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CONGRUENCE NORMAL COVERS OF 
FINITELY GENERATED LATTICE VARIETIES 

ALAN DAY AND J. B. NATION 

ABSTRACT. We consider certain pseudovarieties K of lattices which are closed un­
der the doubling of convex sets. For each such K, given an arbitrary finite lattice L, 
we describe the covers of the variety V(L) of the form V(L, 90 with %^ a subdirectly 
irreducible lattice in K. 

A general open problem in the theory of lattice varieties is: Given a finite lattice L, 
find all varieties W with W >- V(X). This has several parts: 

(1) Is there an algorithm for finding all such W? 
(2) Are there only finitely many covering varieties? 
(3) Is each one generated by a finite lattice? 
Here we give a partial answer which relates to parts (1) and (2), by showing that 

V(X) has only finitely many covers of the form W = V(X, 9Q where Ĉ is a finite 
congruence normal lattice (see Section 4 for the definition). The proof implicitly provides 
an algorithm for finding these covers, albeit a hopelessly impractical one. Usually V(X) 
will also have covers not of this form. 

This result generalizes Theorem 5.5 of [5], that V(X) has only finitely many covers 
of the form W = V(X, JQ where Ĉ is a finite upper or lower bounded homomorphic 
image of a free lattice. 

Much of the effort in this paper will be directed toward developing the fine struc­
ture of the pseudovariety of congruence normal lattices (and related pseudovarieties). 
This enables us to get a better picture of the congruence normal lattices Ĉ such that 
\(L, 90 >- \{L). However, we regard these results as equally interesting in their own 
right. 

1. Size functions. In this section we prove a very general result, which will be 
refined later. Recall that a pseudovariety {alias prevariety) is a collection K of finite 
algebras such that HSPfin(K) = K. 

THEOREM 1. Let K be a pseudovariety of algebras in a congruence distributive 
variety D of finite type. Assume that there is an increasing function s:uo —> u such that 
ifB is subdirectly irreducible in K with monolith //, then \B\ < s(\B/fi\). Let A be any 
finite algebra in D. Then in the lattice of subvarieties ofD, 
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312 A. DAY AND J. B. NATION 

(1) Y (A) has only finitely many covering varieties of the form W = Y (A, #) with 
<B G K, and 

(2) for all other varieties W >- Y (A), W H K Ç Y (A). 

PROOF. Let W be any variety with D > W >- Y(A) and W H K g Y {A). Take 
any algebra C G W Pi K - V(Jl). By Baker's theorem [1], Y (A) has a finite equational 
basis in say p variables. Then C $ Y (A) implies that C has a /7-generated subalgebra 
£> £ Y(A), which has a subdirectly irreducible factor # £ V(-2). Note $ G WHK, and 
W = V(Jl, «). 

If p denotes the monolith of $, then (B/p is ̂ -generated and in V(J1) (by Jônsson's 
Lemma). Hence | $ / p | is at most the cardinality of the free algebra Fy^(p)9 and thus 
I # | < s(|^V(j3)(p)| )• Since the algebras in D have finite type, there are only finitely many 
such algebras rB. m 

Theorem 1, combined with Lemma 11, already suffices to prove the result stated in 
the introduction. However, we will postpone the applications until we have developed a 
stronger version (Theorem 6). 

2. Rank functions. Again let K be a pseudovariety of algebras in a congruence dis­
tributive variety D of finite type. Assume now that we have a rank function p: K —• u, 
and as before an increasing function s: UJ —» u, with properties to be described momen­
tarily. Let Kn:={AeK: p(A) < n}. Of course, K = \JneuJ Kn. 

Let us assume that p and s satisfy the following properties for all J l , !?GK. 
(1) If 9 G Con A, then p(A/6) < p(A). 
(2) If p(A) = m> n, then there exists 0 G Con A with p(A/6) = n. 
(3) If A is subdirectly irreducible in K with monolith p, and p(A) > 0, then (a) 

p(A) = p(A/p) + 1, and (b) |A| < s(\A/p\). 
(4) If JÏ < $, then p(^) < p(#). 
(5) p(J2 x B) = max{pC#),p(#)}. 
(6) V(Ko) is locally finite. 
Such a rank function p naturally induces a function (which we will also call p) on the 

subvarieties of D: 
p(V) = sup{p(J3) : J l E V n K } . 

LEMMA 2. For eac/i n G w, Kn is a pseudovariety. 

PROOF. Use (1), (4) and (5). • 

LEMMA 3. For every finite A G D, we have p(Y(A)) < oo, and if A G K //zew 

p(V(*)) = p(jl). 

PROOF. Applying Jônsson's Lemma, Y (A) contains only finitely many subdirectly 
irreducible algebras, say %,..., %, and each % is in HS(JÏ). Let (B\,... ,%bz the ones 
which are also in K. Using (1), (4) and (5), we see that p(C) < maxi<Krp($/) for all 
C G Y(A) H K. Moreover, if A G K, then t = r and p (^ ) < p(JÏ) for each i. • 
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LEMMA 4. For every n G u, V(Kn) is locally finite. 

PROOF. The proof is of course by induction, with assumption (6) providing the case 
n = 0. So assume that n > 0 and V(Kn_i) is locally finite. Since Kn is a pseudovariety 
of algebras of finite type, the following are equivalent. 

(1) V(Kn) is locally finite. 
(2) For every m G a;, there is a bound B™ on the size of the m-generated algebras in 

K„. 
(3) For every mEw, there is a bound C% on the size of the m-generated subdirectly 

irreducible algebras in K„. 
Let JÏ be an m-generated subdirectly irreducible algebra in K„ with monolith /x. By 
condition (3a), Sl/p G K„_i and hence |-#//i| < UJJLp Condition (3b) then implies 
| A\ < s(B%_x). Thus we can take C™ = s(B™_x), and B^ the size of the m-generated free 
algebra in Kn. Hence Kn is locally finite. • 

Now let .# be a finite algebra in D. By Baker's theorem [1], V(J5) has a finite equa-
tional basis in say p variables, and by Lemma 3 p(V(J?)) = k for some integer k. We 
will use these parameters in the next lemma. 

LEMMA 5. IfD > W >- Y (A) and W n K £ V(JÏ), f/ierc f/iere exists a subdirectly 
irreducible p-generated algebra S G W D K*+i such that W = \(A, S). 

PROOF. Take any algebra # G W n K - V(J?). Then (8 g \(A) implies that « has a 
/^-generated subalgebra C $ V(JÏ), which has a subdirectly irreducible factor 2) ^ V(-#). 
Note © G WDK, so if p(<D) < k +1 we are done. If p(<D)>k+1, then by condition (2), 
(D has a homomorphic image £ with p(£) = &+1, and p(V(JÏ)) = /: implies £ ^ V(J2). 
In this case we can take 5 to be any subdirectly irreducible factor of £ not in V(J^). • 

Combining Lemmas 4 and 5, we obtain a version of Theorem 1 with more information 
about the covering varieties of V(.#). 

THEOREM 6. Let D be a congruence distributive variety, K a pseudovariety con­
tained in D satisfying properties (l)-(6), and A a finite algebra in D. 

( 1) In the lattice of subvarieties ofD, V(J?) has only finitely many covering varieties 
of the form W = \(A, <B) with # G K. For each such % p(<B) < p(\(JZ)) + 1. 

(2) For all other varieties W >- V( #), W f l K C V(Jl). 

3. Rank functions using depth. In a finite lattice X, let J(L) denote the set of (non­
zero) join irreducible elements, and let M(L) be the set of (non-unit) meet irreducible 
elements. For any finite ordered set fP, define the length l(Œ>) to be the length of the 
longest chain in (P. 

Now let C be a finite distributive lattice. (In application, C will be Con A for some 
A G K.) Define a depth function on C by 

6(x) = l(]xDM(C)). 
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As usual, we extend this map by defining 6(C) := S(0C) = l(M(Q). 
The depth function 8 will be used to induce the rank function p on congruence normal 

lattices. For other applications we need a relativized depth function. Given z G C, let 
MZ(C) := M ( 0 - T z = {q G M(Q :q^z}. Then define 

, n _ | 0 ifx>z, 
ozW - l ^ | x n Mz(QJ + ! otherwise. 

It is not hard to see that our original unadorned <5 is given by 6 — 6b, where b is the meet 
of all the coatoms (maximal meet irreducible elements) of C. 

As before, define 6Z(C) := 6Z(0C) = l(Mz(CJ) + 1. 

LEMMA 7. Let C be a finite distributive lattice and z £ C Then the function 7 = 6Z 

satisfies 
(1) 7(1) = 0, 
(2) 7(jcAv) = max{7(x),7(j)}, 
(3) ifq G M(C) andliq) > 0, then l(q) = %q*) + 1. 
Conversely, ifl: C ~•> a; satisfies (l)-(3), then 7 = 6zforz = A{* ^ C : 7(x) = 0}. 

PROOF. It is clear that Sz satisfies (1) and (3). For (2), note that because meet irre­
ducible elements in a distributive lattice are meet prime, 

UxAy)nMz(Q = (unMz(Q)u(] ynMz(Q), 

whence 6z(x A y) = max{6z(x),6z(y)}. 
Conversely, let 7 satisfy (l)-(3) on C. Fixings G C, we may assume that7(j) = èz(y) 

for all y > x. W.l.o.g. x ^ z. Since 7(Aj/) = max7(vt), and the same holds for Sz, it 
suffices to consider the case x G M (C). In that case 7(x) = l(x*) +1 = 5Z(JC*) +1 = ^(JC). 

• 

At one point we will need the following observation. 

LEMMA 8. Let C be a finite distributive lattice and z EC-Ifx<y, then 6(x) < 

S(y) + 1. 

PROOF. Let x -< y in C, and w.l.o.g. x ^ z. Then there is a unique g G M ( O such 
that q > JC, q ^ v, and 

î^nM,(Oç(bnMz(0)uM. 

Thus^(jc) < 5z(y) + 1. • 

Now, as in Section 2, let K be a pseudovariety of algebras in a congruence distributive 
variety D of finite type, and for A G K define p(J%) — <5(ConJ3). Then we immediately 
have the following, using only the definitions and the fact that ConJÎ x $ = ConJ3[ x 
Con$, and hence M(Con.# x #) ^ M(Con#) UM(ConS), in a congruence distributive 
variety. 
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LEMMA 9 A. The rank function p(fl) = 8(ConJl) on K satisfies (1), (2), (3a) and 
(5). 

So we can apply Theorem 6 with a spécifie pseudovariety K whenever conditions 
(3b), (4) and (6) hold for K, p and a suitable function s. 

More generally, with K and D as above, let U be a locally finite subvariety of D. For 
any A G K, let ((U) = /\{9 £ COIL3 : JÏ/0 G U}, and define pu(jl) = <SC(U)(COIL#). 

Since U is locally finite, we also get (6), leaving only (3b) and (4). 

LEMMA 9B. IfVisa locally finite variety, then the rank function p\j(J%) = 
%u)(ConJ5) on K satisfies (1), (2), (3a), (5) and (6). 

4. Congruence normal lattices. Recall that if C is a finite distributive lattice, then 
J(C) and M(C) are isomorphic ordered sets; in fact, the map K:J(C) —> M(C) with 
K(P) — V{* G C : x^p} does the trick. 

Let us introduce some notation. If L is a finite lattice and p G J(L), m G M(L), let 
Op := con(/?*,/?) and Om := con(m,m*). Then ConL is a finite distributive lattice, and 
it is well known that 

/(ConjQ = {0^ : p G / (£)} = {Om : m G M(£)}. 

Of course, the map O: J(L) —H> 7(ConX) is usually not one-to-one. If we let *¥p := «(Op) 
and vFm = ft(Om), then the corresponding meet irreducibles are given by 

M(Coni:) = {*¥p:pe J(L)} = {x¥m :me M(Q}. 

We say that a finite lattice L is congruence normal if for all p G J(L), m G M(L), 

(CN) Op = Om implies /? ^ m. 

Let CN denote the class of all (finite) congruence normal lattices. The importance of this 
concept is in a result due to Winfried Geyer [4]. 

THEOREM 10. CN is the smallest class of lattices containing the one-element lattice 
and closed under the doubling of convex subsets. 

For comparison, lower bounded lattices are the smallest class of lattices containing 1 
and closed under the doubling of convex sets with a unique minimal element, and they 
are precisely the finite lattices satisfying the congruence condition 

(LB) Op = Oc implies p = q. 

Upper bounded lattices are closed under the dual type of doublings, and satisfy 

(UB) Om = O" implies m = n. 

Bounded lattices are the smallest class containing 1 and closed under the doubling of 
intervals, and are characterized by the conjunction of (LB) and (UB). These results are 
all due to Day [2]. 

We want to show that Theorem 6 applies to varieties of lattices with K = CN. To 
begin, we need a pair of results found in both Geyer [4] and Day [3]. 
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LEMMA 11. (a) CN is a pseudovariety. (b) If L G CN and 6 >- 0 in ConLf then 
L = L/9[C]for some convex subset C Ç L/6. 

Now we introduce the rank function p(L) = 8(ConL) on CN. According to Lemma 
9A, we now have to check conditions (3b), (4) and (6). By Lemma 11(b), if L G CN 
is subdirectly irreducible, then L is obtained by doubling a convex set in Lj [x. Hence 
condition (3b) holds with s(n) — 2n. 

Condition (6) is also easy, being a consequence of the following lemma. 

LEMMA 12. CNo is the class of all finite distributive lattices. 

PROOF. By the définition of p, every subdirectly irreducible lattice L G CNo is 
simple. Then (CN) yields p j£ m for all p G J(L), m G M(L), implying \L\ — 2. m 

So it remains to show that condition (4) holds, which requires three lemmas and a 
little work. 

LEMMA 13. For each) G u, CN, is closed under subdirect products. 

PROOF. This is a consequence of Lemma 7(2). • 

Let L[C] denote the lattice obtained by doubling the convex subset C of L. Let aC := 
{(c,0) : c G C} and /JC := {(c, 1) : c G C}. Let 7: L[C\ —» L denote the canonical 
map. 

LEMMA 14. IfC is a convex subset of a finite lattice L, and 5 is a sublattice of 
L[C], then there exists a convex subset D Ç 7(5) such that S — 7(5)[D]. 

PROOF. Let {(m, 0) : m G X} be the maximal members of aC n 5, and let {(p, 1) : 
p G Y} be the minimal members of /3C H 5, Note that (JC, 0) G S iff x G 7(5) H C and 
JC < m for some m G X, and dually (y, 1) G 5 iff y G 7(5) H Candy > p for some p G F. 
Thus for x G 7(5) H C, both (JC, 0) and (JC, 1) are in 5 iff there exist p G Y and m € X with 
/? < JC < m. So let T = 7(5) and D = {JC G T : p < JC < m for some /? G F, m G X}. 
Then T is clearly a sublattice of il, D Ç C by convexity, and in fact D = {JC G C : 
(jc,0)G5and(jc,l) eS}. 

We need to know that D is convex. Assume JC, Z G D and y G T with x < y < z. 
Then for some p,q G Y and m, n G X we have p < x < m and q < z < n. Hence 
P ^ ^ ^ y ^ ^ f Ç ^ s o y G D . 

Now define g: 5 —+ ^[D] by 

n = f J if 70s) G D or 7(5) G T - C; 
g W l7(s) i f 7 ( * ) G C - D . 

Our earlier observations show that g is one-to-one and onto. Moreover, using the defini­
tion of < on T[D], it is clear that s < t implies g(s) < g(t), and it remains to prove the 
reverse implication. 

Assume g(s) < g(t). The first interesting case is when g(s) = s = (JC, 1) with JC G D, 
and g(t) = 7(0 = y with y G C — D and JC < y in L. Then JC G D implies y > JC > p for 
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some/? G F; since y $ D, we must have t = (y, 1) > s. Similarly, suppose g(s) = 7(V) = 
x with j f G C - D , and g(t) = t = (y,0) with y G D, and x <y'mL. Then v G D implies 
x < y < m for some m G X, so x $ D implies s = (x, 0) < t. In all other cases, we get 
s < t trivially. 

Thus g is an isomorphism. • 

LEMMA 15. IfC is a convex subset of a finite lattice L, then p(L[C\) < p(L) + 1. 

PROOF. Write C as a disjoint union of connected convex sets, C = UQ- In 
Con£[C], let 6 — ker 7, and let (ft be the kernel of the natural map 77,: L[C] —» L[Q]. 
Then (ft -< 6 for each /, so 6(ipi) < 6(6) + 1 = p(L) + 1 by Lemma 8. But A <£/ = 0, so 
by Lemma 7(2) p(L[C]) = 6(0) = max 6(ipt) < p(L) +1 . • 

With these lemmas in hand, we can show that (4) holds. 

LEMMA 16. CN^ is closed under sublattices. 

PROOF. Since CNo is the class of finite distributive lattices, the claim is true for 
k — 0. Assume then that k > 0 and the claim holds for ally < k. 

Let 5 < L G CNfc, and first consider the case when L is subdirectly irreducible. By 
property (3a), ^C : = -L/v £ CN*_i. Moreover, by Lemma 11(b), there is a convex 
set C Ç J£ such that L = ^QC], and the natural map L —> Lj' p corresponds to 
7: 3QC] —• %. By Lemma 14, there exists a convex set D Ç T := 7(5) such that 
S = T[D]. Then % G CN*_i implies f G CN*_i by induction, and hence S G CN* by 
Lemma 15. 

Now let L G CNfc be arbitrary, and again S < L. Let L < U L: be a subdirect 
representation of L into subdirectly irreducible lattices. By Lemma 7(2), Li G CN* for 
each /. Thus in the induced subdirect representation S < H Si with Si < Li, we have 
St G CNjfe by the first case. Hence S G CN* by Lemma 13. • 

Thus Theorem 6 applies with K = CN, yielding our main result. 

THEOREM 17. Let L be a finite lattice. 
(1) In the lattice of lattice varieties, \(L) has only finitely many covering varieties 

of the form W = V(£, 9Q with % G CN. For each such % p(X) < p(V(£)). 
(2) For all other varieties W X \(L), W H C N Ç V(L). 

In the Appendix to [3], a simple test is given for determining whether a finite lattice 
L is in CN*. Let 

^L = {(fli, u) G M(L) x J(L) : m\/ u — m* and m A u = «*}. 

For/?, q G J(L) we write /? ~ # if there exists m G M(X) such that (ra,/7) and (m, g) G A^. 
Let ^ denote the transitive closure of ~. Note/7 ^ q implies O^ = O^; for lattices in 
CN, the converse is also true. 

For subsets A, B Ç £ , define A <C £ if for each a G A there exists b £ B with 
a <b.We define subsets F*(£) Ç / (£ ) as follows. Let F0(£) be the set of all join-prime 
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elements of L. Given Fk{L), let Fk+\{L) be the set of all p G J(L) such that/? < V B 
implies there exists A <C B such that/? < \J A and A Ç Fk(L) U (p/ ^ ) . 

We also need a generalized semidistributivity condition: 

(T) for all /?, q G J(L), p & q implies q < q* V p. 

By keeping track of the ranks in the proof of the main result in the Appendix of [3], 
we obtain a characterization of lattices in CN .̂ 

THEOREM 18. Let L be a finite lattice and k G u. Then L G CN* if and only if L 
satisfies (T) and Fk(L) = J(L). 

5. More general doubling classes. CN is the smallest class of lattices containing 
all finite distributive lattices (CNo) and closed under the doubling construction. The nat­
ural generalization of this is to start with an arbitrary locally finite variety U, and let DU 
be the smallest class of lattices containing all finite lattices in U and closed under the 
doubling of convex sets. The natural rank function for this class is pu> so that DUo is the 
class of all finite lattices in U. 

In order to apply Theorem 6, we want to show that DU* is a pseudovariety for each 
k G u, from which it will follow that DU is also a pseudovariety. 

LEMMA 19. DU* is closed under finite direct products. 

PROOF. Note that if C is a convex subset of £ , then 

L[C] xHC^(Lx 3Q[C x 7Q, 

because both sides consist of (X — C) x ^ Ù C x Î ^ x 2 ordered naturally. Repeated 
application of this observation shows that DU is closed under finite direct products. 

On the other hand, M(ConX x %) 9* M(ConI/)UM(Con30 implies pv(L x 9Q = 
max{pu(-0> Pu(^0}> so in fact DU^ is closed under finite products. • 

The argument for closure under H is based on the next lemma. 

LEMMA 20. Let L — L[C] with C connected and convex, and let (f — kerl where 
7: L —H- L is the canonical homomorphism. IfipCz ConL and \j) A ip — 0, then 

L/x/j ~ 3QD] 

where 0£= L/ty V <p) andD = C/C0 V y). 

PROOF. First note that for x, y G C, we have (JC, 0) xjj (y, 0) iff (JC, 1 ) ip (y, 1 ). Therefore 
ip o ip o (p C (p o ipUil) o <£>, whence ^V(^ = ^ o ^ o i / ; . 

Let A = \JxeC T (JC, 1), B = \JxeC i (JC,0) and R = L - (A U B\ so that L = 
AÛBÛR. We claim that if x G C, y G L and (x, l)i/>;y, then y G A. For (JC, l)t/ry implies 
(JC, 1)I/>(JC, \)/\y, and hence (JC, 1)AV % (x,0) since ipAip = 0. Therefore (JC, I) Ay — (z, 1) 
for some z G C, and y G A. This in turn implies that if uipv and u G A, then v G A. Of 
course, the dual statements hold for B. 
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Combining what we have so far, we see that each xp V p-block E which intersects 
C x 2 nontrivially splits into two parts, E = (E Pi A) 0(E D B). Moreover, if x G R, then 
x/(xp V if) = x/xp. 

Also, observe that if C is connected and convex, and h is an epimorphism, then h(C) 
is connected and convex. Hence D is connected and convex in 7£. 

It is now straightforward to check that the isomorphism g : L/xp = 3QD] is provided 
by 

f x/ty V (f) ifx/(xp V if) n (C x 2) = 0, 
g(x/\l>)= I ( J C / ( ^ V ^ ) , 1 ) i f j c / ( ^ V ( ^ ) n ( C x 2 ) ^ 0 a n d x G A , 

[ ( J C / ( ^ V ( ^ ) , 0 ) i f jc / (V^V^)n(Cx2)^0andjcEB. 

• 

LEMMA 21. DU^ w closed under homomorphic images. 

PROOF. First we show that DU is closed under H. Let L G DU, so that in COILC 

there exist <̂o> • • •, <£« such that 
(1) L/ifoeV, 
(2) (fo >- <p i > y (pn = 0, 
(3) L/ifj+i is obtained from -£/<£/ by doubling a connected convex set. Let i/> G 

Con L, and assume 0 > xp implies L/0 E DU. 
If <̂o < V'* then £/V> G U, and we are done. Otherwise, we can find j > 0 such that 

<Pj-i ^ V> and <£/ < ^- m this c a s e ^ A <£/-i = <£/> s o w e c a n aPply Lemma 20 to L/<pj. 
This yields L/xpïé 9QD] with ^ = (L/<fj)/(xp V ^ _ i ) G DU and D convex. Hence 
L/xp G DU, as desired. 

Now C£/V;(U) = CX(U) V V and M(Con L/xj)) ^ M(Con £)H Î xp, from which it 
follows readily that pu(L/xp) < pu(L). m 

The proof that CN* is closed under S (Lemma 16) used only Lemma 7 and its con­
sequences, and Lemma 11(b). Of course, Lemma 7 applies equally well in our present 
situation, with z — Ç(U), while the analogue of Lemma 11(b) for DU follows immedi­
ately from the proof of Lemma 21. Thus, with the appropriate modifications, we obtain 
S-closure for DU^. 

LEMMA 22. DU* is closed under sublattices. 

Combining the lemmas, we obtain the main result of this section. 

THEOREM 23. For any locally finite lattice variety U and k G u, DU* is a pseu-
dovariety. 

In particular, Theorem 6 holds for covering varieties generated by lattices in DU. We 
could also prove the analogue of Theorem 23 for classes closed under the doubling of 
intervals, or of upper or lower pseudo-intervals. 

The most interesting applications are probably when U is a small lattice variety; e.g., 
for CN we take U to be the variety of distributive lattices. However, by taking U = V(X), 
we obtain a corollary much in the spirit of Theorem 1. 
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Let us say that a subdirectly irreducible lattice ^C is doubling reducible if its monolith 
\i is a doubling congruence, i.e., ^C — (^C/AO[Q for some convex set C. Otherwise, ^ 
is doubling irreducible. 

THEOREM 24. L^ X be a finite lattice. Then in the lattice of lattice varieties, \(L) 
has only finitely many covering varieties of the form W = V(X, JQ with %^ a doubling 
irreducible, subdirectly irreducible lattice. 
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