A Geometrical Construction for the Rainbow Formula.

By Dr David Robertson.

(Read 7th March 1913.)

Internal Reflections in a Sphere. A ray of light PQ (Fig. 1) incident at any point Q on the surface of a transparent sphere is partly reflected and partly refracted along $Q R R_{1}$. At R_{1} it is partly reflected along $R_{1} R_{2}$, and partly emerges along $R_{1} S_{1}$. The same thing occurs at R_{2}, R_{3}, etc., on which the successive reflected

Fig. 1. Internal Reflections in a Sphere.
portions fall. $A B$ is the diameter parallel to the incident light, and $O Q$ the radius to the point of incidence. Let μ denote the index of refraction of the material of the sphere relative to the surrounding medium. Divide OA in C so that $\mathrm{OC}: \mathrm{OA}=1: \mu$.

Draw $\mathrm{CD} \| \mathrm{OQ}$ and meeting the circle in D . Draw CF and $\mathrm{DG} \perp \mathrm{OQ}$.

Then, $\quad \sin D O Q=\frac{\mathrm{GD}}{\mathrm{OD}}=\frac{\mathrm{FC}}{\mu \cdot \mathrm{OC}}=\frac{1}{\mu} \sin \mathrm{COF}=\frac{1}{\mu} \sin i=\sin r$.

$$
\therefore \quad \angle \mathrm{DOQ}=r=\angle \mathrm{OQR} .
$$

$\therefore \quad$ DO is parallel to the ray refracted at \mathbf{Q}.
The deviation of the ray is $(i-r)$ at incidence, and also at emergence; it is $(\pi-2 r)$ at each reflection, and so the total deviation with n reflections is :-

$$
\begin{aligned}
\delta & =2(i-r)+n(\pi-2 r) \\
& =n \pi-2\{(n+1) r-i\} .
\end{aligned}
$$

Minimum Deviation. Let Q move to an adjacent point Q^{\prime} further from A ; then

$$
\begin{aligned}
\delta-\delta^{\prime} & =-2\left\{(n+1)\left(r-r^{\prime}\right)-\left(i-i^{\prime}\right)\right\} \\
& =-2\left\{(n+1)\left(\mathrm{QOQ}^{\prime}-\mathrm{DOD}^{\prime}\right)-\mathrm{QOQ}^{\prime}\right\} \\
& =-2\left\{n \mathrm{QOQ}^{\prime}-(n+1) \mathrm{DOD}^{\prime}\right\} \\
& =-2\left\{n \mathrm{DCD}^{\prime}-(n+1) \mathrm{DOD}^{\prime}\right\} \\
& =-2 \mathrm{QOQ}^{\prime}\left\{n-(n+1) \frac{\mathrm{DOD}^{\prime}}{\mathrm{DCD}^{\prime}}\right\} \\
& =-2 \mathrm{QOQ}^{\prime}\left\{n-(n+1) \frac{\mathrm{CD}}{\mathrm{OD} \cos r}\right\} \\
& =-2 \mathrm{QOQ}^{\prime}\left\{n-(n+1) \frac{\mathrm{CD}}{\mathrm{OAcos} r}\right\} .
\end{aligned}
$$

If Q be very close to A , this becomes

$$
\begin{aligned}
& -2 \mathrm{QOQ}^{\prime}\left\{n-(n+1) \frac{\mathrm{CA}}{\mathrm{OA}}\right\} \\
= & -\frac{2}{\mu} \mathrm{QOQ}^{\prime}\{(n+1)-\mu\} .
\end{aligned}
$$

Since μ is less than 2 , this last expression is always negative, which shows that the deviation at first diminishes as Q moves away from A, provided there be one or more internal reflections. It will continue to diminish with a further displacement of Q from

A until ($\delta-\delta^{\prime}$) changes sign by passing through zero, after which it will increase. Hence, for minimum deviation

$$
\begin{aligned}
& \delta-\delta^{\prime}=0 \\
& \text { or } \quad \mathrm{CD}=\frac{n}{n+1} \mathrm{OA} \cos r \text {. } \\
& \frac{n}{n+1}=\frac{\mathrm{CD}}{\mathrm{OD} \cos r}=\frac{\sin (i-r)}{\sin i \cdot \cos r} \\
& =\frac{\sin i \cdot \cos r-\cos i \cdot \sin r}{\sin i \cdot \cos r}=1-\frac{1}{\mu} \frac{\cos i}{\cos r} . \\
& \therefore \quad \frac{\mu}{n+1}=\frac{\cos i}{\cos r} \text {. } \\
& \therefore \quad(n+1)^{2} \cos ^{2} i=\mu^{2} \cos ^{2} r=\mu^{2}-\mu^{2} \sin ^{2} r=\mu^{2}-\sin ^{2} i \\
& =\mu^{2}-1+\cos ^{2} i . \\
& \therefore \quad \cos i=\sqrt{\frac{\mu^{2}-1}{n(n+2)}} \text {. }
\end{aligned}
$$

Fig. 2. Minimum Deviation in a Sphere after two Reflections.
Construction for Ray of Least Deviation. The large circle in Fig. 2 represents the sphere, and AB is the diameter parallel to the incident light.

Divide OA in C so that $\mathrm{OC}: \mathrm{OA}=1: \mu$.
"
OA in L $O L: L A=1: n$.
$O C$ in $K \quad, \quad O K: K C=1: n=O L: L A$.

Draw a circle on CK as diameter. Draw the arc LM with centre at O, and cutting the last circle at \mathbf{M}. KM is parallel to the radius to the point of incidence, and OM is parallel to the direction after refraction of the ray which is at least deviated by the sphere after n internal reflections.

Proof. Continue OM to meet the outer circle at D, and join CD, CM, KM. Draw $O Q \| \mathrm{CD}$. We have already proved that if $O Q$ be parallel to $C D, D O$ is the direction of the ray refracted at Q.

Then $\mathrm{OM}: \mathrm{MD}=\mathrm{OL}: \mathrm{LA}=\mathrm{OK}: \mathrm{KC}$,
$\therefore \quad \mathrm{KM}\|\mathrm{CD}\| \mathrm{OQ}$, and $\therefore \mathrm{CD} \perp \mathrm{CM}$.
Hence $\quad \mathrm{CD}=\mathrm{DM} \cos \mathrm{CDM}=\mathrm{LA} \cos r$.

$$
=\frac{n}{n+1} \mathrm{~A} O \cos r,
$$

which is the condition for minimum deviation.

