M" C M is finite}

in general. The Auslander property states that Cdim M’ < Cdim M for any finite left or right
A-module M and any submodule M’ C M; and it implies that Cdim is an exact dimension function.

The rigid perverse t-structure on DP(Mod A) is defined as follows:
PDP(Mod A)S? := {M € DF(Mod A) | H* RHom (M, R4) = 0 for all i < 0}

and
PDP(Mod A)?? := {M € DP(Mod A) | H' RHom 4 (M, R4) = 0 for all i > 0}.
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The heart

PDP(Mod A)" := PD?(Mod A)S® N ?DP(Mod A)>°
is called the category of perverse A-modules. It is an abelian category, dual to the category Mod; A°P
of finite A°°’-modules.

There is an alternative characterization of the rigid perverse t-structure on D?(Mod A), which
resembles the original definition in [BBD81]. For a module M and any integer 4, define I'y, M to
be the largest submodule of M with Cdim < 4. This is a functor I'y, : Mod A — Mod A, and we

denote by H"j\/lz its jth right derived functor. The next result is a special case of Theorem 7.9.

THEOREM 0.3. Let A be a differential k-algebra of finite type and M € D?(Mod A).
(1) M€ pDP(I\/Iod A)SY if and only if CdimH/M < i for all integers i,j such that j > —i.
(2) M €PDP(Mod A)?° if and only ifHKAiM = 0 for all integers i,j such that j < —i.

Interestingly, Kashiwara [Ka03| has recently proved a similar result; see Remark 7.11.

Suppose C is a finitely generated commutative k-algebra. A C-bimodule M is called a differential
C'-bimodule if it has some bounded below exhaustive filtration F' = {F; M };cz by C-sub-bimodules,
such that grf'M is a central C-bimodule. This equivalent to the condition that the support of the
C®-module M is in the diagonal A(U) C U?, where U := Spec C' (see Proposition 5.21).

THEOREM 0.4. Let C be a finitely generated commutative k-algebra and A a differential C-ring of
finite type. Let R be the rigid dualizing complex of A. Then for every i the cohomology bimodule
H'R, is a differential C-bimodule.

This theorem is repeated as Theorem 8.14. One consequence is that the rigid dualizing complex
R 4 localizes on SpecC' (see Corollary 8.15).

Let A := A ® A°P. It is also a differential k-algebra of finite type, so it has a rigid dualizing
complex R4e, and the category P DF(Mod A®)0 of perverse A°-modules exists. By definition the rigid
dualizing complex R4 of A is an object of DP(Mod A°).

THEOREM 0.5. Let A be a differential k-algebra of finite type. Then the rigid dualizing complex
Ry is a perverse A°-module, i.e. Ry € PDP(Mod A°)°.

This theorem is repeated as Theorem 8.9. In addition to being interesting in itself, this result is
used in [YZ02] to glue rigid dualizing complexes on noncommutative ringed schemes — as perverse
bimodules.

1. Filtrations of rings

By a filtration of a k-algebra A we mean an ascending filtration F' = {F;A};cz by k-submodules
such that 1 € FpA and F;A- F;A C Fip;A. We call (A, F) a filtered k-algebra, but often we just
say that A is a filtered algebra and leave F implicit.

Suppose (A4, F') is a filtered k-algebra. Given an A-module M, by an (A, F')-filtration of M we
mean an ascending filtration F' = {F; M };cz of M by k-submodules such that F;A - F;M C FijM
for all ¢ and j. We call (M, F) a filtered (A, F')-module, and allow ourselves to drop reference to F
when no confusion may arise.

We say that the filtration F on M is exhaustive if M = J, F;M, F' is separated if 0 = (), F;M,
F is bounded below if F;,_1 M = 0 for some integer 7y, and F'is nonnegative if F_1 M = 0. The trivial
filtration on M is F_1M =0, FoM := M.
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Let us recall some facts about associated graded modules, and establish some notation. It will be
convenient to use the ordered semigroup ZU {—o0} where —oco < i for every i € Z, and i+ j := —00
if either ¢ = —o0 or j = —o0.

Let (M, F') be an exhaustive filtered module. The associated graded module is

F,M
gr(M, F) :ngM:@grfM ::GBFZ R
i€z iez, © 1

Given an element m € M the F-degree of m is
deg™ (m) :=inf {i |m € F;M} € ZU {—o0}.
The F-symbol of m is
symb? (m) :=m + F;_1M € gt M

if i = deg’ (m) € Z; and symb® (m) := 0 if deg!’(m) = —oo. Thus, the homogeneous elements of
grf’ M are the symbols.

Recall that the product on the graded algebra grf’ A is defined on symbols as follows. Given
elements ai,as € A let d; := degF(ai) and a; := syme(ai). If both d; > —oo then

ai-ag :=aj - ag + Fd1+d2_1A S grglerzA.

Otherwise a; - a2 := 0. Similarly one defines a graded (grf A)-module structure on a filtered
module M.

If A= @D,z Ai is a graded algebra then A is also filtered, where

FA:=PA,
J<t

The filtration F is exhaustive and separated. Moreover, A = grf’ A as graded algebras. The isomor-

phism sends a € A; to its symbol symb’ (a) € grf’ A.

LEMMA 1.1. Suppose that the k-algebra A is generated by a sequence of elements {a;};cr, where
I is an indexing set (possibly infinite). Given a sequence {d;};c; of nonnegative integers, there is a
unique nonnegative exhaustive filtration F' = {FyA}4cz such that:

(i) for every d, FqA is the k-linear span of the products a;, - - - a;,, such that dj, +---+d;,, < d;

(i) the graded algebra gr’” A is generated by a sequence of elements {a; };c1, where for every i € I
either a; = syme(aZ') € grgiA or a; = 0.

m

Proof. Let © = {x;};c1 be a sequence of distinct indeterminates, and let k(x) be the free associative
algebra on these generators. Define ¢ : k(x) — A to be the surjection sending z; — a;. Put on k(x)
the grading such that deg(x;) = d;. This induces a filtration F' = {Fjk(x)}4cz where

Fik(z) := Pk(z)..
e<d

This filtration can now be transferred to A by setting FyA := ¢(Fyk(x)). Clearly (A, F) is exhaustive
and nonnegative, and also condition (i) holds. This condition also guarantees uniqueness.

As for condition (ii), consider the surjective graded algebra homomorphism
grf(¢) : grf'k(zx) — grf A.

Because of the way the filtration on k(x) was constructed, the graded algebra grfk(zx) is a free
algebra on the symbols Z; := symb! (z;). Define @; := gr¥ (¢)(%;). These elements have the required
properties. O
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Conversely, we have the following two lemmas, whose standard proofs we leave out.

LEMMA 1.2. Let F = {F;A} be an exhaustive nonnegative filtration of A, and let {a;};c; be a

sequence in A. Denote by a; := symb’ (a;). Suppose that the sequence {a;};c; generates gr’ A as
k-algebra. Then:

(1) A is generated by {a;}icr as k-algebra;
(2) let d; := max {0,deg! (a;)}. Then F coincides with the filtration from Lemma 1.1.

LEMMA 1.3. Let (A, F') be a nonnegative exhaustive filtered k-algebra and let (M, F') be a bounded
below exhaustive filtered (A, F')-module. Suppose that {a;}icr C A, {b;};jcs C A and {cy}rex C M
are sequences satisfying:

(i) the set of symbols {@; }icr U {b;}jes generates gr’' A as k-algebra;
(ii) the set of symbols {¢; }rex generates grf” M as (grf” A)-module;
(iii) for every i,j the symbols a; and l_)j commute.
Then for every integer d the k-module F;M is generated by the set of products
{ag, -+~ a;,bj, ---bj.cp | degf(a;,) + -+ degF(bjl) + -+ degf(¢) < db.

The base field k is of course trivially filtered. The filtered k-modules (M, F') form an additive
category FiltModk, in which a morphism ¢ : (M, F') — (N, F) is a k-linear homomorphism ¢ : M —
N such that ¢(F;M) C F;N.

The Rees module of (M, F) is

Rees(M, F) = Rees" M := @ F,M - ' € M[t] = M @y klt]
1€EZ
where t is a central indeterminate of degree 1. We get an additive functor

Rees : FiltModk — GrMod k([t]
where GrModk(t] is the abelian category of graded k[t]-modules and degree 0 homomorphisms.
For a scalar A\ € k let us denote by sp, the specialization to A of a k[t]-module M, namely
sp)\M:: M/(t —A)M.
If A # 0 then
spy : GrModk[t] — Mod k

is an exact functor, since sp, M is isomorphic to the degree zero component of the localization J\Z
For A = 0 we get a functor

spg : GrModk[t] — GrModk.
Given any (M, F') € FiltModk one has
spo Rees(M, F) = gr(M, F) = gr’ M.

On the other hand, given a graded k[t]-module M there is a filtration F on M := spy M defined by

FM := Im<@ﬂ7j — M>.

J<i

This is a functor

sp; : GrModk[t] — FiltMod k.
If (M, F) is exhaustive, then

sp; Rees(M, F) = (M, F).
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For a graded module M € GrMod k[t] we have
Reessp, M = M /{t-torsion}.
If A is a filtered k-algebra, then A:=Rees A and A := gr A are graded algebras,_and we obtain
corresponding functors Rees, sp; and sp, between FiltMod A, GrMod A and GrMod A.
The next lemma states that a filtration can be lifted to the Rees ring.

LEMMA 1.4. Let F' be an exhaustive nonnegative filtration of the k-algebra A, and let A =
Rees” A C A[t]. For any integer i define

FA = B (FuinipA) -t € Aft].
jEN

Then:

(i) A= U FA, F_{A=0and F,A- 15]11 C EHE, thus F = {F;A} is an exhaustive nonnegative

filtration of the algebra A;
(ii) there is an isomorphism of k-algebras
arf' A 2 (g1 A) @ klt]
(not respecting degrees).
Proof. (1) Since F_1 A =0, we get F 1 A=0. Let jj := (FjA) -/, the jth graded component of A.
Then for any ¢, 7 there is equality
Avj N (EAV) = (Fmin(i,j)A) t.
Hence Zj C 15]11 It remains to check the products. For any two pairs of numbers (i, k) and (j,1)
one has
min(4, k) + min(y,!) < min(i + 7,k +1).
Therefore
((Fnin(i,k)A) - th) - (FinnA) - th C (Fain(i+jk+0A) - th .
This says that Eﬁ ﬁjj C Eﬂ-ﬁ,
(2) We have isomorphisms
grf’ A = @ @(grfA) -t
0<i i<j
and
(er"A) k] = P P(el4) -t
0<i 0<j

The isomorphism grﬁ A = (grf” A)®k|t] we want is defined on every summand (gri” 4)-¢/ by dividing
by t'. O

2. Differential k-algebras of finite type

Let C be a ring. Recall that a C'-ring is a ring A together with a ring homomorphism C' — A, called
the structural homomorphism. Observe that a C-ring is also a C-bimodule.

DEFINITION 2.1. Suppose C is a commutative k-algebra and A is a C-ring. A differential C-filtration
on A is a filtration F' = {F;A},cz with the following properties:

(i) 1€ FyA and F;A- FjA C Fyj A;
(ii) F.1A=0and A =JFA4;
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(iii) each F;A is a C-sub-bimodule;
(iv) the graded ring gr’ A is a C-algebra.
A is called a differential C'-ring if it admits some differential C-filtration.

The name ‘differential filtration’ signifies the similarity to Grothendieck’s definition of differential
operators; see [EG67].

Note that properties (i) and (iii) imply that the image of the structural homomorphism C' — A
lies in Fy A, so that (iv) makes sense.

DEFINITION 2.2. Let C' be a commutative noetherian k-algebra and A a C-ring. A differential
C-filtration of finite type on A is a differential C-filtration F' = {F; A} such that the graded C-algebra
grf’ A is a finite module over its center Z(gr’”A), and Z(gr" A) is a finitely generated C-algebra. We say
that A is a differential C-ring of finite type if it admits some differential C-filtration of finite type.

If C is a finitely generated commutative k-algebra and A is a differential C-ring of finite type,
then A is also a differential k-ring of finite type. In this case we also call A a differential k-algebra

of finite type.

Ezample 2.3. Let C be a finitely generated commutative k-algebra and A a finite C-algebra.
Then A is a differential C-ring of finite type. As filtration we can take the trivial filtration F_1 A := 0
and FyA = A.

Ezample 2.4. Suppose chark = 0, C' is a smooth commutative k-algebra and A := D(C) is the ring
of k-linear differential operators. Then A is a differential C-ring of finite type. For filtration we can
take the filtration F' = {F; A} by order of operator, in which 1A := 0, FyA :=C, F1A:= C®T(C)
and Fj 1A :=F;A- F1Afor i > 1. Here 7 (C) := Derg(C), the module of derivations.

Ezample 2.5. A special case of Example 2.4 is when C := k[x1,...,z,], a polynomial ring. Then A
is called the nth Weyl algebra. Writing y; := 0/0z; the algebra A is generated by the 2n elements
Tlyeos Tny Yls - - -5 Yn, With relations [z, x;] = [yi,y5] = [yi,z;] = 0 for @ # j and [y;,2;] = 1.
In addition to the filtration F' above there is also a differential k-filtration of finite type G = {G; A}
where G_1A:=0, GoA =k, G1A =k+ (>, k-z;)+ (>, k-y;) and Gip1A := G;A-G1Afori > 1.

Ezample 2.6. This example generalizes Example 2.5. Let C' be a finitely generated commutative
k-algebra (not necessarily smooth, and chark arbitrary), and let L be a finite C-module (not
necessarily projective). Suppose L has a k-linear Lie bracket [—,—]. The module of derivations
T(C) := Derg(C) is also a k-Lie algebra. Suppose a : L — 7(C) is a C-linear Lie homomorphism,
namely a(c€) = ca(§) and a([€,(]) = [a(&),a(()] for all ¢ € C and §,¢ € L. L is then called a Lie
algebroid or a Lie-Rinehart algebra (cf. [Ch99, Ri63]). The ring of generalized differential operators
D(C; L), also called the universal enveloping algebra and denoted by U(C'; L), is defined as follows.
Choose k-algebra generators ci,...,c, for €' and C-module generators Iy, ...,l, for L. Let

k<m7y> = k<$17 sy Tpy YLy e ayq>

be the free associative algebra. We have a ring surjection ¢ : k(x) — C with ¢g(z;) := ¢;. Let
Iy := Ker(¢g). Next there is a surjection of k(x)-modules

q
o1 : k(@) = Pklz) -y, - L

with ¢1(y;) := l;. Define I} := Ker(¢1) C k(x)?. For any i, j choose polynomials f; j(x) and g; ; ()
such that [l;,[;] = > gijk(c)li € L and a(l;)(¢j) = fij(c) € C. Now define
k
(L) o= HEY)
I
626

https://doi.org/10.1112/50010437X04001307 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04001307

DIFFERENTIAL ALGEBRAS

where I C k(x,y) is the two-sided ideal generated by Iy, I; and the polynomials [y;,y;] —
>k Gige(®)ye and [y;, ;] — fi ().

The ring U(C'; L) has the following universal property: given any ring D, any ring homomorphism
no : C' — D and any C-linear Lie homomorphism 7, : L — D satisfying [11(1),n0(c)] = no(a(l)(c)),
there is a unique ring homomorphism 7 : U(C; L) — D through which 7 and 7 factor.

Put on k(z,y) the filtration F such that deg” (x;) = 0 and deg’(y;) = 1. Let F be the filtration
induced on U(C; L) by the surjection ¢ : k(z,y) — U(C;L). Then gr’U(C; L) is a commutative
C-algebra, generated by the elements [; := grf(¢)(y;), j € {1,...,q}. We see that U(C;L) is a
differential C-ring of finite type. If C' = k[z1,...,2,] and L = T(C'), then we are in the situation
of Example 2.5. If C' =k, then U(C; L) = U(L) is the usual universal enveloping algebra of the Lie
algebra L.

LEMMA 2.7 [ATV91, Theorem 8.2|. Suppose that A = @, A; is a graded k-algebra and t € A is
a central homogeneous element of positive degree. The following are equivalent:

(i) A is left noetherian;

(ii) A/(t) is left noetherian.

The next proposition follows almost directly from the definition and Lemma 2.7.

ProrosiTIiON 2.8. If A is a differential k-algebra of finite type, then it is a noetherian finitely
generated k-algebra.

The class of differential k-algebras of finite type is closed under tensor products as we now show.

PRroOPOSITION 2.9. Let C; and Cs be noetherian commutative k-algebras, and assume that C; @ Cy
is also noetherian. Let A; be a differential Cj-ring of finite type for ¢ = 1,2. Then Ay ® As is a
differential (C7 ® C5)-ring of finite type.

Proof. Choose differential filtrations of finite type {F,A;} and {F,, A3} of A; and Aj. Define a
filtration on A; ® A, as follows:

F.(A1 ® Ag) := Z F A ® Fp,A,.
l+m=n
Then
gr’ (A1 ® Ay) = (gr' A1) @ (gr” Ag)
as graded rings. Since gr”” A; and grf” A are finite modules over their centers it follows that (grf A;)®
(grf"Ay) is a finite module over its center. O

3. The theorem on the two filtrations

The next theorem generalizes the case of the nth Weyl algebra and its two filtrations (see
Examples 2.4 and 2.5 above). McConnell and Stafford also considered such filtrations, and our
result extends their [MS89, Corollary 1.7]. The basic idea is attributed in [MS89] to Bernstein.

We recall that a graded k-algebra A is called connected if A = @, y Ai, Ao =k and each A; is
a finite k-module.

THEOREM 3.1. Let A be a k-algebra. Assume that A has a differential k-filtration of finite type
F = {F;A};cz. Then there is a nonnegative exhaustive k-filtration G = {G;A};cz such that gr®A
is a commutative, finitely generated, connected graded k-algebra.
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Observe that G is also a differential filtration of finite type on A. As mentioned in the introduc-
tion, Theorem 3.1 is used to prove the existence of an Auslander rigid dualizing complex over A.

The following easy lemma is used often in the proof of the theorem.

LEMMA 3.2. Let F' = {F;A} be a nonnegative exhaustive filtration of A and let aj,as € A be two
elements. Define a; := symb’ (a;) € gr’ A and d; := deg’ (a;) € NU {—00}. Then the commutator
[a1,a2] = 0 if and only if

degF([al,ag]) <dy +dy — 1.

Proof of Theorem 3.1. Step 1. Write {_1 = grf' A, Then the center Z(A) is a graded, finitely gen-
erated, commutative k-algebra, and A is a finite Z(A)-module. For any element a € A we write
a := symb’’(a) € gr" A.

Let di € N be large enough such that Z(A) is generated as Z(A)p-algebra by finitely many
elements of degrees < dp, and A is generated as Z(A)-module by finitely many elements of degrees
< d.

Choose nonzero elements ay, . .., a, € FoA = Ag such that their symbols @y, . .., @y, are in Z(A)o,

and they_genera&e Z(A)p as k-algebra. Next choose elements by, ...,b, € Fy, A — FyA such that the

symbols by, ..., b, are in Z(A), and they generate Z(A) as Z(A)p-algebra. Finally choose nonzero

elements cq,...,c, € Fy A such that the symbols ¢i,...,¢, generate @’;1:0 Aj as Z(A)p-module.
This implies that ¢i,...,¢, generate A as a Z(A)-module.
The symbols @1, ..., am,b1,...,bn,C1,. .. ,Cp generate A as k-algebra, so by Lemma 1.2 the ele-
ments ai,...,Cmn,b1,...,by,c1,..., ¢, generate A as k-algebra. Let
k<m7y7z> = <3317"' sy Tms YLy o ooy Yny 21y - - azp>

be the free associative algebra, and define a surjective ring homomorphism ¢ : k(x,y,z) — A by
sending x; — a;, y; — b; and z; — ¢;. We are now in the situation of Lemma 1.2. The free algebra
k(zx,y, z) also has a filtration F, where deg! (z;) := deg (a;), deg? (y;) := deg! (b;) etc., and ¢ is a
strict surjection, meaning that F;(A) = ¢(Fik(x, vy, z)).

Let us denote substitution by f(a,b,c) := ¢(f(x,y, z)). Consider the subrings
k(a) C k(a,b) C A=k(a,b,c)

with filtrations F' induced by the inclusions into A. The reader is warned that these filtrations might
differ from the filtrations induced by ¢ : k(x) — k(a) and ¢ : k(x,y) — k(a, b) respectively.

We observe that the commutators [a;, a;] = 0 for all 4, j, since a; = a; € Z(A)o. This also says

that [a;,b;] = 0, so according to Lemma 3.2 we get

[ai, b]] e F

degF(bj)—lA

for all i,j. Therefore, by Lemma 1.3, applied to the filtered k-algebra k(a) and the filtered
k(a)-module Fj, A, we see that there are noncommutative polynomials fi1’ i k(@) € k(z) such that

degF(fil,j,k(w)) + degF(Ck) < degF(bj) —1 and [a;,b)] = Z fz'l,j,k(a) " Ck- (3.3)
k

Note that either f}]k(m) # 0, in which case deg’( lek(:r:)) = 0; or f}]k(m) = 0 and then

degh’( lek(ac)) = —o00. The choice lejk(ac) = 0 is of course required when deg’ (c) > deg” (b;).
Likewise [b;, b;] € FdegF(bi)—l-degF(bj)—lA’ so by Lemma 1.3, applied to the filtered k-algebra k(a, b)

and the filtered k(a,b)-module A, we see that there are noncommutative polynomials ffj w(T)
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and gf]k(y) such that
deg" (f7; x(2)) + deg™ (97 1(v)) + deg™ (cx) < deg” (bi) + deg™ (b)) — 1
and [b;, b;] Z f2, 1) - 25,4(b) - e (34)

Similarly there are polynomials ffjk(ac) such that
deg” (f2; x()) + deg”(cr) < degF(c;) =1 and  [a;,¢;] = mek *Chy

and there are polynomials ffjj’k(ac) and gﬁ ;1(y) such that
deg" (fij(®)) + deg" (9751 (w)) + degF<c ) < deg” (bi) + deg”(¢j) — 1
and bwc] Zfz,] rla gi],k(b) " Ck-

The same idea applies to c;c;: there are polynomials ff"ﬁ x(x) and gg ;1(y) such that
deg” (f7; 1(x)) + deg™ (g7 ; 1 (y)) + deg” (k) < deg”(c;) + deg” (¢;)
and ¢;-cj = Zf,Jk gij7k(b) - Cf.

Let G be the standard grading on k(a), namely deg®(z;) := 1. This induces a filtration G.
Define

eo = max {0, deg” (£} ; ()},
e1:=eg+1and ey :=eg+e1 + 1.
Put on the free algebra k(x,y, z) a new grading G by declaring
deg® (y;) := ey deg” (b;)
deg®(z) := ea deg’(¢;) + €1,

and keeping deg®(x;) = 1 as above. We get a new filtration G on k(x, y, z). Using this we obtain a
new filtration G on A with

G A = ¢(Gik(zx,y, z)).

Step 2. Now we verify that the filtration G has the required properties. Since the filtration G on
k(x,y, z) is nonnegative exhaustive, and ¢ is a strict surjection, it follows that the filtration G on A
is also nonnegative exhaustive. The rest requires some work, and in order to simplify our notation
we are going to ‘recycle’ the expressions A, @;, etc. From here on we define A := gr®A. We have a
surjective graded k-algebra homomorphism

b= gr% () : g%k (x,y, 2) — gr¥A = A.
Let Z; := symb®(z;), 7; := symb®(y;), etc. Then
etk (x, Yy, 2) = K(Z, 9, 2) = K(T1, ..o, Tony Gls e+ Ty Z1s -+ 5 Zp)
which is also a free algebra. Define a; := ¢(%;), b; := ¢(7;) and & := ¢(Z;). Observe that either
deg®(a;) = deg®(z;), in which case @; = symb%(a;), and it is a nonzero element of Adegc(ai); or
degG(ai) < degG(aji), and then a; = 0. Similar statements hold for b; and ¢;.

Since ¢ is surjective we see that A is generated as k-algebra by the elements ar, . . ., @m, b1, . . ., b,
€1,...,Cp. These elements are either of positive degree or are 0, and hence A is connected graded.
We claim that A is commutative.

629

https://doi.org/10.1112/50010437X04001307 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04001307

A. YEKUTIELI AND J. J. ZHANG

We know already that [a@;,a;] = 0. Let us check that [a;,b;] = 0. If either deg®(a;) < deg®(x;)
or deg®(b;) < deg®(y;), then a;b; = bja; = 0. Otherwise, a; = symb%(a;) and b; = symb®(b;).
By formula (3.3) we have

deg®([a;, bj]) < max{deg®(f{; (@) + deg®(cx)}
max{deg” (f}; x(2)) + deg®(cx)}.
b

For any k such that flljk(m) # 0 we have deg’ (c) < deg’(b;) — 1, and then

<
<

deg®(cx) < deg®(z1) = eadeg” (c) + €1 < ea(deg” (b)) — 1) + €1
Also deg® (f” «(x)) < eg. Because

deg®(b;) = deg®(y;) = e deg” (b;)

and
deg®(a;) = deg®(w;) = 1,
we get
deg([ai, b;]) < eo + (e2(deg? (b)) — 1) + e1)
= deg%(a;) + deg®(b;) — 2.
Using Lemma 3.2 we conclude that [a;, b;] = 0.

Next let us consider the commutator [b; ,B] If either deg® (bi) < deg (y;) or degG(bj) <
deg®(y;), then bib; = b;b; = 0. Otherwise, b; = symb®(b;) and b; = symb®(b;). By formula
(3.4), if fz,],k:( x) #0, then

deg” (97 (y)) + deg” (cx) < deg” (b;) + deg” (b)) — 1.
Also

deg (g7 ;1(y)) = eadeg” (g7 1,())
deg®(cr) < deg®(z) = ep degf (cg) + €.
Therefore, looking only at indices k such that fZ%M(:I:) # 0, we obtain

deg®([bs, bj]) < max{deg®(f?; (@) + deg® (g7 ; (b)) + deg” (c1)}
< max{deg” (7 (@) + deg® (g7 4(y)) + deg® (cx)}

< o + max{es deg (gfjk(y)) + eg degl(c,) + €1}
= ey max{deg’ (gm,k(y)) +deg (cg) + 1} + (eo +e1 — e2)
< ea(deg” (b;) + deg” (b)) — 1
= deg®(b;) + deg®(b;) — 1.
So according to Lemma 3.2 we conclude that [b;, b;] = 0.

The calculation for the other commutators is similar.

Finally we show that, amusingly, ¢;¢; = 0. If either deg®(c;) < deg®(z;) or deg®(c;) < deg®(z;),
then automatically &¢; = 0. Otherwise, ¢; = symb®(¢;) and ¢; = symb%(c;). For any k such that

’]k( x) # 0 one has
deg" (7 ;,()) + deg" (cx) < deg”(¢;) + deg" (¢;).
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Therefore, looking only at indices k such that ffj’k(ac) # 0, we obtain

deg®(cicj) < max{deg®(f7; x(a)) + deg® (g7 ;1 (b)) + deg®(cx)}
max{deg”(f7; x(x)) + deg® (g7 x(¥)) + deg®(cx)}
eo + max{es degF(gZ-S,Lk(y)) + egdegl(c) + €1}
eo max{deg” (g7 (y)) + deg” (cx)} + (eo +e1)
ea(deg” (¢;) + deg () + (eo + 1)
= deg®(c;) + deg®(c;) — 1.

NN

N

So, by definition of the product in A, we get cic; = 0. ]

PrROPOSITION 3.5. In the situation of Theorem 3.1 assume that the k-algebra A is graded, and
that every k-submodule F;A is also graded. Then the filtration G can be chosen such that every

k-submodule G; A is graded.

Proof. Simply choose the generators ai,...,b1,...,c1,...,¢, € A used in the proof to be homo-
geneous. ]

4. Review of dualizing complexes

For a k-algebra A we denote by A°P the opposite algebra, and by A® := A ® A°P the enveloping
algebra. Recall that an A-module means a left A-module. With this convention a right A-module
is an A°P-module, and an A-bimodule is an A®-module.

In this section we review the definition of dualizing complexes over rings and related concepts.

Let Mod A be the category of A-modules, and let Mod¢ A be the full subcategory of finite
(i.e. finitely generated) modules. The latter is abelian when A is left noetherian. Let D(Mod A)
be the derived category of A-modules. The full subcategory of bounded complexes is denoted by
DP(Mod A), the full subcategory of complexes with finite cohomologies is denoted by D¢(Mod A),
and their intersection is DP(Mod A).

DEFINITION 4.1 [Ye92, YZ99]. Let A be a left noetherian k-algebra and B a right noetherian
k-algebra. A complex R € DP(Mod (A ® B°P)) is called a dualizing complex over (A, B) if it satisfies
the following three conditions:
(i) R has finite injective dimension over A and over B°P;
(ii) R has finite cohomology modules over A and over B°P;
(iii) the canonical morphisms B — RHomu4 (R, R) in D(Mod B¢), and A — RHompopr (R, R) in
D(Mod A¢), are both isomorphisms.

In the case A = B, we say R is a dualizing complex over A.

Whenever we refer to a dualizing complex over (A, B), we tacitly assume that A is left noetherian
and B is right noetherian.

Remark 4.2. There are many non-isomorphic dualizing complexes over a given k-algebra A.
The isomorphism classes of dualizing complexes are parameterized by the derived Picard group
DPic(A), whose elements are the isomorphism classes of two-sided tilting complexes. See [Ye99] and
[MYO1].

We now give two easy examples.

Example 4.3. Suppose A is a Gorenstein noetherian ring, namely the bimodule R := A has finite
injective dimension as left and right module. Then R is a dualizing complex over A.
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Ezample 4.4. If A is a finite k-algebra, then the bimodule A* := Homy (A, k) is a dualizing complex
over A. In fact it is a rigid dualizing complex (see Definition 4.10).

DEFINITION 4.5. Let R be a dualizing complex over (A, B). The duality functors induced by R are
the contravariant functors

D := RHoma(—, R) : D(Mod A) — D(Mod B°P)
and

DP := RHompgo» (—, R) : D(Mod B?) — D(Mod A).

By [YZ99, Proposition 1.3] the functors D and D°P are a duality (i.e. an anti-equivalence)
of triangulated categories between Df(Mod A) and D¢(Mod B°P), restricting to a duality between
DP(Mod A) and DP(Mod BP).

DEFINITION 4.6 [Ye96, YZ99]. Let R be a dualizing complex over (A, B). We say that R has the
Auslander property, or that R is an Auslander dualizing complex, if the conditions below hold.

(i) For every finite A-module M, every integers p > ¢, and every B°P-submodule N C Ext/) (M, R),
one has Ext%o, (N, R) = 0.
(ii) The same holds after exchanging A and B°P.
Rings with Auslander dualizing complexes can be viewed as a generalization of Auslander regular

rings (cf. [Bj89, Le92]).

Ezample 4.7. If A is either the nth Weyl algebra or the universal enveloping algebra of a finite-
dimensional Lie algebra, then A is Auslander regular, and the bimodule R := A is an Auslander
dualizing complex.

DEFINITION 4.8. An exact dimension function on Mod A is a function
dim : Mod A — {—o0} UR U {infinite ordinals},
satisfying the following axioms:
(i) dim0 = —o0;
(ii) for every short exact sequence 0 — M’ — M — M"” — 0 one has dim M = max{dim M’,
dim M"};

(iii) if M =J, My then dim M = sup{dim M, }.

The basic examples of dimension functions are the Gelfand—Kirillov dimension, denoted by

GKdim, and the Krull dimension, denoted by Kdim. See [MR87, Section 6.8.4]. We now give another
dimension function.

DEFINITION 4.9 [Ye96, YZ99]. Let R be an Auslander dualizing complex over (A4, B). Given a finite
A-module M the canonical dimension of M with respect to R is

Cdimp,a M := —inf{q | Ext? (M, R) # 0} € Z U {—o0}.
For any A-module M we define
Cdimpg. 4 M := sup{dim M’ | M" C M is finite}.

Likewise, we define Cdimpg.por N for a B°P-module N.

Often we abbreviate Cdimpg,4 by dropping subscripts when no confusion can arise. According
to [YZ99, Theorem 2.1], Cdim is an exact dimension function on Mod A and Mod B°P.
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The following concept is due to Van den Bergh. Let R be a dualizing complex over A. Since R
is a complex of A°-modules, the complex R ® R consists of modules over A° ® A® = (A°)°. In the
definition below, RHom e (A, R® R) is computed using the ‘outside’ A°-module structure of R® R,
and the resulting complex retains the ‘inside’ A°-module structure.

DEFINITION 4.10 [vdB97, Definition 8.1]. Let R be a dualizing complex over A. If there is an
isomorphism

p: R — RHomge(A, R® R)
in D(Mod A°), then we call (R, p), or just R, a rigid dualizing complex. The isomorphism p is called
a rigidifying isomorphism.

A rigid dualizing complex, if it exists, is unique up to isomorphism, by [vdB97, Proposition 8.2].
A ring homomorphism A — B is said to be finite if B is a finite A-module on both sides.
DEFINITION 4.11 [YZ99, Definition 3.7]. Let A — B be a finite homomorphism of k-algebras.

Assume the rigid dualizing complexes (R4, pa) and (Rp,pp) exist. Let Trp/a : Rp — Ra be a
morphism in D(Mod A°). We say that Trp, 4 is a rigid trace if it satisfies the following two conditions.

(i) Trp,4 induces isomorphisms
Rp = RHom4 (B, R4) =2 RHomyer (B, Ry)
in D(Mod A°).
(ii) The diagram
Rp 22~ RHomp (B, Rp ® Rp)

Trl e

R -2 RHompe (A, Ry ® Ry)
in D(Mod A®) is commutative.

Often we say that Trp/4 : (Rp,pp) — (Ra, pa) is a rigid trace morphism.

By [YZ99, Theorem 3.2], a rigid trace Trp /4 is unique (if it exists). In particular taking the
identity map A — A and any two rigid dualizing complexes (R, p) and (R',p’) over A, it follows
there is a unique isomorphism R — R’ that is a rigid trace; see [YZ99, Corollary 3.4]. Given another
finite homomorphism B — C' such that the rigid dualizing complex (R¢, pc) and the rigid trace
Tro)p exist, the composition Trg 4 := Trg/poTrp, 4 is a rigid trace.

Finally we mention that by [YZ99, Corollary 3.6] the cohomology bimodules H' R4 of the rigid
dualizing complex are central Z(A)-bimodules, where Z(A) is the center of A.

Ezxample 4.12. Suppose that A is a finitely generated commutative k-algebra. Choose a finite
homomorphism k[t] — A where k[t] = Kk[t1,...,¢,] is the polynomial algebra. Define R4 :=
RHomyy) (A, Qi [n]), and consider this as an object of DP(Mod A®). By [Ye99, Proposition 5.7],
the complex R4 is an Auslander rigid dualizing complex, and in fact it is equipped with a canonical
rigidifying isomorphism p4.

5. Quasi-coherent ringed schemes and localization

In order to study geometric properties of dualizing complexes, it is convenient to use the language
of schemes and quasi-coherent sheaves. See [YZ02, Theorems 0.1 and 0.2].
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Let (X, .A) be a ringed space over k. Thus X is a topological space and A is a sheaf of (possibly
noncommutative) k-algebras on X. By an A-bimodule we mean a sheaf M of k-modules on X
together with a left A-module structure and a right A-module structure that commute with each
other. In other words, M is a module over the sheaf of rings A ®i, AP, where kx is the constant
sheaf k on X. An A-ring is a sheaf B of rings on X together with a ring homomorphism A — B.
Note that B is an A-bimodule.

DEFINITION 5.1. Let X be k-scheme. An Ox-ring A is called a quasi-coherent Ox-ring if A is a
quasi-coherent Ox-module on both sides. The pair (X,.A) is then called a quasi-coherent ringed
scheme.

Let (X, .A) be a quasi-coherent ringed scheme. An A-module M is called quasi-coherent if locally,
on every sufficiently small open set U, it has a free resolution

A — AP — My —o;

cf. [EGT71]. Equivalently, M is quasi-coherent as an Ox-module. We denote the category of quasi-
coherent A-modules by QCoh A.

PROPOSITION 5.2. Let (X, A) be a quasi-coherent ringed scheme, let U C X be an affine open set
and A :=T'(U, A). The functor I'(U, —) is an equivalence of categories QCoh A|y; — Mod A.

Proof. This is a slight generalization of [EGT71, Corollary 1.4.2 and Theorem 1.5.1]. See also [Ha77,
Corollary I1.5.5]. O

Given an A-module M, we usually denote the corresponding quasi-coherent A|y-module by
Aly @4 M.
The following definition is due to Silver [Si67, p. 47].

DEFINITION 5.3. Let A be a ring. An A-ring A’ is called a localization of A if A’ is a flat A-module
on both sides, and if the multiplication map A’ ® 4 A" — A’ is bijective.

Ezample 5.4. Let A be a ring and S C A a (left and right) denominator set. The ring of fractions
Ag of A with respect to S is the prototypical example of a localization of A. For reference we call
such a localization an Ore localization.

We remind the reader that a denominator set S is a multiplicatively closed subset of A satisfying
the left and right Ore conditions and the left and right torsion conditions (see [MR87, § 2.1]). The left
Ore condition is that for all a € A and s € S there exist a’ € A and s’ € S such that as’ = d’s.
The left torsion condition is

{a € A]as =0 for some s € S} C {a € A| sa=0 for some s € S}.

The right Ore and torsion conditions for A are the respective left conditions for A°P.
Not all localizations are Ore, as we see in Example 5.7.
Below we give a list of some nice descent properties enjoyed by localization, that are proved in
[Si67, § 1].
LEMMA 5.5. Let A be a ring and let A’ be a localization of A.
(1) For any A’-module M’ the multiplication A’ @4 M’ — M’ is bijective.
(2) Let M’ be an A’-module and M C M’ an A-submodule. Then the multiplication A’@ A M — M’
is injective.
(3) Let M be an A-module and ¢ : M — A’ ® 4 M the homomorphism ¢(m) := 1 ® m. Then for
any A’-submodule N' C A’ ®4 M the multiplication A’ ®4 ¢~1(N') — N is bijective.
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(4) In the situation of part (3), the A-submodule ¢(M) C A’ ® 4 M is essential.
(5) Localization of a left noetherian ring is left noetherian.
PROPOSITION 5.6. Let (X,.A) be a quasi-coherent ringed scheme, and let V- C U be affine open sets
in X. Define C :=T(U,Ox), C' :=T(V,0x), A:=T(U, A) and A" :=T(V, A).
(1) The multiplication maps C' ®c A — A" and A @c C' — A’ are bijective.
(2) A — A’ is a localization.
(3) Let M be a quasi-coherent A-module. Then the multiplication map
A @aT(U M) —T(V,.M)
is bijective.
Proof. Define C' := I'(U,Ox) and C’ := I'(V,Ox). We first show that C’ is a localization of C,
namely that ¢ : C' — C" is flat and ¢ : ' ®c C" — C’ is bijective. This can be checked locally on V.
Choose an affine open covering V' = |, V; with V; = Spec C, for suitable elements s; € C'. We note
that Oy, = Cf, = I'(V;, Ox) for all i. Hence, restricting ¢ and ¢ to V;, namely applying Cs, ®c —
to them, we obtain bijections.
Let M be any quasi-coherent A-module. By [Ha77, Proposition 5.1, multiplication
C' @cT(U,M) — T(V,M)
is bijective.
Because A is a quasi-coherent left and right Ox-module, the previous formula implies that
C'"®c A— A and A ®@c C' — A’ are both bijective. In addition, since we now know that
A @AT(UM) =0 @cT(U,M),
we may conclude that
A @ T(U M) —T(V,.M)
is bijective.
Finally we have a sequence of isomorphisms that are all compatible with the multiplication
homomorphisms into A’:

Ao A=A R4(A®cC) =2 A @c

> (AecC)ocC' 2 Axc (C'oc C')

2 AQeC = A O
Ezample 5.7. Let X be an elliptic curve over C and O € X the zero element for the group structure.
Let P € X be any nontorsion point. Define U := X — {O} and V := X — {O, P}, which are affine
open sets, and C' := T'(U, Ox), C' := T'(V, Ox). By the previous proposition C' — C” is a localization.
We claim this is not an Ore localization. If it were an Ore localization, then there would be some
noninvertible nonzero function s € C that becomes invertible in C’. Hence, the divisor of s on X

would be (s) = n(O — P) for some positive integer n. In the group structure this would mean that
P is a torsion point, and this is a contradiction.

DEFINITION 5.8. Let A be a ring, let M be an A-bimodule and let A’ be a localization of A. If the
canonical homomorphisms

ARaM—>A M4 A
and
M®AA,—>A/®AM®AA/

are bijective, then M is said to be evenly localizable to A’.
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Trivially the bimodule M := A is evenly localizable to A’. The next lemma is also easy and we
omit its proof.

LEMMA 5.9. Let M be an A-bimodule. Suppose that A’ is a localization of A.

(1) If A is commutative, M is a central A-bimodule and A’ is an A-algebra, then M is evenly
localizable to A’.

(2) If there is a short exact sequence of A-bimodules 0 — L — M — N — 0 with L and N evenly
localizable to A’, then M is also evenly localizable to A’.

(3) Suppose that M = lim;_, M; for some directed system of A-bimodules {M;}. If each M; is
evenly localizable to A’, then so is M.

PRrROPOSITION 5.10. Let C' be a commutative ring and let M be a C-bimodule. Define U := SpecC.
The following conditions are equivalent.

(i) For any multiplicatively closed subset S C C, with localization C's, M is evenly localizable to
Cs.

(ii) M is evenly localizable to C" := T'(V,Oy) for every affine open set V C U.

(iii) There is a sheaf of Oy-bimodules M, quasi-coherent on both sides, with M = T'(U, M). Such
M is unique up to a unique isomorphism.
Proof. (i) = (ii) Let us write
¢:C"RcM—C' ®cMecC.
As in the proof of Proposition 5.6 we choose an affine open covering V' = |J; V; with V; = Spec C,
and Cf, = C,,. It suffices to show that the homomorphism ¢; obtained by applying C} ®c — to ¢
(localizing on the left) is bijective for all 4. Using the hypothesis (i) with S := {s!};cy and the fact
that Cs, — Cf, is bijective we get
Cs, ®cr (C"®c M) = Cs; @c M @c Cs,
and
C:, ®@c (C'®c M ®@c C') = Cy, ®c M ®@¢ Cs; @c C'
So ¢; is bijective.
Similarly, one shows that
M®CC,—>C,®0M®CC,
is bijective.
(ii) = (i) For any element s € S let V := SpecCy C U. By assumption,
Cs®@c M =Cs®c M®cCy =M @c Cs.

Taking direct limit over s € S, we get

Cs@c M =2Csg®cM®cCs=2MecCg.

(i) = (iii) Let M := Oy ®c M be the sheafification of the (left) C-module M to U. By definition,
M is a quasi-coherent left Oy-module.

Given an affine open set V' C U write C' := I'(V, Oy ). By Proposition 5.6 the multiplication
map C' ®¢c M — T'(V, M) is a bijection. Therefore, I'(V, M) = C' @ M ®@¢ C’. Since M is evenly
localizable to C”, it follows that M ®@c C' — I'(V, M) is also bijective. We conclude that M is also
a quasi-coherent right Op-module.
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Regarding the uniqueness, suppose that A is another Oy -bimodule quasi-coherent on both sides
such that T'(U,N') 2 M as bimodules. For any affine open set V as above, we get an isomorphism
of C’-bimodules

TrV,M)=2C' ®@c M @cC'=T(V,N)
which is functorial in V. Therefore, M = N as Opy-bimodules.
(iii) = (ii) Since M is quasi-coherent on both sides, for any affine open set V' = Spec C’ we have
NV,M)=C"®@cM=M@cC',
so M is evenly localizable to C”. O

The relation between even localization and Ore localization of a ring is explained in the next
theorem.

THEOREM 5.11. Let C be a commutative ring, let A be a C-ring and S C C a multiplicatively
closed subset. Denote by Cg the ring of fractions of C' with respect to S. Then the following two
conditions are equivalent.

(i) The image S of S in A is a denominator set, with ring of fractions Ag.

(ii) The C-bimodule A is evenly localizable to Cs.
When these conditions hold, the multiplication map
Cs ®c A®c Cs — Ag
is bijective.
Proof. (i) = (ii) Since Ag is the left ring of fractions of A with respect to S (see [MR87, § 2.1.3]),
it follows that the homomorphism Cs ®c A — Ag is bijective. On the other hand, since Ag is also
the right ring of fractions, A ®c C's — Ag is bijective.
(ii) = (i) Write
Q:=Cs®c A®c Cg
and
p:A—Q, ¢la)=1Raxl.
The assumption that A is evenly localizable to C's implies that
Ker(¢) ={a € A|as =0 for some s € S}
={a € A|sa=0 for some s € S},
verifying the torsion conditions.

The even localization assumption also implies that given a1 € A and s; € S there are ay € A
and s9 € S such that

si'eael=1Ra s, €Q.
Multiplying this equation by s; on the left and by so on the right we obtain 1 ® a1so ® 1 =

1 ® sjag ® 1. Therefore, ¢(s1as — ajs2) = 0. Since @ = A ®¢ Cg there exists some s3 € S such that
(81a2 — a182)83 =0in A, ie.

si(ags3) = aj(s2s3) € A.
We have verified the right Ore condition. The left Ore condition is verified the same way. O

Remark 5.12. The theorem applies to any ring A and any commutative multiplicatively closed
subset S C A, since we can take C' := Z[S] C A.

We will need a geometric interpretation of Theorem 5.11.
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COROLLARY 5.13. Let C' be a commutative ring, let U := SpecC and let A be a C-ring. The
following conditions are equivalent:

(i) for every multiplicatively closed set S C C' the C-bimodule A is evenly localizable to Cg;
(ii) for every multiplicatively closed set S C C its image S C A is a denominator set;
(iii) there is a quasi-coherent Oy-ring A such that T'(U, A) = A as C-rings.

When these conditions hold the quasi-coherent Op-ring A is unique up to a unique isomorphism.

Proof. (i) and (ii) are equivalent by Theorem 5.11. The implication (iii) = (i) is a special case of
Proposition 5.10. It remains to show that (i) = (iii).

By Proposition 5.10 there is an Opy-bimodule A, quasi-coherent on both sides, such that
A 2 T(U,A) as C-bimodules. The bimodule A is unique up to a unique isomorphism. Next, by
Theorem 5.11, for any s € C, letting S := {s'};en, the image S C A is a denominator set.
Therefore, on V := Spec Cs we have canonical isomorphisms

F(V:A) = (Cs®@cARc Cs = AS‘)

where Ag is the ring of fractions of A with respect to S. Hence, A has a unique structure of
quasi-coherent Ox-ring. O

Here is an (somewhat artificial) example of a C-ring A satisfying the conditions of Corollary 5.13,
but the C®-ring A€ fails to satisfy them.

Ezample 5.14. Let C' := Q[t] with ¢ a variable, and let U := SpecC. Take A := Q(t)[a; 0], an Ore
extension of the field Q(¢), where o is the automorphism o(¢) = —¢. Since every nonzero element
s € C is invertible in A, the C-ring A is evenly localizable to C's for any multiplicatively closed
subset S C C. Hence, there is a quasi-coherent ringed scheme (U, A) with T'(U, A) = A as C-rings.
(In fact, A is a constant sheaf on U.) Likewise there is a quasi-coherent ringed scheme (U, .AP).

We claim that there does not exist a quasi-coherent ringed scheme (U?, A¢) such that T'(U?, A°) =
A€ as C°-rings. By Corollary 5.13, it suffices to exhibit a multiplicatively closed subset S C C° that is
not a denominator set in A°. Consider the element s :=t®1—1®t € C° and the set S := {s" },,en.
Let p : A° — A be the multiplication map u(a; ® az) := ajag, which is a homomorphism of
(left) A°-modules, and denote by I the left ideal Ker(u). Then A°-s C I. On the other hand
s(a®l)=ta®l—a®t, so pu(s(a®1)) =ta—at = 2ta, and by induction pu(s"(a®1)) = (2t)"a # 0
for all n > 0. We conclude that s"(a ® 1) ¢ A®- s, so S fails to satisfy the left Ore condition.

Ezample 5.15. The quasi-coherent ringed scheme (U, .A) of the previous example also has the fol-
lowing peculiarity: the C®-module A is not supported on the diagonal A(U) C U?. Indeed, for every
n > 0 one has s"a = (2t)"a # 0.

DEFINITION 5.16. Let C' be a commutative k-algebra and M a C-bimodule. A differential
C-filtration on M is an exhaustive, bounded below filtration F' = {F;M} where each F;M is a
C-sub-bimodule, and grf’M is a central C-bimodule. If M admits some differential C-filtration
then we call M a differential C-bimodule.

Localization of a ring was defined in Definition 5.3, and even localization of a bimodule was
introduced in Definition 5.8.

PROPOSITION 5.17. Let C' be a commutative k-algebra and let M be a differential C'-bimodule.
If C' is a localization of C', then M is evenly localizable to C'.

Proof. If M is a central C-bimodule, then according to Lemma 5.9(1) M is evenly localizable to C.
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Now let M be a C-bimodule equipped with a differential C-filtration F. Say Fj,_1M = 0.
We prove by induction on ¢ > i that F; M is evenly localizable to C'. First F; M is central, so the
above applies to it. For any ¢ there is an exact sequence

0—>Fi_1M—>FiM—>ngFM—>O.

By the previous paragraph and by the induction hypothesis F;_1 M and ngF M are evenly localizable
to C'. The flatness of C' — C” extends this to F; M, see Lemma 5.9(2). Finally we use Lemma 5.9(3).
O

COROLLARY 5.18. Let C be a finitely generated commutative k-algebra, A a differential C-ring of
finite type, s € C and S := {s'};en. Then:
(1) the image S of S in A is a denominator set;

(2) let Cs and Ag be the Ore localizations S, then Cy is a finitely generated k-algebra and Ay is a
differential Cs-ring of finite type.

Proof. (1) Use Proposition 5.17 and Theorem 5.11.
(2) Suppose that F' = {F; A} is a differential C-filtration of finite type. Then setting

FiA; :=Cs®c (F;A) @c Cy C As
we obtain a filtration F' of A, such that grf’ A, = C, ®c grf' A as graded Cj-algebras. O

Remark 5.19. The ideas in [KL00, Theorem 4.9] can be used to show the following. In the setup of
the previous corollary let M be a finite A-module and M :=Im(M — A; ®4 M). Then

GKdimg M = GKdimy, (4 ®4 M).
COROLLARY 5.20. Let C' be a commutative k-algebra, let U := Spec C' and let A be a differential
C-ring.
(1) There is a quasi-coherent Oy-ring A, unique up to a unique isomorphism, such that
U, A) = A as C-rings.
(2) For any multiplicatively closed set S C C its image S C A is a denominator set.
(3) Given an affine open set V. .C U let C' :=T(V,Op). Then A" := C' ¢ A ®c C’ is a k-algebra

and A — A’ is a localization of rings. If A is noetherian then so is A’.

Proof. A is a differential C-bimodule, so by Proposition 5.17 A is evenly localizable to Cg for
any multiplicatively closed set S C C. By Corollary 5.13 there is a quasi-coherent Op-ring A,
and by Proposition 5.6 we have A" = I'(V, A). The assertion about noetherian rings follows from
Lemma 5.5(5). O

PRrROPOSITION 5.21. Let C' be a commutative k-algebra, let U := Spec C, let M be a C'°-module and
let M := Op2 ®ce M, the quasi-coherent O2-module associated to M. Assume C° is noetherian.
Then the following conditions are equivalent:

(i) M is a differential C-bimodule;
(ii) M is supported on the diagonal A(U) C U?.
Proof. (i) = (ii) Denote by I := Ker(C® — C) and Z := Op2 ®ce I. So T is an ideal defining the

diagonal A(U). Suppose F' = {F; M} is a differential C-filtration of M, with F;,_1M = 0. Then for
all ¢ > i9 we have

Ii—io+1 . EM =0.
It follows that the Op2-module F; M := Oz ®ce F; M is supported on A(U). However, M = | J F; M.
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(ii) = (i) Let {M4} be the set of coherent Op2-submodules of M, so M = |J M,. Now M,
is a coherent Op2-module supported on the diagonal A(U), so there is some integer i, > 0 such
that Z?*!. M, = 0. It follows that the C®-module M, := I'(U?, M,,) satisfies I'*1 . M = 0.
And M = M,,.

Define a filtration F on M by F;M := Homge(C®/T**1, M) for i > 0, and F_1M := 0. Then
M, C F; M, and this implies that M = |J F;M. Finally I - F;M C F;_1M, and hence grfM is a
central C-bimodule. O

6. Localization of dualizing complexes

In this section we study the behavior of rigid dualizing complexes over rings with respect to local-
ization (cf. Definition 5.8).

DEFINITION 6.1. Let A — A’ be a localization homomorphism between two noetherian k-algebras.
Suppose the rigid dualizing complexes (R, p) and (R',p’) of A and A’, respectively, exist. A rigid
localization morphism is a morphism

Qarja: R— R
in D(Mod A°) satisfying the conditions below.
(i) The morphisms A’ ®4 R — R’ and R®4 A" — R’ induced by q4//4 are isomorphisms.
(ii) The diagram

R P

RHom (A, R ® R)

q lq®q
R~ RHom 4 (A, R ® R')
in D(Mod A°) is commutative, where q := q4//4.

/

We sometimes express this by saying that qa//4 : (R, p) — (R',p') is a rigid localization morphism.

We now give a generalization of [YZ03, Theorem 3.8].

THEOREM 6.2. Let A be a noetherian k-algebra and let A" be a localization of A. Assume that A
has a dualizing complex R such that the cohomology bimodules H'R are evenly localizable to A’.
Then we have the following.

(1) The complex
R =A @i R, A
is a dualizing complex over A’.

(2) If R is an Auslander dualizing complex over A, then R’ is an Auslander dualizing complex over
A

(3) Suppose R is a rigid dualizing complex over A with rigidifying isomorphism p, and A® is noethe-
rian. Then R is a rigid dualizing complex over A'. Furthermore R' has a unique rigidifying
isomorphism p’ such that the morphism qarja : R — R’ defined by r — 1 ®r ® 1 is a rigid
localization morphism.

/

(4) In the situation of part (3), the rigid localization morphism qu//4 : (R, p) — (R, p') is unique.

Proof. (1) This follows essentially from the proof of [YZ99, Theorem 1.13]. There A was commu-
tative and A’ was the localization of A at some prime ideal, but the arguments are valid for an
arbitrary localization A’.
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(2) To check the Auslander property for R’ let M’ be any finite A’-module. By Lemma 5.5(2)
there is a finite A-module M such that M’ = A’ ® 4 M. For any i, [YZ03, Lemma 3.7(1)] implies
that

Ext’y, (M’ R') = Ext’y (M, R') = Ext’y(M,R) @4 A’
as (A’)°P-modules. Given any (A’)°P-submodule N’ C Ext’y,(M’, R'), Lemma 5.5(3) tells us that
there is an A°P-submodule N C Ext’ (M, R) such that N’ = N ®4 A’. For such N we have

Ext{ 0 (N, B') & A’ @ 4 Ext/yo, (N, R)

which is 0 for all j < i. By symmetry we get the other half of the Auslander property for R'.
(3) As in the proof of [YZ03, Theorem 3.8(2)] we have a canonical isomorphism

A’ ® 4 RHompe (A, R® R) ©4 A" = RHom (A", R ® R')

in D(Mod (A")¢). This defines a rigidifying isomorphism p’ that respects qa/,4 as depicted in the
diagram in Definition 6.1. Given any other morphism

p": R — RHomae (A, R' ® R')

that renders the diagram commutative, applying the functor A’ ® 4 — ®4 A’ to the whole diagram
we deduce that p* = g/

/

(4) Write q1 := qa/a- Suppose qa : (R,p) — (R',p) is another rigid localization morphism.

Consider the commutative diagrams

R P

RHom (A, R ® R)
i l%@%’
R L) RHOHl(A/)e (A/, R ® R/)

in D(Mod A°). Applying the base change functor (A’)® ® 4e — to these diagrams we obtain diagrams

A s R4 A el ®4 RHomae(A, R ® R) @4 A’
1®Qi®1l l1®(fh’®qz')®1
R i RHom, (A, ' @ R')

consisting of isomorphisms in D(Mod (A4")¢); cf. [YZ03, Proof of Theorem 3.8(2)]. We obtain an
isomorphism 7 : R* — R’ such that

19el=T0(1l@q1®1): A/ @1 R4 A" — R
However, then 7 : (R',p) — (R',p') is a rigid trace morphism. By [YZ03, Theorem 3.2], 7 has to
be the identity. This implies 1 ® o ® 1 = 1 ® q1 ® 1 and therefore q2 = q;. ]

The next proposition guarantees that under suitable assumptions the rigid trace localizes.

PROPOSITION 6.3. Let
A—— A
B——D
be a commutative diagram of k-algebras, where the horizontal arrows are localizations, the vertical

arrows are finite, and the multiplication maps A'®@ 4B — B’ and B A" — B’ are bijective. Assume
A, A" A B, B’ and B° are all noetherian. Also assume the rigid dualizing complexes (R4, pa)
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and (Rp, pp) exist, and so does the rigid trace morphism Trp/a : Rp — Ra. By Theorem 6.2 the
complexes Ry := A’ @4 Ryp ®4 A" and R := B’ @ R ®p B’ are rigid dualizing complexes over
A’ and B’, respectively, with induced rigidifying isomorphisms p 4 and pg/. Then the morphism

TTB'/A' =1 ®TrB/A ®]_ : RB’ — RA’

is a rigid trace.

Proof. We begin by showing that the morphism ¢’ : R — RHom 4/(B’, Ry/) induced by Trp A
is an isomorphism. Let us recall how ¢’ is defined: one chooses a quasi-isomorphism Ry — I’
where I’ is a bounded below complex of injective (A’)*-modules. Then Trp/ /A’ is represented by an
actual homomorphism of complexes 7’ : Rg: — I'. The formula for ¢/ : Rgr — Homu/(B',I') is
Y(BO) =7 (Vp) for f € Rpr and V' € B'.

Let R4 — I be a quasi-isomorphism where [ is a bounded below complex of injective
A®-modules, and let 7 : Rp — I be a homomorphism of complexes representing Trp,4. We know
that the homomorphism v : Rp — Homa(B,I) given by the formula ¢(3)(b) = 7(bf) is a quasi-
isomorphism.

Since Ry =2 A’ @4 I @4 A’ there is a quasi-isomorphism A’ @4 I ® 4 A’ — I’, and using it we
can assume that 7/ = 1 ® 7 ® 1 as morphisms

RB/:A,®ARB®AA/—>A,®AI®AA/—>I/.

Thus, we get a commutative diagram

RB—w>RH0mA(B,RA)
L
Rpr —— RHom /(B’, Ra/)

in D(Mod A°). Applying the base change —® 4 (A")® to the diagram we conclude that ¢ = 1y ®1.
So it is an isomorphism.

By symmetry Rp — RHom 4o (B, Rar) is also an isomorphism.

Next we have to show that the diagram
Rp 22> RHom g (B, Ry © Rppr)
Tr lTr@Tr (6.4)
R —24~ RHom e (A", Ry ® Rar)

is commutative. This is true since (6.4) was obtained by applying — ®4e (A")¢ to the following
commutative diagram.

Rp LN RHompge (B, Rp® RB)

Trl lTr@Tr

R —%~ RHom e (4, R4 ® Ry4) O

If a k-algebra A has an Auslander rigid dualizing complex R, then we write Cdim 4 := Cdimpg. 4
for this preferred dimension function.

We finish this section with a digression from our main theme, to present the following corollary to
Theorem 6.2.
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COROLLARY 6.5. Suppose chark = 0, A is the nth Weyl algebra over k and D is its total ring of
fractions, i.e. the nth Weyl division ring. Then D|2n| is an Auslander rigid dualizing complex over
D, and hence the canonical dimension of D is Cdimp D = 2n.

Proof. By [Ye00], A[2n] is a rigid Auslander dualizing complex over A. Now use Theorem 6.2 with
A" :=D. O

We see that unlike the Gelfand—Kirillov dimension GKdim, which cannot distinguish between
the various Weyl division rings (since GKdim D = o0), the canonical dimension is an intrinsic
invariant of D that does recover the number n. Moreover, this fact can be expressed as a ‘classical’
formula, namely

D ifi=2n,

ExtYepop (D, D ® D) =
*-DeD a ) {O otherwise.

7. Perverse modules and the Auslander condition

In this section we discuss t-structures on the derived category DP(I\/Iod A). We begin by recalling
the definition of a t-structure and its basic properties, following [KS90, ch. X].

DEFINITION 7.1. Suppose that D is a triangulated category and DSY, DZ° are two full subcategories.
Let DS™ := DS%[—n] and D" := DZ°[—n]. We say that (DS, D>?) is a t-structure on D if:

(i) DS7! ¢ DS and D7 ¢ D?Y;
(ii) Homp(M,N) =0 for M € DS? and N € D71,
(iii) for any M € D, there is a distinguished triangle
M — M — M" — M'[1]
in D with M’ € DS” and M” € D>,

When these conditions are satisfied we define the heart of D to be the full subcategory
D” := DS’ ND".

Given a t-structure there are truncation functors 7" : D — DS" and 72" : D — D”", and
functorial morphisms 7S"M — M, M — 72" M and 72" 1M — (7S"M)[1] such that

TSPM — M — 2N (TgnM)[l]
is a distinguished triangle in D. One shows that the heart D° is an abelian category, and the functor
HO := 759720 = 20,50, p _, po

is a cohomological functor.

Ezample 7.2. Let A be a left noetherian ring. The standard t-structure on DP(I\/Iod A) is
DP(Mod A)S? := {M € DP(Mod A) | HM = 0 for all j > 0}
and
DP(Mod A)?° := {M € DP(Mod A) | H/ M = 0 for all j < 0}.
For a complex
M=(-—M" d_",M”Jrl — )
the truncations are

TSPM = (- — M™% — M™ — Ker(d") — 0 — ---)
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and
72" M = (-++ — 0 — Coker(d" 1) — M™ Tt — M2 .0,
The heart DP(Mod A4)° is equivalent to Modg A.

Other t-structures on DP(Mod A) are referred to as perverse t-structures, and the notation
(PDP(Mod A)SY,PDP(Mod A)7°) is used. The letter ‘p’ stands for ‘perverse’, but often it will also
signify a specific perversity function (see below).

Now suppose for ¢ = 1,2 we are given triangulated categories D;, endowed with t-structures
(Dfo, D?O). An exact functor F' : Dy — Dy is called t-ezact if F(Dfo) C D;O and F(D%O) C D2>O.
The functor F : DY — DY between these abelian categories is then exact. To apply this defini-
tion to a contravariant functor F' we note that ((DZ°)°P, (DS?)°P) is a t-structure on the opposite
category D°P. A contravariant triangle functor F': D1 — Ds is called t-exact if F (Dfo) C D2> % and

>0 <0
F(D7") c D3

Example 7.3. Let A be a left noetherian k-algebra and let B be a right noetherian k-algebra.
Suppose that we are given a dualizing complex R over (A, B), and let D and D°P be the duality
functors that R induces; see Definitions 4.1 and 4.5. Put the standard t-structure on Df(Mod B°P)
(see Example 7.2). Define subcategories

PDP(Mod A)S := {M € D?(Mod A) | DM € D?(Mod B°P)>"}
and

PDP(Mod A)?° := {M € Df(Mod A) | DM € DP(Mod B°P)<°},
Since D : DP(Mod A) — DP(Mod B°P) is a duality it follows that

(PDP(Mod A)<Y PDP(Mod A)=?)

is a t-structure on DF(Mod A), which we call the perverse t-structure induced by R. The functors D
and D°P are t-exact, and
D : PD?(Mod A)° — DP(Mod B°?)" ~ Mod; B°P
is a duality of abelian categories.
DEFINITION 7.4. Suppose that A is a noetherian k-algebra with rigid dualizing complex R 4. The

perverse t-structure induced on DF(Mod A) by R4 is called the rigid perverse t-structure. An object
M € PDP(Mod A)° is called a perverse A-module.

In the remainder of this section we concentrate on another method of producing t-structures
on DP(Mod A). This method is of a geometric nature, and closely resembles the t-structures that
originally appeared in [BBDS81].

A perversity is a function p : Z — Z satistying p(i) — 1 < p(i + 1) < p(i). We call the function
p(i) = 0 the trivial perversity, and the function p(i) = —i is called the minimal perversity.

Let A be a ring. Fix an exact dimension function dim on Mod A (see Definition 4.8). For an
integer 7 let M;(dim) be the full subcategory of Mod A consisting of the modules M with dim M < i.
The subcategory M;(dim) is localizing, and there is a functor

'\, (dim) : Mod A — Mod A
defined by
Cm;(dimyM := {m € M | dim Am < i} C M.
The functor 'y, (qim) has a derived functor
R, (dim) : D (Mod A) — D' (Mod A)
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calculated using injective resolutions. For M € D*(Mod A) the jth cohomology of M with supports
in M;(dim) is defined to be

By, (qimmy M = BRI, (aim) M.

The definition above was introduced in [Ye96, YZ03]. It is based on the following geometric paradigm.

Ezxample 7.5. If A is a commutative noetherian ring of finite Krull dimension and we set dim M :=
dim Supp M for a finite module M, then

HYy, (i M = lim H), M

where Z runs over the closed sets in Spec A of dimension < 7.

DEFINITION 7.6. Let A be a left noetherian ring. Given an exact dimension function dim on Mod A
and a perversity p, define subcategories

PDP(Mod A)S? := {M € DP(Mod A) | dim H/ M < i for all 4,5 with j > p(i)}
and
PDP(Mod A)*° := {M € D?(Mod A) | H{Ai(dim)M =0 for all 4,5 with j < p(i)}
of DP(Mod A).
Ezample 7.7. Suppose dim is any exact dimension function such that dim M > —oo for all M # 0.
Take the trivial perversity p(i) = 0. Then
PDP(Mod A)S? = DF (Mod A)<?
and
PDP(Mod 4)7° = DP(Mod 4)7°,
namely the standard t-structure on D?(Mod A).

The following lemma is straightforward.

LEMMA 7.8. In the situation of Definition 7.6, let p be the minimal perversity, namely p(i) = —i,
and let M € DP?(Mod A). Then:

(1) M €PDP(Mod A)SC if and only if dim H™*M < i for all i;
(2) M e pDP(Mod A)ZY if and only if H{w M =0 for all j < —i, if and only if RI'y,(gim)M €
DP(Mod A)>~¢ for all i.

i(dim)

Recall that if R is an Auslander dualizing complex over the rings (A, B) then the canonical
dimension Cdimpg (Definition 4.9) is an exact dimension function on Mod A.

THEOREM 7.9. Let A be a left noetherian k-algebra and B a right noetherian k-algebra. Suppose
R is an Auslander dualizing complex over (A, B). Let dim be the canonical dimension function
Cdimp,4 on Mod A, and let p be the minimal perversity p(i) = —i. Then:

(1) the pair
(PDP(Mod A)SY, PDP(Mod 4)7°)
from Definition 7.6 is a t-structure on D?(Mod A);
(2) put on D?(Mod B°P) the standard t-structure, then the duality functors D and D°P determined
by R (see Definition 4.5) are t-exact.

645

https://doi.org/10.1112/50010437X04001307 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X04001307

A. YEKUTIELI AND J. J. ZHANG

Proof. In the proof we use the abbreviations D(A) := DP(Mod A), etc.

If M € PD(A)S7L, then M[-1] € PD(A)S’. By Lemma 7.8(1) we get dimH~¢(M[-1]) < i.
Changing indices, we get dimH "M < i — 1 < 4. Again using Lemma 7.8(1), we see that the first
part of condition (i) of Definition 7.1 is verified. The second part of condition (i) is verified similarly
using Lemma 7.8(2).

By the Auslander condition dimH ™7 R = dim ExtE;Zp(B ,R) < j for all j. Therefore, according
to Lemma 7.8(1) we get R € PD(A)S". On the other hand, since

HY, i B = lim Ext?y (A/a, R),
acy

(dim)

where § is the Gabriel filter of left ideals corresponding to M;(dim), the Auslander condition and
Lemma 7.8(2) imply that R € PD(A)>".

Let M" — M — M" — M’[1] be a distinguished triangle in D(A). Since dim is exact, and using
the criterion in Lemma 7.8(1), we see that if M’ and M" are in PD(A)S?, then so is M. Likewise,
applying the functor Hiﬂi( dim) 10 this triangle and using Lemma 7.8(2) it follows that if M’ and M"
are in PD(A)?°, then so is M.

Suppose that we are given M € PD(A)SY, N € PD(A)?! and a morphism ¢ : M — N. In order
to prove that ¢ = 0 we first assume that M is a single finite module, concentrated in some degree
—I, with [ > 0 and dim M < [. Then ¢ factors through M 7, R, (@im)N — N. Now M € D(A)S
and, by Lemma 7.8(2), R\, (qim)V € D(A)>~*1; hence ¢/ = 0. Next let us consider the general

case. Let H7'M be the lowest nonzero cohomology of M. We have a distinguished triangle
T:=(H'M] - M— M — H'M)[ +1])
where M" is the standard truncation of M. According to Lemma 7.8(1) we have dimH™!M <

[, so by the previous argument the composition (H_lM W — M 2, N is zero. So applying
Homp pod 4)(—; V) to the triangle T', we conclude that ¢ comes from some morphism ¢ : M” — N.
Since M" € PD(A)S? and by induction on the number of nonvanishing cohomologies we have ¢” = 0.
Therefore, condition (ii) is verified.

Next suppose that M € D(BP)SV. In order to prove that DM € PD(A)?° we can assume that
M is a single finite B°P-module, concentrated in degree —I for some [ > 0. By [YZ03, Proposition
5.2] and its proof we deduce that

RT'm, (dim)DP M = RI', (dim) RHomper (M, R)
= RHOHlBop (M, RPMi(dim) R)
As we saw above, the Auslander condition implies that R, (qim) R € D(B°P)>~%, However, M €
D(B°P)S~!, and hence
RHom ger (M, R, (qim) R) € D(A)Z'™" € D(A)7 "
Now the criterion in Lemma 7.8(2) tells us that D°? M € PD(A4)>°.

Let M € D(B°P)>Y. We wish to prove that D°? M € PD(A)S". To do so we can assume that M is a
single finite module, concentrated in some degree [ > 0. Then for every i, H'DP M = Extg!, (M, R)
has dim H*D°? M < i. Now apply Lemma 7.8(1).

At this point we know that D°P(D(B°P)SY) c PD(A)?° and D°P(D(B°P)??) C PD(A)SP.
Let M € D(A) be an arbitrary complex, and consider the distinguished triangle

7STIDM — DM — 77°DM — (7S7'DM)[1]
in D(B°P) obtained from the standard t-structure there. Applying D°? we obtain a distinguished
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triangle
M — M — M"— M'[1]
in D(A), where M’ := D°°72°DM and M" := D°°7S<7IDM. This proves that condition (iii) is
fulfilled, so we have a t-structure on D(A), and also that the functor DP is t-exact.
To finish the proof we invoke [KS90, Corollary 10.1.18], which tells us that D is also t-exact. O

Problem 7.10. Let A be a left noetherian ring. Find necessary and sufficient conditions on a dimen-
sion function dim on Mod A, and on a perversity function p, such that Theorem 7.9(1) holds.

Remark 7.11. The idea for Definition 7.6 comes from [KS90, p. 438, Exercise X.2]. In his recent
paper Kashiwara [Ka03| considered similar t-structures. In particular, his results imply that when
A = B is a commutative finitely generated k-algebra, and R is the rigid dualizing complex of A,
then Theorem 7.9 holds for any perversity function p. (Note that here canonical dimension coincides
with Krull dimension.) In part (2) of the theorem one has to put the perverse t-structure determined
by the dual perversity p*(i) :== —i — p(i) on DP(Mod A°P).

8. The rigid dualizing complex of a differential k-algebra

We begin this section with the following consequence of previous work.

THEOREM 8.1. Let A be a differential k-algebra of finite type. Then A has an Auslander rigid
dualizing complex R,. For a finite A-module M the canonical dimension Cdim M coincides with
the Gelfand—Kirillov dimension GKdim M.

Proof. According to Theorem 3.1, A has a nonnegative exhaustive filtration G = {G; A} such that
grA is a commutative, finitely generated, connected graded k-algebra. Now use [YZ99, Corollary
6.9]. O

Recall that a ring homomorphism f : A — B is called finite centralizing if there exist elements
bi,...,b, € B that commute with all elements of A and B =), Ab;.

PROPOSITION 8.2. Let A be a differential k-algebra of finite type and f : A — B a finite centralizing
homomorphism. Then B is also a differential k-algebra of finite type, and the rigid trace Trp /4 :
Rp — R, exists.

Proof. By Theorem 3.1 we can find a differential k-filtration of finite type F' = {F; A} of A such
that gri’A is connected. By [YZ99, Lemma 6.13] and its proof there is a filtration F' = {F;B} of
B such that grf'B is connected, f(F;A) C F;B and grf'(f) : grf’ A — gr'B is a finite centralizing
homomorphism. It follows that grf' B is finite over its center, so B is a differential k-algebra of finite
type. By [YZ99, Theorem 6.17] the rigid trace Trp/a: Rp — Ra exists. ]

Let A be a differential k-algebra of finite type with rigid dualizing complex R4. The derived
category DF(Mod A) has on it the rigid perverse t-structure induced by R4, whose heart is the
category of perverse A-modules PDP(Mod A)°. See Definition 7.4.

ProPOSITION 8.3. Let A — B be a finite centralizing homomorphism between two differential
k-algebras of finite type. Denote by restg;4 : D(Mod B) — D(Mod A) the restriction of scalars
functor.

(1) Let M € D?(Mod B). Then M € PDP(Mod B)? if and only if restg/qa M € PDP(Mod A)°.
(2) If A — B is surjective, then the functor
restp/4 : ’Df (Mod B)? — PDP(Mod A)°
is fully faithful.
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Proof. (1) Define the duality functors D4 := RHom4(—, R4) and Dp := RHomp(—, Rp). According
to [YZ99, Proposition 3.9(1)] the trace Trg/4 : Rp — R4 gives rise to a commutative diagram

rest
DP(Mod B) o . DP(Mod A)
lDB lDA
rest gop / gop
DP(Mod BP)°P — 2. Db(Mod A°P)°P

in which the vertical arrows are equivalences. By definition M € PDP(Mod B)? if and only if
H'DpM = 0 for all i # 0. Likewise, restp/a M € leff’(Mod A)? if and only if H'D 4 restg/a M =0
for all ¢ # 0. However,

H'Dy restp 4 M = restgop /gop H'DgM.
(2) In view of (1) we have a commutative diagram

restp/a

PDP(Mod B)" PDP(Mod A)°
5 P
rest gop / gop
(Mod; BP)oP — "/ (Mod; A%P)oP

where the vertical arrows are equivalences. The lower horizontal arrow is a full embedding, since
it identifies Mod¢ B°P with the full subcategory of Mod; A°P consisting of modules annihilated by
Ker(A°? — B°P). Hence, the top horizontal arrow is fully faithful. O

LEMMA 8.4. Suppose that A and B are k-algebras, M, M’ € D"(Mod A¢) and N, N’ € D’(Mod B¢).
Then there is a functorial morphism

p: RHom A (M, M") @ RHompg(N, N') — RHomagp(M @ N, M' @ N')

in D(Mod (A ® B)®). If A and B are left noetherian and all the modules HPM and HPN are finite,
then p is an isomorphism.

Proof. Choose projective resolutions P — M and @) — N over A° and B¢, respectively. So PRQQ —
M ® N is a projective resolution over (A ® B)°, and we get a map of complexes

p: Homg (P, M") @ Homp(Q, N') — Homsgp(P @ Q,M' @ N')

over (A® B)°.

Now assume the finiteness of the cohomologies. To prove that p is a quasi-isomorphism we might
as well forget the right module structures. Choose resolutions P — M and )y — N by complexes
of finite projective modules over A and B, respectively. We obtain a commutative diagram

Hom (P, M) ® Homp(Q, N') —— Homs5(P ® Q, M’ © N')
Hom 4 (P, M') @ Homp(Qs, N') AN Homgp (P ® Qf, M @ N')

in which the vertical arrows are quasi-isomorphism and the bottom arrow is an isomorphism of
complexes. O

Recall that by Proposition 2.9 the tensor product of two differential k-algebras of finite type is
also a differential k-algebra of finite type.
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THEOREM 8.5. Suppose that A and B are differential k-algebras of finite type. Then the rigid
dualizing complexes satisfy

Ragp = RA® Rp
in D(Mod(A ® B)°).

Proof. We will prove that R4 ® Rp is a rigid dualizing complex over A ® B.

Consider the Kunneth spectral sequence
(HPRA) ® (H'Rp) = HPT(R4 ® Rp).
Since A ® B is noetherian it follows that HP"4(R4 ® Rp) is a finite (A ® B)-module on both sides.

From Lemma 8.4 we see that the canonical morphism
A® B — RHomggp(RA ® Rp, R4 ® Rp)

in D(Mod (A ® B)®) is an isomorphism. Likewise for RHom g p)e-
Next using this lemma with A° and B®, and by the rigidity of R4 and Rp, we get isomorphisms

RHOIH(A®B)e(A ® B,(Ry® Rp)® (Ry ® Rp))

>~ RHomygegpe(A® B,(Ra ® Ra) ® (Rp ® Rp))

=~ RHomye (A, Ry ® R4) ® RHompe(B, Rp ® Rp)

~“ Rp® Rp
in D(Mod (A ® B)®).

It remains to prove that the complex R4 ® Rp has finite injective dimension over A ® B and

over (A ® B)°P. This turns out to be quite difficult (cf. Corollary 8.6 below). By Theorem 3.1
there is a filtration F of A such that grf”A is connected, finitely generated and commutative. Let

A: := Rees!” A C A[s], which is a noetherian connected graded k-algebra. By [YZ99, Theorem 5.13],
A has a balanced dualizing complex R ; € DP(GrMod(A)°). The same holds for B: there is a filtration

G, a Rees ring B := Rees®B C BJ[t] and a balanced dualizing complex Rg. According to [vdB97,
Theorem 7.1] the complex R 1 ® Rg is a balanced dualizing complex over A® B. In particular,
R; ® Rg has finite graded-injective dimension over A® B.
Now A= A/(s — 1), so by [YZ99, Lemma 6.3] the complex
Q= (A® B) g (R;® Rg)
has finite injective dimension over A®B. However, the algebra A®B is graded (the element 1®t has
degree 1), and @ is a complex of graded (A ® B)-modules. Therefore, () has finite graded-injective

dimension over this graded ring. Applying [YZ99, Lemma 6.3] again (it works for any graded ring,
connected or not) we see that

(A® B) ®A®§Q§ (A® B) ®g®§ (R,Z@)RE)

has finite injective dimension over A ® B.

According to [YZ99, Theorem 6.2] there is an isomorphism R4 = A ® 7 Rz[—1] in D(Mod A).
Likewise, Rp = B ® 5 Rz[—1]. Hence,

Ry®Rp = (A® B)®3,5 (R ® Rp)[-2]

has finite injective dimension over A ® B.

By symmetry R4 ® Rp has finite injective dimension also over (A ® B)°P. O
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COROLLARY 8.6. Suppose that A and B are differential k-algebras of finite type, and the complexes
M € D?(Mod A) and N € DP(Mod B) have finite injective dimension over A and B, respectively.
Then M ® N has finite injective dimension over A ® B.

Proof. Let MY := RHom(M, R4) and NV := RHomp (N, Rp). The complexes M" € DP(Mod A°P)
and NV € DP(Mod B°P) have finite projective dimension (i.e. they are perfect); see [Ye99, Theo-
rem 4.5]. Since the tensor product of projective modules is projective it follows that MY @ NV &
DP(Mod(A° @ B°P)) has finite projective dimension. Using Theorem 8.5, and Lemma 8.4 we see
that

RHomagp(M @ N, Ragr) = RHomagp(M @ N, R4 ® Rp) = M"Y @ N".
Applying RHom g p(—, Ragn) to these isomorphisms we get
M ® N = RHomgp(MY @ NV, RaeB),
so this complex has finite injective dimension. O

Problem 8.7. Is there a direct proof of the corollary? Is it true in greater generality, for example,
for any two noetherian k-algebras A and B?

Remark 8.8. We take this opportunity to correct a slight error in [YZ99]. In [YZ99, Theorem 6.2(1)]
the complex R should be defined as R := (R;)o, namely the degree 0 component of the localization
with respect to the element ¢. The rest of that theorem (including the proof) is correct.

If A is a differential k-algebra of finite type, then so is the enveloping algebra A°. Hence, the
rigid dualizing complex R 4e exists, as does the rigid perverse t-structure on D?(Mod A®), whose
heart is the category PDP(Mod A°)? of perverse A°-modules.

THEOREM 8.9. Let A be a differential k-algebra of finite type with rigid dualizing complex R 4.
Then R4 € PDP(Mod A°)°.
Proof. Consider the k-algebra isomorphism

T(APP = APRA = AR AP = A°
with formula 7(a; ® az) := as ® ay. Given an A°-module M let "M be the (A°P)°-module with
action via 7, i.e.

(a1 ® az) -7 m = 7(a; ® az) - m = agmay
for m € M and a1 ® ag € (A°P)°. Performing this operation on the complex R4 € D(Mod A°)

we obtain a complex "TR4 € D(Mod (A°)¢). Each of the conditions in Definitions 4.1 and 4.10 is
automatically verified, and hence Rop := " R4 is a rigid dualizing complex over A°P.

According to Theorem 8.5 we get an isomorphism
Rye 2 RAp® Rpor = Ry @ ("TRA)

in D(Mod (A°)¢). However, the left (respectively right) A® action on Ry ® (TR4) is exactly the
outside (respectively inside) action on R4 ® R4. By rigidity (cf. Definition 4.10) we have

R4 = RHomye(A, Ry ® R4) = RHomye (A, Rye)
in D(Mod A°).
Finally, since A° = (A°)°P, via the involution 7, we may view RHomge(—, R4e) as an auto-

duality of D?(Mod A®). By definition of the rigid t-structure this duality exchanges Mod; A® and
PDP(Mod A°)°. Since A € Modg A° it follows that R4 € PDP(Mod A°)°. O

We know that the cohomology bimodules H'R 4 are central Z(A)-modules. The next lemma is
used a few times.
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LEMMA 8.10. Let A be a differential k-algebra of finite type and a € A a noninvertible central
regular element. Define B := A/(a). Let Ry and Rp denote the rigid dualizing complexes of A and
B, respectively. Then there is a long exact sequence

- —>H'Rp - H'Ry 5 HRy - H™'Rg — -
of A-bimodules.

Proof. Trivially A — B is a finite centralizing homomorphism. By Proposition 8.2 the trace mor-
phism Trp 4 : Rp — Ra exists. In particular, Rp = RHom A(B, Ra). There is an exact sequence of
bimodules

0-A%A—B—0.

Applying the functor RHom4(—, R4) to it and taking cohomologies we obtain the long exact
sequence we want. O

Below we give a couple of examples of differential k-algebras of finite type and their rigid dualizing
complexes.

Ezample 8.11. Let C' be a smooth n-dimensional k-algebra in characteristic 0 and A := D(C) the
ring of differential operators. Then the rigid dualizing complex is R4 = A[2n]; see [Ye00].

Ezample 8.12. Let g be an n-dimensional Lie algebra over k and A := U(g) its universal enveloping
algebra. By [Ye00] the rigid dualizing complex is R4 = A ® (A" g)[n], where A" g has the adjoint
A action on the left and the trivial action on the right.

_ Suppose that A is a ring with nonnegative exhaustive filtration F' such that the Rees ring
A := Rees!" A is left noetherian. We recall that a filtered (A, F')-module (M, F) is called good if it
is bounded below, exhaustive and Rees! M is a finite A-module.

In the two previous examples the cohomology bimodules H' R 4 all came equipped with filtrations
that were both differential and good on both sides. These properties turn out to hold in general, as
Theorems 8.13 and 8.14 show.

THEOREM 8.13. Let A be a differential k-algebra of finite type, and let R4 be the rigid dualizing
complex of A. Let F' be some differential k-filtration of finite type of A. Then for every i there is an
induced filtration F of H'R 4, such that (H' R, F) is a good filtered (A, F)-module on both sides.

Proof. Define A := Rees” A C A[t]. Let F = {F;A} be the filtration from Lemma 1.4. Then
gt A = (g A) @ k1]
as k-algebras. The center is
Z(gr" A) = Z(gr" A) @ K]1],

which is a finitely generated commutative k-algebra. Also grﬁ g is a finite Z(grﬁ E)—module.
We conclude that F'is a differential k-filtration of finite type on A. Moreover, each k-submodule
F;A is graded, where A C A[t] has the grading F in which deg!(t) = 1.

Applying Theorem 3.1 and Proposition 3.5 to the filtered k-algebra (A, F'), we obtain another
filtration G on A. This new filtration is also differential k-filtration of finite type, and each

k-submodule ézg C Ais graded (for the grading F). Furthermore, gréj is a connected graded
k-algebra (when considered as Z-graded ring with the grading G).

Define
B :=Rees®A C Als] C Als, 1.
This is a Z2-graded ring with grading (G, F), in which deg(é’F)(s) = (1,0) and deg(é’F) (t) =(0,1).
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Consider the k-algebra B with its grading G. This is a connected graded k-algebra. The quotient
B/(s) = gr®A is a finitely generated commutative k-algebra. Therefore, by [YZ99, Theorem 5.13],
B has a balanced dualizing complex Rp € D”(GrMod B®). By [vdB97, Theorem 6.3] we get

Rp = (RTywB)*
in D(GrMod B¢). Here Ty, is the torsion functor with respect to the augmentation ideal m of B, and

(M)* := Hom (M, k) = (P Homy(M_; k),

the graded dual of the graded k-module M. In particular, for every p there is an isomorphism of
B-bimodules HPRp = (H, B)* where

Hf,B = H'RT B = lim Ext?(B/m"*, B).

Now for each k
Ext},(B/m*,B)= @ Ext}(B/m*, B),
(i.j)€z?
where (i, 7) is the (é, F) degree. Therefore in the direct limit we get a double grading
HLB= D HiB)u).
(i,5)€2?
Since for every i the k-module (HyB); = @ jeZ(H&B)(i,j) is finite it follows that the graded dual

(Hh, B)*, which is computed with respect to the G grading, is also Z?-graded. We see that HPRp
is in fact a Z2-graded B-bimodule.

By [YZ99, Theorem 6.2] the complex Ry := ((Rp[—1])s)o is a rigid dualizing complex over the
ring A = B/(s — 1); cf. Remark 8.8. Hence, each cohomology

Hp—lRB ~
HPR~ =sp{ HPIR
AT -1 -mwr1Rg; M b

is a graded A-bimodule (with the Z-grading F in which deg” (¢) = 1), finite on both sides.

Next we have A = A /(t—1). Because t—1 is a central regular non-invertible element, Lemma 8.10
states there is an exact sequence

.._,HPRA_,HPRZQHPRA_,HPHRA_,HP+1RZ_>...

of A-bimodules. Since H? R 7 is graded, the element ¢ — 1 is a nonzero divisor on it, and therefore
we get an exact sequence

0—H 'Ry “L HP 'Ry — HPR, — 0.
Thus, the bimodule
HPIR ;
(t—1)-H~'Ry
inherits a bounded below exhaustive filtration F, and Rees(HP R4, F), being a quotient of HP~!R e

is a finite A-module on both sides. By definition (H? R4, F) is then is a good filtered (A4, F')-module
on both sides. O

HPRy & :Sprp_le

THEOREM 8.14. Let C' be a finitely generated commutative k-algebra, let A be differential C-ring
of finite type, and let R4 be the rigid dualizing complex of A. Then for every i the C-bimodule
H'R, is differential.
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Proof. Using the same setup as in the proof of Theorem 8.13, define
A=gf'A= spgg = A/(t).

So A is a C-algebra. Let R; be the rigid dualizing complex of A. By [YZ99, Corollary 3.6] the
A-bimodule H'R 1 is Z (A)—ceniral, and hence it is a central C-bimodule. According to Lemma 8.10
there is an exact sequence of A-bimodules

H™'R; L H™'R; — H'R.
Therefore,
spo(H ' Ry) = (' Ry)/t - (W' Ry) — H'R,
is a central C-bimodule.

To conclude the proof, consider the filtration F of H'R4 from Theorem 8.13. Because
(H'R4, F) = sp;(H'Ry) is a good filtered (A, F)-module, say on the left, we see that (H'R4, F)
is exhaustive and bounded below. Now

Rees(H'R4, F) = (H" 'R 3)/{t-torsion},

so gr (H'Ra, F) is a quotient of spy (H"'Ry). It follows that gr (H'R, F) is a central C-bimodule.
Thus, F is a differential C-filtration of H'R 4. ]

COROLLARY 8.15. In the situation of Theorem 8.14, let U := SpecC'. Given an affine open set
VcUletC':=T(V,0Oy). Then A’ := C' ®c A®¢c C' is a noetherian k-algebra, A — A’ is flat and
R := A" ®4 Ry ®4 A" is an Auslander rigid dualizing complex over A’.

Proof. According to Corollary 5.20, A’ is a noetherian k-algebra and A — A’ is a localization.
We know that A€ is noetherian. By Theorem 8.14 each of the cohomology bimodules H' R, are
differential as C-bimodules, hence by Proposition 5.17 they are evenly localizable to C’. Thus, all
of the hypotheses of Theorem 6.2(1)—(3) are satisfied. O
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