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Abstract

We give a new approach to characterising and computing the set of global maximisers and
minimisers of the functions in the Takagi class and, in particular, of the Takagi–Landsberg
functions. The latter form a family of fractal functions fα : [0, 1] →R parameterised by
α ∈ (−2, 2). We show that fα has a unique maximiser in [0, 1/2] if and only if there does
not exist a Littlewood polynomial that has α as a certain type of root, called step root. Our
general results lead to explicit and closed-form expressions for the maxima of the Takagi–
Landsberg functions with α ∈ (−2, 1/2] ∪ (1, 2). For (1/2, 1], we show that the step roots
are dense in that interval. If α ∈ (1/2, 1] is a step root, then the set of maximisers of fα is an
explicitly given perfect set with Hausdorff dimension 1/(n + 1), where n is the degree of the
minimal Littlewood polynomial that has α as its step root. In the same way, we determine
explicitly the minima of all Takagi–Landsberg functions. As a corollary, we show that the
closure of the set of all real roots of all Littlewood polynomials is equal to [−2, −1/2] ∪
[1/2, 2].

2020 Mathematics Subject Classification: 28A80, 26A30 (Primary); 26C10 (Secondary)

1. Introduction

Rough paths calculus [9] and the recent extension [6] of Föllmer’s pathwise Itô cal-
culus [8] provide means of dealing with rough trajectories that are not ultimately based
on Gaussian processes such as fractional Brownian motion. As observed, e.g., in [12],
such a pathwise calculus becomes particularly transparent when expressed in terms of
the Faber–Schauder expansions of the integrands. When looking for the Faber–Schauder
expansions of trajectories that are suitable pathwise integrators and that have “roughness"
specified in terms of a given Hurst parameter, one is naturally led [18] to certain extensions
of a well-studied class of fractal functions, the Takagi–Landsberg functions. These functions
are defined as

fα(t) :=
∞∑

m=0

αm

2m
φ(2mt), 0 ≤ t ≤ 1,
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where α ∈ (−2, 2) is a real parameter and

φ(t) := min
z∈Z

|t − z|, t ∈R,

is the tent map, If such functions are used to describe rough phenomena in applications, it is
a natural question to analyse the range of these functions, i.e., to determine the extrema of
the Takagi–Landsberg functions.

While the preceding paragraph describes our original motivation for the research pre-
sented in this paper, determining the maximum of generalised Takagi functions is also of
intrinsic mathematical interest and attracted several authors in the past. The first contri-
bution was by Kahane [15], who found the maximum and the set of maximisers of the
classical Takagi function, which corresponds to α = 1. This result was later rediscovered
in [17] and subsequently extended in [3] to certain van der Waerden functions. Tabor and
Tabor [21] computed the maximum value of the Takagi–Landsberg function for those param-
eters αn ∈ (1/2, 1] that are characterised by 1 − αn − · · · − αn

n = 0 for n ∈N. Galkin and
Galkina [10] proved that the maximum for α ∈ [−1, 1/2] is attained at t = 1/2. In the inter-
val (1, 2), the case α = √

2 is special, as it corresponds to the Hurst parameter H = 1/2. The
corresponding maximum can be deduced from [11, lemma 5] and was given independently
in [10] and [20]. Mishura and Schied [18] added uniqueness to the results from [10, 20] and
extended them to all α ∈ (1, 2). The various contributions from [10, 15, 18, 21] are illustrated
in Figure 1, which shows the largest maximiser of the Takagi–Landsberg function fα as a
function of α. From Figure 1, it is apparent that the most interesting cases are α ∈ (−2, −1)

and α ∈ (1/2, 1], which are also the ones about which nothing was known beyond the special
parameters considered in [15] and [21].

In this paper, we present a completely new approach to the computation of the maximisers
of the functions fα. This approach works simultaneously for all parameters α ∈ (−2, 2). It
even extends to the entire Takagi class, which was introduced by Hata and Yamaguti [14]
and is formed by all functions of the form

f (t) :=
∞∑

m=0

cmφ(2mt), t ∈ [0, 1],

where (cm)m∈N is an absolutely summable sequence. An example is the choice cm = 2−mεm ,
where (εm)m∈N is an i.i.d. sequence of {−1, +1}-valued Bernoulli random variables. For
this example, the distribution of the maximum was studied by Allaart [1]. Our approach
works for arbitrary sequences (cm)m∈N and provides a recursive characterisation of the
binary expansions of all maximisers and minimisers. This characterisation is called the step
condition. It yields a simple method to compute the smallest and largest maximisers and
minimisers of f with arbitrary precision. Moreover, it allows us to give exact statements on
the cardinality of the set of maximisers and minimisers of f . For the case of the Takagi–
Landsberg functions, we find that, for α ∈ (−2, −1), the function fα has either two or four
maximisers, and we provide their exact values and the maximum values of fα in closed form.
For α ∈ [−1, 1/2], the function fα has a unique maximiser at t = 1/2, and for α ∈ (1, 2)

there are exactly two maximisers at t = 1/3 and t = 2/3. The case α ∈ (1/2, 1] is the most
interesting. It will be discussed below.

In general, we show that non-uniqueness of maximisers in [0, 1/2] occurs if and only if
there exists a Littlewood polynomial P for which the parameter α is a special root of P ,
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Fig. 1. Maximiser of t 	→ fα(t) in [0, 1/2] as a function of α ∈ (−2, 2).

called a step root. The step roots also coincide with the discontinuities of the functions that
assign to each α ∈ (−2, 2) the respective smallest and largest maximiser of fα in [0, 1/2].
We show that the polynomials 1 − x − · · · − x2n are the only Littlewood polynomials with
negative step roots, which in turn all belong to the interval (−2, −1). They correspond
exactly to the jumps in (−2, −1) of the function in Figure 1. While there are no step roots
in [−1, 1/2] ∪ (1, 2), we show that the step roots lie dense in (1/2, 1]. Moreover, if n is
the smallest degree of a Littlewood polynomial that has α ∈ (1/2, 1] as a step root, then the
set of maximisers of fα is a perfect set of Hausdorff dimension 1/(n + 1), and the binary
expansions of all maximisers are given in explicit form in terms of the coefficients of the
corresponding Littlewood polynomial. As a corollary, we show that the closure of the set of
all real roots of all Littlewood polynomials is equal to [−2, −1/2] ∪ [1/2, 2].

This paper is organised as follows. In Section 2, we present general results for functions
of the form (2·1). In Section 3, we discuss the particular case of the Takagi–Landsberg func-
tions. The global maxima of fα for the cases in which α belongs to the intervals (−2, −1),
[−1, 1/2], (1/2, 1], and (1, 2) are analysed separately in the respective Subsections 3·1, 3·2,
3·3 and 3·4. We also discuss the global minima of fα in Subsection 3·5. As explained above,
the maxima of the Takagi–Landsberg functions correspond to step roots of the Littlewood
polynomials. Our results yield corollaries on the locations of such step roots and on the clo-
sure of the set of all real roots of the Littlewood polynomials. These corollaries are stated
and proved in Section 4. The proofs of the results from Sections 2 and 3 are deferred to the
respective Sections 5 and 6.

2. Maxima of functions in the Takagi class

The Takagi class was introduced in [14]. It consists of the functions of the form

f (t) :=
∞∑

m=0

cmφ(2mt), t ∈ [0, 1], (2·1)
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where c = (cm)m∈N is a sequence in the space �1 of absolutely summable sequences and

φ(t) := min
z∈Z

|t − z|, t ∈R,

is the tent map. Under this assumption, the series in (2·1) converges uniformly in t , so that
f is a continuous function. The sequence c ∈ �1 will be fixed throughout this section.

For any {−1, +1}-valued sequence ρ = (ρm)m∈N0 , we let

T (ρ) =
∞∑

n=0

2−(n+2)(1 − ρn) ∈ [0, 1]. (2·2)

Then εn := (1 − ρn)/2 will be the digits of a binary expansion of t := T (ρ). We will call
ρ a Rademacher expansion of t . Clearly, the Rademacher expansion is unique unless t is a
dyadic rational number in (0, 1). Otherwise, t will admit two distinct Rademacher expan-
sions. The one with infinitely many occurrences of the digit +1 will be called the standard
Rademacher expansion. It can be obtained through the Rademacher functions, which are
given by rn(t) := (−1)
2n+1t�. The following simple lemma illustrates the significance of the
Rademacher expansion for the analysis of the function f .

LEMMA 2·1. Let ρ = (ρm)m∈N0 be a Rademacher expansion of t ∈ [0, 1]. Then

f (t) = 1

4

∞∑
m=0

cm

(
1 −

∞∑
k=1

2−kρmρm+k

)
.

The following concept is the key to our analysis of the maxima of the function f .

Definition 2·2. We will say that a {−1, +1}-valued sequence (ρm)m∈N0 satisfies the step
condition if

ρn

n−1∑
m=0

2mcmρm ≤ 0 for all n ∈N.

Now we can state our first main result on the set of maximisers of f .

THEOREM 2·3. For t ∈ [0, 1], the following conditions are equivalent:

(a) t is a maximiser of f ;
(b) every Rademacher expansion of t satisfies the step condition;
(c) there exists a Rademacher expansion of t that satisfies the step condition.

Theorem 2·3 provides a way to construct maximisers of f . More precisely, we define
recursively the following pair of sequences ρ� and ρ�. We let ρ

�

0 = ρ
�

0 = 1 and, for n ∈N,

ρ�
n =

{+1 if
∑n−1

m=0 2mcmρ�
m < 0,

−1 otherwise,
ρ�

n =
{+1 if

∑n−1
m=0 2mcmρ�

m ≤ 0,

−1 otherwise.
(2·3)

COROLLARY 2·4. With the above notation, T (ρ�) is the largest and T (ρ�) is the smallest
maximiser of f in [0, 1/2].
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Remark 2·5. By switching the signs in the sequence (cn)n∈N0 , we get analogous results for
the minima of the function f . Specifically, if we define sequences λ� and λ� by λ

�

0 = λ
�

0 = +1
and

λ�
n =

{+1 if
∑n−1

m=0 2mcmλ�
m > 0,

−1 otherwise,
λ�

n =
{+1 if

∑n−1
m=0 2mcmλ�

m ≥ 0,

−1 otherwise,

then T (λ�) is the largest and T (λ�) is the smallest minimiser of f in [0, 1/2].
The following corollary and its short proof illustrate the power of our method.

COROLLARY 2·6. We have f (t) ≥ 0 for all t ∈ [0, 1], if and only if
∑n

m=0 2mcm ≥ 0 for
all n ≥ 0.

Proof. We have f ≥ 0 if and only if t = 0 is the smallest minimiser of f . By Remark 2·5,
this is equivalent to λ�

n = +1 for all n.

Our method also allows us to determine the cardinality of the set of maximisers of f . This
is done in the following proposition.

PROPOSITION 2·7. For ρ� as in (2·3), let

Z :=
{

n ∈N0

∣∣∣ n∑
m=0

2mcmρ�
m = 0

}
.

Then the number of {−1, +1}-valued sequences ρ that satisfy both the step condition and
ρ0 = +1 is 2|Z | (where 2ℵ0 denotes as usual the cardinality of the continuum). In particular,
the number of maximisers of f in [0, 1/2] is equal to 2|Z |, provided that all maximisers are
not dyadic rationals.

Example 2·8. Consider the function f with cm = 1/(m + 1)2, which was considered in [14].
We claim that it has exactly two maximisers at t = 11/24 and t = 13/24. See Figure 2 for
an illustration. To prove our claim, we need to identify the sequence ρ� and show that the
sums in (2·3) never vanish. A short computation yields that ρ

�

0 = 1, ρ
�

1 = −1 = ρ
�

1, and ρ
�

2 =
−1 = ρ

�

2. To simplify the notation, we let ρ := ρ� and define

Rn :=
n∑

m=0

2m

(m + 1)2
ρm .

Next, we prove by induction on n that for n ≥ 2,

ρ2n−1 = −1 and ρ2n = +1, (2·4)

− 22n

(2n + 1)2
< R2n−1 < 0 and 0 < R2n <

22n+1

(2n + 2)2
. (2·5)

To establish the case n = 2, note first that R2 = 1/18 and hence ρ3 = −1. It follows that R3 =
1/18 − 8/16 = −4/9. This gives in turn that ρ4 = +1 and R4 = −4/9 + 16/25 = 44/225.
This establishes (2·4) and (2·5) for n = 2. Now suppose that our claims have been established
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Fig. 2. The function with cm = 1/(m + 1)2 analysed in Example 2·8. The vertical lines correspond to the
two maxima at 11/24 and at 13/24.

for all k with 2 ≤ k ≤ n. Then the second inequality in (2·5) yields ρ2n+1 = −1 and in turn

R2n+1 = R2n − 22n+1

(2n + 2)2
> − 22n+1

(2n + 2)2
> − 22n+2

(2n + 3)2

and

R2n+1 = R2n − 22n+1

(2n + 2)2
< 0.

This yields ρ2n+2 = +1, from which we get as above that

0 < R2n+2 = R2n+1 + 22n+2

(2n + 3)2
<

22n+2

(2n + 3)2
<

22n+3

(2n + 4)2
.

This proves our claims. Furthermore, (2·2) yields that the unique maximiser in [0, 1/2] is
given by

T (ρ) = 1

4
+ 1

8
+ 1

16

∞∑
n=0

1

4n
= 11

24
.

3. Global extrema of the Takagi–Landsberg functions

The Takagi–Landsberg function with parameter α ∈ (−2, 2) is given by

fα(t) :=
∞∑

m=0

αm

2m
φ(2mt), t ∈ [0, 1]. (3·1)

In the case α = 1, the function f1 is the classical Takagi function, which was first introduced
by Takagi [22] and later rediscovered many times; see, e.g., the surveys [2] and [16]. The
class of functions fα with −2 < α < 2 is sometimes also called the exponential Takagi class.
See Figure 3 for an illustration.

By letting cm := αm2−m , we see that the results from Section 2 apply to the function fα.
In particular, Theorem 2·3 characterises the maximisers of fα in terms of a step condition
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Fig. 3. Takagi–Landsberg functions f−α (left) and fα (right) for four different values of α.

satisfied by their Rademacher expansions. Let us restate the corresponding Definition 2·2 in
our present situation.

Definition 3·1. Let α ∈ (−2, 2). A {−1, +1}-valued sequence (ρm)m∈N0 satisfies the step
condition for α if

ρn

n−1∑
m=0

αmρm ≤ 0 for all n ∈N.

As in (2·3), we define recursively the following pair of sequences ρ�(α) and ρ�(α). We
let ρ

�

0(α) = ρ
�

0(α) = 1 and, for n ∈N,

ρ�
n(α) =

{+1 if
∑n−1

m=0 αmρ�
m(α) < 0,

−1 otherwise,
ρ�

n(α) =
{+1 if

∑n−1
m=0 αmρ�

m(α) ≤ 0,

−1 otherwise.
(3·2)

Then we define

τ �(α) := T (ρ�(α)) and τ �(α) := T (ρ�(α)),

where T is as in (2·2). It follows from Corollary 2·4 that τ �(α) is the largest and τ �(α) is the
smallest maximiser of fα in [0, 1/2]. We start with the following general result.

PROPOSITION 3·2. For α ∈ (−2, 2), the following conditions are equivalent:

(a) The function fα has a unique maximiser in [0, 1/2];
(b) τ �(α) = τ �(α);
(c) There exists no n ∈N such that

∑n
m=0 αmρ�

m(α) = 0;
(d) The functions τ � and τ � are continuous at α.

In the following subsections, we discuss the maximization of fα for various regimes of α.

3·1. Global maxima for α ∈ (−2, −1)

To the best of our knowledge, the case α ∈ (−2, −1) has not yet been discussed in the
literature. Here, we give an explicit solution for both maximisers and maximum values in
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this regime. Before stating our corresponding result, we formulate the following elementary
lemma.

LEMMA 3·3. For n ∈N, the Littlewood polynomial p2n(x) = 1 − x − · · · − x2n−1 − x2n

has a unique negative root xn. Moreover, the sequence (xn)n∈N is strictly increasing, belongs
to (−2, −1), and converges to −1 as n ↑ ∞.

Note that −x1 = (1 + √
5)/2 ≈ 1.61803 is the golden ratio. Approximate numerical val-

ues for the next highest roots are x2 ≈ −1.29065, x3 ≈ −1.19004, x4 ≈ −1.14118, and
x5 ≈ −1.11231.

THEOREM 3·4. Let (xn)n∈N0 be the sequence introduced in Lemma 3·3 with x0 := −2.
Then, for α ∈ (xn, xn+1), the function fα has exactly two maximisers in [0, 1], which are
located at

tn := 1

10
(5 − 4−n) and 1 − tn = 1

10
(5 + 4−n).

If α = xn for some n ∈N, then fα has exactly four maximisers in [0, 1], which are located at
tn−1, tn, 1 − tn−1 and 1 − tn. Moreover,

fα(tn) = 1

10
(5 − 4−n) − 4−n

10
· 3α2n+3 + α3 − 4α

(1 − α)
(
α2 − 4

) , (3·3)

and this is equal to the maximum value of fα if α ∈ [xn, xn+1].
Remark 3·5. It is easy to see that the right-hand side of (3·3) is strictly larger than 1/2 for
α ∈ (−2, −1). Moreover, it tends to +∞ for α ↓ −2 and to 1/2 for α ↑ −1.

3·2. Global maxima for α ∈ [−1, 1/2]
Galkin and Galkina [10] proved that for α ∈ [−1, 1/2] the function fα has a global max-

imum at t = 1/2 with maximum value fα(1/2) = 1/2. Here, we give a short proof of this
result by using our method and additionally establish the uniqueness of the maximiser.

PROPOSITION 3·6. For α ∈ [−1, 1/2], the function fα has the unique maximiser t = 1/2
and the maximum value fα(1/2) = 1/2.

Proof. Since obviously fα(1/2) = 1/2 for all α, the result will follow if we can establish
that τ �(α) = 1/2 for all α ∈ [−1, 1/2]. This is the case if ρ := ρ�(α) satisfies ρn = −1 for
all n ≥ 1. We prove this by induction on n. The case n = 1 follows immediately from ρ0 = 1
and (3·2). If ρ1 = · · · = ρn−1 = −1 has already been established, then

n−1∑
m=0

αmρm = αn − 2α + 1

1 − α
.

If the right-hand side is strictly positive, then we have ρn = −1. Positivity is obvious for
α ∈ [−1, 0] and for α = 1/2. For α ∈ (0, 1/2), we can take the derivative of the numerator
with respect to α. This derivative is equal to nαn−1 − 2, which is strictly negative for α ∈
(0, 1/2), because nαn−1 ≤ 1 for those α. Since the numerator is strictly positive for α = 1/2,
the result follows.
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3·3. Global maxima for α ∈ (1/2, 1]
This is the most interesting regime, as can already be seen from Figure 1. Kahane [15]

showed that the maximum value of the classical Takagi function f1 is 2/3 and that the set
of maximisers is equal to the set of all points in [0, 1] whose binary expansion satisfies
ε2n + ε2n+1 = 1 for each n ∈N0. This is a perfect set of Hausdorff dimension 1/2. For other
values of α ∈ (1/2, 1], we are only aware of the following result by Tabor and Tabor [21].
They found the maximum value of fαn , where αn is the unique positive root of the Littlewood
polynomial 1 − x − x2 − · · · − xn . This sequence satisfies α1 = 1 and αn ↓ 1/2 as n ↑ ∞.
The maximum value of fαn is then given by C(αn), where

C(α) := 1

2 − 2(2α − 1)
log2 α−1

log2 α

. (3·4)

Tabor and Tabor [21] observed numerically that the maximum value of fα typically differs
from C(α) for other values of α ∈ (1/2, 1). In Example 3·11 we will investigate a spe-
cific choice of α for which C(α) is indeed different from the maximum value of fα. In
Example 3·10, we will characterise the set of maximisers of fαn , where αn is as above.

We have seen in Sections 3·1 and 3·2 that for α ≤ 1/2 the function fα has either two or
four maximisers in [0, 1]. For α > 1/2 this situation changes. The following result shows
that then fα will have either two or uncountably many maximisers. Moreover, the result
quoted in Section 3·4 will imply that the latter case can only happen for α ∈ (1/2, 1].

THEOREM 3·7. For α > 1/2, we have the following dichotomy:

(a) if
∑n

m=0 αmρ�
m �= 0 for all n, then the function fα has exactly two maximisers in

[0, 1]. They are given by τ �(α) and 1 − τ �(α) and have ρ� and −ρ� as their
Rademacher expansions;

(b) otherwise, let n0 be the smallest n such that
∑n

m=0 αmρ�
m = 0. Then the set of max-

imisers of fα consists of all those t ∈ [0, 1] that have a Rademacher expansion
consisting of successive blocks of the form ρ

�

0, . . . , ρ�
n0

or (−ρ
�

0), . . . , (−ρ�
n0

). This
is a perfect set of Hausdorff dimension 1/(n0 + 1) and its 1/(n0 + 1)-Hausdorff
measure is finite and strictly positive.

The preceding theorem yields the following corollary.

COROLLARY 3·8. For α > 1/2, the function fα cannot have a maximiser that is a dyadic
rational number.

Note that Theorem 3·4 implies that also for α < −1 there are no dyadic rational max-
imisers. However, by Proposition 3·6, the unique maximiser in case −1 ≤ α ≤ 1/2 is
t = 1/2.

Our next result shows in particular that there is no nonempty open interval in (1/2, 1] on
which τ � or τ � are constant.

THEOREM 3·9. There is no nonempty open interval in (1/2, 1) on which the functions τ �

or τ � are continuous.

Example 3·10. Tabor and Tabor [21] found the maximum value of fαn , where αn is the
unique positive root of the Littlewood polynomial 1 − x − x2 − · · · − xn . The case n = 1,

https://doi.org/10.1017/S0305004122000020 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000020


600 X. HAN AND A. SCHIED

and in turn α1 = 1, corresponds to the classical Takagi function as studied by Kahane [15].
Here, we will now determine the corresponding sets of maximisers. It is clear that we must
have 1 − ∑m

k=1 αk
n > 0 for m = 1, . . . , n − 1. Hence,

ρ�(αn) = (+1, −1, . . . , −1︸ ︷︷ ︸
n times

, +1, −1, . . . , −1︸ ︷︷ ︸
n times

, . . . ),

ρ�(αn) = (+1, −1, . . . , −1︸ ︷︷ ︸
n times

, −1, +1, . . . , +1︸ ︷︷ ︸
n times

, −1, +1, . . . , +1︸ ︷︷ ︸
n times

, . . . ).

Every maximiser in [0, 1] has a Rademacher expansion that is made up of successive blocks
of length n + 1 taking the form +1, −1, . . . , −1 or −1, +1 . . . , +1. This is a perfect set of
Hausdorff dimension 1/(n + 1). The smallest maximiser is given by

τ �(αn) =
∞∑

m=0

n+1∑
k=2

2−(m(n+1)+k) =
(1

2
− 2−(n+1)

) ∞∑
m=0

2−m(n+1) = 2n − 1

2n+1 − 1
.

The largest maximiser in [0, 1/2] is

τ �(αn) = 1

2
− 2−(n+1) +

∞∑
m=1

2−m(n+1)−1 = 1

2

(
1 − 2−n + 1

2n+1 − 1

)
.

Example 3·11. Consider the choice

α = 1

4

(
1 + √

13 −
√

2
(√

13 − 1
)) ≈ 0.580692.

One checks that 1 − α − α2 − α3 + α4 = 0 and that 1 − α − α2 − α3 < 0 and 1 − α − α2 >

0 and 1 − α > 0. Therefore,

ρ�(α) = (+1, −1, −1, −1, +1, +1, −1, −1, −1, +1, +1, −1, −1, −1, +1, . . . )

ρ�(α) = (+1, −1, −1, −1, +1, −1, +1, +1, +1, −1, −1, +1, +1, +1, −1, . . . ),

and every maximiser in [0, 1] has a Rademacher expansion that consists of successive
blocks of the form +1, −1, −1, −1, +1 or −1, +1, +1, +1, −1. This is a Cantor-type set
of Hausdorff dimension 1/5. Furthermore,

τ �(α) =
∞∑

n=0

(
0 · 2−(5n+1) + 2−(5n+2) + 2−(5n+3) + 2−(5n+4) + 0 · 2−(5n+5)

) = 14

31
≈ 0.451613

is the smallest maximiser, and

τ �(α) = 7

16
+

∞∑
n=1

(
2−5n−1 + 2−5n−5

) = 451

992
≈ 0.454637

is the largest maximiser in [0, 1/2]. To compute the maximum value, we can either use
Lemma 2·1, or we directly compute fα(14/31) as follows. We note that φ(25n+k14/31) =
bk/31, where b0 = 14, b1 = 3, b2 = 6, b3 = 12, and b4 = 7. Thus,
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fα(14/31) = 1

31

∞∑
n=0

(α

2

)5n(
14 + 3

α

2
+ 6

(α

2

)2 + 12
(α

2

)3 + 7
(α

2

)4)

=
39 + 3

√
13 −

√
6

(
25 + 7

√
13

)
56 − 2

√
13 + 4

√
7 + 2

√
13

≈ 0.508155,

where the second identity was obtained by using Mathematica 12.0. For the func-
tion in (3·4), we get, however, C(α) ≈ 0.508008, which confirms the numerical observation
from [21] that C(·) may not yield correct maximum values if evaluated at arguments
different from the positive roots of 1 − x − x2 − · · · − xn .

3·4. Global maxima for α ∈ (1, 2)

For α = √
2, it can be deduced from [11, lemma 5] that f√2 has maxima at t = 1/3 and

t = 2/3 and maximum value (2 + √
2)/3. That lemma was later rediscovered by the second

author in [20, lemma 3·1]. The statement on the maxima of f√2 was given independently
in [10] and [20]. Mishura and Schied [18] extended this subsequently to the following result,
which we quote here for the sake of completeness. It is not difficult to prove it with our
present method; see [13, example 4·3·1].

THEOREM 3·12 (Mishura and Schied [18]). For α ∈ (1, 2), the function fα has exactly
two maximisers at t = 1/3 and t = 2/3 and its maximum value is (3(1 − α/2))−1.

3·5. Global minima

In this section, we discuss the minima of the function fα.

THEOREM 3·13. for the global minima of the function fα, we have the following three
cases.

(a) for α ∈ (−2, −1), the function fα has a unique minimum in [0, 1/2], which is
located at t = 1/5. Moreover, the minimum value is

fα(1/5) = 1 + α

5(1 − (α/2)2)
.

(b) for α = −1, the minimum value of fα is equal to 0, and the set of minimisers is equal
to the set of all t ∈ [0, 1] that have a Rademacher expansion ρ with ρ2n = ρ2n+1 for
n ∈N0. This is a perfect set of Hausdorff dimension 1/2, and its 1/2-dimensional
Hausdorff measure is finite and strictly positive.

(c) for α ∈ (−1, 2), the unique minimiser of fα in [0, 1/2] is at t = 0 and the minimum
value is fα(0) = 0.

The preceding theorem and Remark 3·5 yield immediately the following corollary.

COROLLARY 3·14. The function fα(t) is nonnegative for all t ∈ [0, 1] if and only if
α ≥ −1. Moreover, there is no α ∈ (−2, 2) such that fα is nonpositive.

The fact that fα ≥ 0 for α ≥ −1 can alternatively be deduced from an argument in the
proof of [10, Theorem 4.1].
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4. Real (step) roots of Littlewood polynomials

In this section, we link our analysis of the maxima of the Takagi–Landsberg functions to
certain real roots of the Littlewood polynomials. Recall that a Littlewood polynomial is a
polynomial whose coefficients are all −1 or +1. By [4, corollary 3·3·1], the complex roots
of any Littlewood polynomial must lie in the annulus {z ∈C | 1/2 < |z| < 2}. Hence, the real
roots can only lie in (−2, −1/2) ∪ (1/2, 2). Below, we will show in Corollary 4·5 that the
real roots are actually dense in that set. We start with the following simple lemma.

LEMMA 4·1. The numbers −1 and +1 are the only rational roots for Littlewood
polynomials.

Proof. Assume α ∈Q is a rational root for some Littlewood polynomial Pn(x). Then the
monic polynomial x − α divides Pn(x). The Gauss lemma yields that x − α ∈Z[x] and
hence α ∈Z. By the above-mentioned [4, corollary 3·3·1], we get |α| = 1.

Definition 4·2. For given n ∈N, let Pn(x) = ∑n
m=0 ρm xm be a Littlewood polynomial with

coefficients ρm ∈ {−1, +1}. If k ≤ n, we write Pk(x) = ∑k
m=0 ρm xm . A number α ∈R is

called a step root of Pn if Pn(α) = 0 and ρk+1 Pk(α) ≤ 0 for k = 0, . . . , n − 1.

The concept of a step root has the following significance for the maxima of the Takagi–
Landsberg functions fα defined in (3·1).

COROLLARY 4·3. For α ∈ (−2, 2), the following conditions are equivalent:

(a) the function fα has a unique maximiser in [0, 1/2].
(b) there is no Littlewood polynomial that has α as its step root.

Proof. The assertion follows immediately from Proposition 3·2 and Theorem 2·3.

With our results on the maxima of the Takagi–Landsberg function, we thus get the
following corollary on the locations of the step roots of the Littlewood polynomials.

COROLLARY 4·4. We have the following results:

(a) the only Littlewood polynomials admitting negative step roots are of the form
1 − x − x2 − · · · − x2n for some n ∈N and the step roots are the numbers xn in
Lemma 3·3

(b) there are no step roots in [−1, 1/2] ∪ (1, 2)

(c) the step roots are dense in (1/2, 1].
Proof. In view of Corollary 4·3, (a) follows from Theorem 3·4. Assertion (b) follows from
Proposition 3·6 and Theorem 3·12. Part (c) follows from Theorem 3·9.

From part (c) of the preceding corollary, we obtain the following result, which identifies
[−2, −1/2] ∪ [1/2, 2] as the closure of the set of all real roots of the Littlewood poly-
nomials. Although the roots of the Littlewood polynomials have been well studied in the
literature (see, e.g, [5] and the references therein), we were unable to find the following
result in the literature. In [5, E1 on p. 72], it is stated that an analogous result holds if the
Littlewood polynomials are replaced by the larger set of all polynomials with coefficients
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Fig. 4. Log-scale histograms of the distributions of the positive roots (left) and step roots (right) of the
Littlewood polynomials of degree ≤ 20 and with zero-order coefficient ρ0 = +1. The algorithm found
2,255,683 roots and 106,682 step roots, where numbers such as α = 1 were counted each time they occurred
as (step) roots of some polynomial.

in {−1, 0, +1}. In the student thesis [23], determining the closure of the real roots of the
Littlewood polynomials was classified as an open problem. The distribution of the positive
roots and step roots of Littlewood polynomials is illustrated in Figure 4.

COROLLARY 4·5. Let R denote the set of all real roots of the Littlewood polynomials.
Then the closure of R is given by [−2, −1/2] ∪ [1/2, 2].
Proof. We know from [4, corollary 3·3·1] that R ⊂ (−2, −1/2) ∪ (1/2, 2). Now denote by
S the set of all step roots of the Littlewood polynomials, so that S ⊂ R. Corollary 4·4
(c) yields that [1/2, 1] is contained in the closure of S , and hence also in the closure of
R. Next, note that if α is the root of a Littlewood polynomial, then so is 1/α. Indeed, if α

is a root of the Littlewood polynomial P(x), then P̃(x) := xn P(1/x) is also a Littlewood
polynomial and satisfies P̃(1/α) = α−n P(α) = 0. Hence, [1, 2] is contained in the closure
of R. Finally, for α ∈ R, we clearly have also −α ∈ R. This completes the proof.

5. Proofs of the results in Section 2

Proof of Lemma 2·1. Take m ∈N0 and let t ∈ [0, 1] have Rademacher expansion ρ. Then
the tent map satisfies

φ(t) = 1

4
− 1

4

∞∑
k=1

2−kρ0ρk and φ(2mt) = 1

4
− 1

4

∞∑
k=1

2−kρmρm+k .

Plugging this formula into (2·1) gives the result.

By

fn(t) :=
n∑

m=0

cmφ(2mt), t ∈ [0, 1],

we will denote the corresponding truncated function.
Let

Dn := {k2−n | k = 0, . . . , 2n}
be the dyadic partition of [0, 1] of generation n. For t ∈Dn , we define its set of neighbours
in Dn by
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Nn(t) = {s ∈Dn | |t − s| = 2−n}.
If s ∈ Nn(t), we will say that s and t are neighbouring points in Dn . We are now going to
analyse the maxima of the truncated function fn . Since this function is affine on all intervals
of the form [k2−(n+1), (k + 1)2−(n+1)], it is clear that its maximum must be attained on Dn+1.
In addition, fn can have flat parts (e.g., n = 0 and c0 = 0), so that the set of maximisers of
fn may be an uncountable set. In the sequel, we are only interested in the set

Mn =Dn+1 ∩ arg max fn

of maximisers located in Dn+1.

Definition 5·1. For n ∈N0, a pair (xn, yn) is called a maximising edge of generation n if
the following conditions are satisfied:

(a) xn ∈ Mn;
(b) yn is a maximiser of fn in Nn+1(xn), i.e., yn ∈ arg max

x∈Nn+1(xn)

fn(x).

The following lemma characterises the maximising edges of generation n as the max-
imisers of fn over neighbouring pairs in Dn+1. It will be a key result for our proof of
Theorem 2·3.

LEMMA 5·2. For n ∈N0, the following conditions are equivalent for two neighboring
points xn, yn ∈Dn+1:

(a) (xn, yn) or (yn, xn) is a maximising edge of generation n;
(b) for all neighboring points z0, z1 in Dn+1, we have fn(z0) + fn(z1) ≤ fn(xn) +

fn(yn).

Proof. We prove the assertion by induction on n. Consider the case n = 0. If c0 = 0, then
M0 =D1 and all pairs of neighbouring points in D1 form maximising edges of generation 0,
and so the assertion is obvious. If c0 > 0, then M0 = {1/2}, and if c0 < 0, then M0 = {0, 1}.
Also in these cases the equivalence of (a) and (b) is obvious.

Now assume that n ≥ 1 and that the equivalence of (a) and (b) has been established for
all m < n. To show that (a) implies (b), let (xn, yn) be a maximising edge of generation n.
First, we consider the case xn ∈Dn+1 \Dn . Then Nn+1(xn) contains yn and another point,
say un , and both yn and un belong to Dn . If z0 and z2 are two neighbouring points in Dn , we
let z1 := (z0 + z2)/2. Then

1

2

(
fn−1(z0) + fn−1(z2)

) + cn

2
= fn(z1) ≤ fn(xn) = 1

2

(
fn−1(yn) + fn−1(un)

) + cn

2
,

and hence fn−1(z0) + fn−1(z2) ≤ fn−1(yn) + fn−1(un). The induction hypothesis now yields
that (yn, un) or (un, yn) is a maximising edge of generation n − 1. Moreover, since (xn, yn)

is a maximising edge of generation n, part (b) of Definition 5·1 gives fn(un) ≤ fn(yn). Since
both yn and un belong to Dn , we get that

fn−1(un) = fn(un) ≤ fn(yn) = fn−1(yn). (5·1)

Therefore, yn ∈ Mn−1.
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Now let z0 and z1 be two neighboring points in Dn+1. Then one of the two, say z0 belongs
to Dn . Hence, the fact that yn ∈ Mn−1 and xn ∈ Mn yields that

fn(z0) + fn(z1) = fn−1(z0) + fn(z1) ≤ fn−1(yn) + fn(xn) = fn(yn) + fn(xn).

This establishes (b) in case xn ∈Dn+1 \Dn .
Now we consider the case in which xn ∈Dn . Then fn−1(xn) = fn(xn), and so xn ∈ Mn−1.

Next, we let yn−1 := 2yn − xn . Then yn−1 ∈Dn , and we claim that (xn, yn−1) is a max-
imising edge of generation n − 1. This is obvious if xn ∈ {0, 1}. Otherwise, we have
Nn(xn) = {yn−1, un−1} for un−1 = 2xn − yn−1 = 3xn − 2yn . Moreover, Nn+1(xn) = {yn, un}
for un = 1

2 (xn + un−1). Since (xn, yn) is a maximising edge of generation n, we must have
fn(yn) ≥ fn(un) and hence

1

2

(
fn−1(xn) + fn−1(yn−1)

) + cn

2
= fn(yn) ≥ fn(un) = 1

2

(
fn−1(xn) + fn−1(un−1)

) + cn

2
.

Therefore,

fn−1(yn−1) ≥ fn−1(un−1), (5·2)

and it follows that (xn, yn−1) is indeed a maximising edge of generation n − 1.
Now let z0 and z1 be two neighbouring points in Dn+1. Exactly one of these points, say z0,

belongs also to Dn . Let z2 := 2z1 − z0 ∈Dn , so that z0 and z2 are neighbouring points in Dn

and z1 = (z0 + z2)/2. Hence, fn(z1) = (
fn−1(z0) + fn−1(z2)

)
/2 + cn/2. Therefore, the fact

that fn(z0) ≤ fn(xn) and the induction hypothesis yield that

fn(z0) + fn(z1) ≤ fn(xn) + 1

2

(
fn−1(xn) + fn−1(yn−1)

) + cn

2
= fn(xn) + fn(yn).

This completes the proof of (a)⇒(b).
Now we prove (b)⇒(a). To this end, let xn and yn be two fixed neighboring points in Dn+1

such that (b) is satisfied. Without loss of generality, we may suppose that fn(xn) ≥ fn(yn).
Clearly, yn must be a maximiser of fn in Nn+1(xn). To conclude (a), it will thus be sufficient
to show that xn ∈ Mn . To this end, we first consider the case xn ∈Dn . In a first step, we claim
that xn ∈ Mn−1. To this end, we assume by way of contradiction that there is z0 ∈ Mn−1 such
that fn−1(z0) > fn−1(xn) = fn(xn). Then we take z2 ∈Dn such that (z0, z2) is a maximising
edge of generation n − 1 and define z1 := (z0 + z2)/2 and yn−1 := 2yn − xn ∈Dn . Using our
assumption (b) yields that

fn−1(xn) + 1

2

(
fn−1(xn) + fn−1(yn−1)

) + cn

2

= fn(xn) + fn(yn) ≥ fn(z0) + fn(z1)

= fn−1(z0) + 1

2

(
fn−1(z0) + fn−1(z2)

) + cn

2

> fn−1(xn) + 1

2

(
fn−1(z0) + fn−1(z2)

) + cn

2
.

Hence, fn−1(xn) + fn−1(yn−1) > fn−1(z0) + fn−1(z2), in contradiction to our assumption
that (z0, z2) is a maximising edge of generation n − 1 and the induction hypothesis.
Therefore we must have xn ∈ Mn−1.
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In the next step, we show that fn(xn) ≥ fn(z) for all z ∈Dn+1 \Dn . Together with the
preceding step, this will give xn ∈ Mn . To this end, let z1 ∈Dn+1 \Dn be given, and let z0

and z2 be the two neighbors of z1 in Dn+1. Then z0, z2 ∈Dn and z1 = 1
2 (z0 + z2). As discussed

above, yn is a maximiser of fn in Nn+1(xn). Thus, it is easy to see that yn−1 := 2yn − xn must
be a maximiser of fn−1 in Nn(xn). Since we already know that xn ∈ Mn−1, the induction
hypothesis yields that (xn, yn−1) is a maximising edge of generation n − 1. Thus,

fn(z1) = 1

2

(
fn−1(z0) + fn−1(z2)

) + cn

2
≤ 1

2

(
fn−1(xn) + fn−1(yn−1)

) + cn

2
= fn(yn) ≤ fn(xn).

This concludes the proof of (b)⇒(a) in case xn ∈Dn .
Now we consider the case in which xn ∈Dn+1 \Dn . In a first step, we show that yn ∈

Mn−1. To this end, we assume by way of contradiction that there is z0 ∈ Mn−1 such that
fn−1(z0) > fn−1(yn). Let z2 ∈Dn be such that (z0, z2) is a maximising edge of generation
n − 1 and put z1 := (z0 + z2)/2. We also put un := 2xn − yn . Then the induction hypothesis
gives

fn(z0) + fn(z1) = fn−1(z0) + 1

2

(
fn−1(z0) + fn−1(z2)

) + cn

2

> fn−1(yn) + 1

2

(
fn−1(yn) + fn−1(un)

) + cn

2
= fn(yn) + fn(xn),

in contradiction to our assumption (b). Thus, yn ∈ Mn−1.
Next, we show that (yn, un) is a maximising edge of generation n − 1. This is clear

if either yn or un belong to {0, 1}. Otherwise, we must show that fn−1(un) ≥ fn−1(wn),
where wn = 2yn − un . Let zn := (wn + yn)/2. Then our hypothesis (b) yields that fn(yn) +
fn(xn) ≥ fn(yn) + fn(zn) and in turn fn(xn) ≥ fn(zn). It follows that

1

2

(
fn−1(yn) + fn−1(un)

) + cn

2
= fn(xn) ≥ fn(zn) = 1

2

(
fn−1(yn) + fn−1(wn)

) + cn

2
,

which implies the desired inequality fn−1(un) ≥ fn−1(wn).
Now we can conclude our proof by showing that xn ∈ Mn . If z ∈Dn , then the fact that

yn ∈ Mn−1 gives

fn(xn) ≥ fn(yn) = fn−1(yn) ≥ fn−1(z) = fn(z).

If z ∈Dn+1 \Dn , we let z0 and z2 denote its two neighbouring points in Dn+1, so that z0, z2 ∈
Dn and z = (z0 + z2)/2. Then,

fn(z) = 1

2

(
fn−1(z0) + fn−1(z2)

) + cn

2
≤ 1

2

(
fn−1(yn) + fn−1(un)

) + cn

2
= fn(xn),

where we have used the induction hypothesis and the fact that (yn, un) is a maximising edge
of generation n − 1.

In the proof of the preceding lemma (see, in particular, (5·1) and (5·2)), we have en passant
proved the following statement, which shows how to successively construct maximising
edges in a backward manner.
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LEMMA 5·3. Suppose that (xn, yn) is a maximising edge of generation n ≥ 1. Then:

(a) if xn ∈Dn and yn−1 := 2yn − xn, then (xn, yn−1) is a maximising edge of generation
n − 1.

(b) if xn ∈Dn+1 \Dn and un := 2xn − yn, then (yn, un) is a maximising edge of genera-
tion n − 1.

We also have the following result, which shows how maximising edges can be constructed
in a forward manner.

LEMMA 5·4. For n ∈N0 let (xn, yn) be a maximising edge of generation n and define
zn := (xn + yn)/2. Then (xn, zn) or (zn, xn) is a maximising edge of generation n + 1.

Proof. Note that fn+1(zn) = ( fn(xn) + fn(yn)) + cn+1/2. Hence, property (b) in Lemma 5·2
yields that fn+1(zn) ≥ fn+1(z) for all z ∈Dn+2 \Dn+1. Moreover, by assumption, fn+1(xn) =
fn(xn) ≥ fn(z) = fn+1(z) for all z ∈Dn+1. Hence, zn ∈ Mn+1 if fn+1(zn) ≥ fn+1(xn) and xn ∈
Mn+1 if fn+1(xn) ≥ fn+1(zn). From here, the assertion follows easily.

The next proposition states in particular, that t is a maximiser of f if and only if it is a
limit of successive maximisers of fn . Clearly, the “if” direction of this statement is obvious,
while the “only if" direction is not.

PROPOSITION 5·5. For given t ∈ [0, 1], the following statements are equivalent.

(a) t ∈ arg max f .
(b) there exists a sequence (tn)n∈N0 such that tn ∈ Mn for all n and limn tn = t .
(c) for n ∈N0, let En be the union of all intervals [x, y] such that x, y ∈Dn+1, x < y

and (x, y) or (y, x) is a maximising edge of generation n. Then

t ∈
∞⋂

n=0

En.

Proof. To prove (a)⇒(c), we assume by way of contradiction that there is n ∈N0 such that
t /∈ En . Clearly, we can take the smallest such n. Since E0 = [0, 1], we must have n ≥ 1.
Moreover, there must be a maximising edge of generation n − 1, denoted (xn−1, yn−1), such
that t belongs to the closed interval with endpoints xn−1 and yn−1. Let z := (xn−1 + yn−1)/2.
By Lemma 5·4, the closed interval with endpoints xn−1 and z is a subset of En . Hence,
t �= z and t must be contained in the half-open interval with endpoints z and yn−1. Therefore,
t = αyn−1 + (1 − α)z for some α ∈ (0, 1]. We define s := αxn−1 + (1 − α)z = 2z − t .

Since the interval with endpoints z and yn−1 is not a subset of En , Lemma 5·2 implies that
fn(z) + fn(yn−1) < fn(z) + fn(xn−1). As fn is affine on each of the two respective intervals
with endpoints yn−1, z and z, xn−1, we thus get fn(s) > fn(t). Moreover, the symmetry and
periodicity of the tent map φ implies that φ(2mt) = φ(2ms) for all m > n. Hence,

f (s) = fn(s) +
∞∑

m=n+1

cmφ(2ms) > fn(t) +
∞∑

m=n+1

cmφ(2mt) = f (t),

which contradicts the assumed maximality of t .
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The implication (c)⇒(b) is obvious, because |xn − yn| = 2−(n+1) whenever (xn, yn) is
a maximising edge of generation n. The implication (b)⇒(a) follows from the uniform
convergence of fn to f .

The following lemma expresses the slope of fn around a point t ∈ [0, 1] in terms of the
Rademacher expansion of t .

LEMMA 5·6. For a given {−1, +1}-valued sequence (ρm)m∈N0 and n ∈N let

tn :=
n∑

m=0

(1 − ρm)2−(m+2).

Then

fn(y) − fn(x)

y − x
=

n∑
m=0

2mcmρm for all x, y ∈ [tn, tn + 2−(n+1)] with x �= y.

Proof. We proceed by induction on n. For n = 0, we have f0 = c0φ and ρ0 = −1 if and only
if t0 = 1/2; otherwise we have t0 = 0. Hence, the assertion is obvious.

Now assume that n ≥ 1, that the assertion has been established for all m < n, and that
x, y ∈ [tn, tn + 2−(n+1)] are given. Then x and y also belong to [tn−1, tn−1 + 2−n], and so the
induction hypothesis yields that

fn(y) − fn(x)

y − x
= fn−1(y) − fn−1(x)

y − x
+ cn

φ(2n y) − φ(2nx)

y − x

=
n−1∑
m=0

2mcmρm + cn
φ(2n y) − φ(2nx)

y − x
. (5·3)

To deal with the rightmost term, we write x = tn−1 + ξ2−n and y = tn−1 + η2−n , where ξ, η ∈
[0, 1]. More precisely, ξ, η ∈ [0, 1/2) if ρn = 1 and ξ, η ∈ [1/2, 1] if ρn = −1. Then the
rightmost term in (5·3) can be expressed as follows,

cn
φ(2n y) − φ(2nx)

y − x
= cn

φ(2ntn−1 + η) − φ(2ntn−1 + ξ)

y − x
= 2ncn

φ(η) − φ(ξ)

η − ξ
,

where we have used the periodicity of φ and the fact that 2ntn−1 ∈Z. By our choice of ξ and
η, the rightmost term is equal to 2ncnρn , which in view of (5·3) concludes the proof.

We need one additional lemma for the proof of Theorem 2·3.

LEMMA 5·7. Suppose that (ρm)m∈N0 is a {−1, +1}-valued sequence and n ∈N0. If

ρk

k−1∑
m=0

2mcmρm ≤ 0 for all k ≤ n, (5·4)

then there exists a maximising edge (xn, yn) of generation n such that t := ∑∞
m=0(1 −

ρm)2−(m+2) belongs to the closed interval with endpoints xn and yn.
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Proof. We will prove the assertion by induction on n. If n = 0, the hypothesis is trivially
satisfied since both intervals [0, 1/2] and [1/2, 1] have endpoints that form maximising
edges of generation 0.

Now suppose that n ≥ 1 and that the assertion has been established for all m < n. Let
(xn−1, yn−1) be the maximising edge of generation n − 1 that contains t . Lemma 5·6 gives
that

n−1 := fn−1(yn−1) − fn−1(xn−1)

yn−1 − xn−1
=

n−1∑
m=0

2mcmρm . (5·5)

Let z := (xn−1 + yn−1)/2. If n−1 = 0 or cn = 0, then Lemmas 5·2 and 5·4 imply that xn−1, z
and yn−1, z are the endpoints of two respective maximising edges of generation n, of which at
least one must enclose t . If n−1 > 0, then we must have xn−1 > yn−1, because the numerator
in (5·5) is strictly negative. Moreover, (5·4) implies that ρn = −1, which means that t lies in
the interval [z, xn−1], whose endpoints form a maximising edge of generation n according
to Lemma 5·4. An analogous reasoning gives t ∈ [xn−1, z] if n−1 < 0.

Proof of Theorem 2·3. (a)⇒(b): suppose that there exists a Rademacher expansion (ρm)m∈N0

of t that does not satisfy the step condition. Then there exists n ∈N0 such that
ρn+1

∑n
m=0 2mcmρm > 0. Let us fix the smallest such n. Then (5·4) holds, and Lemma 5·7

yields a maximising edge of generation n, denoted (xn, yn), such that t belongs to the closed
interval with endpoints xn, yn . Suppose first that n := ∑n

m=0 2mcmρm > 0. Lemma 5·6 gives
that

0 ≥ fn(yn) − fn(xn) = n · (yn − xn) (5·6)

and hence that yn < xn . Moreover, we must have strict inequality in (5·6).
Let z = (xn + yn)/2 so that yn < z < xn . Lemma 5·4 yields that either (z, xn) or (xn, z) is

a maximising edge of generation n + 1. Therefore, and since fn(yn) < fn(xn), Lemma 5·2
implies that neither (yn, z) nor (z, yn) is a maximising edge of generation n + 1. But the
fact that ρn+1 = 1 requires that t belongs to [yn, z]. Therefore, Proposition 5·5 yields that
t /∈ arg max f . An analogous argument applies in case n < 0.

(b)⇒(c) is obvious, and (c)⇒(a) follows from Lemma 5·7 and Proposition 5·5.

The proof of Corollary 2·4 will be based on the following simple lemma. We denote by
R+ the set of all {−1, +1}-valued sequences ρ that satisfy the step condition and ρ0 = +1.

LEMMA 5·8. Suppose that ρ(1) and ρ(2) are two distinct sequences in R+. If n0 denotes
the smallest n ∈N such that ρ(1)

n �= ρ(2)
n , then

∑n0−1
m=0 2mcmρ(i)

m = 0 for i = 1, 2.

Proof. On the one hand, ρ(1)
m = ρ(2)

m for m < n0 and so

ρ(1)
n0

n0−1∑
m=0

2mcmρ(1)
m ≤ 0 and ρ(2)

n0

n0−1∑
m=0

2mcmρ(1)
m ≤ 0.

On the other hand, ρ(1)
n0

= −ρ(2)
n0

. This proves the assertion.

Proof of Corollary 2·4. Since both ρ� and ρ� satisfy the step condition and since ρ
�

0 = ρ
�

0 =
1, both t � := T (ρ�) and t � := T (ρ�) belong to [0, 1/2] ∩ arg max f . Now suppose that there
exists t ∈ [0, 1/2] ∩ arg max f with t �= t �. Let ρ be the standard Rademacher expansion for
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t and take n0 as in Lemma 5·8 for the distinct sequences ρ and ρ�. Then the first n0 − 1
coefficients in the binary expansions of t � and t coincide. Moreover, the definition of ρ�

in (2·3) yields that ρ�
n0

= −1 and hence that ρn0 = +1. Therefore, the nth
0 coefficients in the

binary expansions of t � and t are given by 1 and 0, respectively, and so t � must be strictly
larger than t as t � �= t . The proof for t � is analogous.

Proof of Proposition 2·7. First, we will consider the case |Z | < ∞ and proceed by induc-
tion on n := |Z |. If n = 0, then Lemma 5·8 implies that ρ� is the only sequence in R+.
Now suppose that n ≥ 1 and that the assertion has been established for all m < n. We let
n0 := min Z . If ρ is any sequence in R+, then ρk = ρ

�

k for all k ≤ n0. Hence, for any n > n0,

n∑
m=0

2mcmρm =
n0∑

m=0

2mcmρ�
m +

n∑
m=n0+1

2mcmρm =
n−n0−1∑

m=0

2mc̃m ρ̃m, (5·7)

where c̃m = 2n0 cm+n0+1 and ρ̃m = ρm+n0+1. It follows in particular that ρ̃ satisfies the step
condition for (̃cm)m∈N0 .

Next, we define ρ̃�
m := ρ

�

m+n0+1 and observe that ρ̃
�

0 = +1. Moreover, (5·7) implies that ρ̃
�

is indeed the �-sequence for (̃cm)m∈N0 . Let

Z̃ :=
{

n ∈N0

∣∣∣ n∑
m=0

2mc̃m ρ̃�
m = 0

}
and denote by R̃+ the class of all {−1, +1}-valued sequences ρ̃ with ρ̃0 = +1. Then |Z̃ | =
n − 1, and the induction hypothesis implies that |R̃+| = 2n−1. The set R̃+ corresponds to all
sequences ρ ∈ R+ that satisfy ρn0 = +1. Now let us introduce the set R̃− of all sequences
ρ̃ with ρ̃0 = −1 that satisfy the step condition for (̃cm)m∈N0 . Then |R+| = |R̃+| + |R̃−|. But
it is clear that we must have |R̃−| = |R̃+|, because if ρ satisfies the step condition, then so
does −ρ. This concludes the proof if |Z | < ∞.

Now consider the case |Z | = ∞. We write Z ∪ {0} = {n0, n1, . . . }. For every sequence
σ ∈ {−1, +1}N0 with σ0 = +1, we define a sequence ρσ by ρσ

m := σiρ
�
m if ni < m ≤ ni+1.

One easily checks that ρσ ∈ R+ and it is clear that ρσ �= ρη if η is another sequence in
{−1, +1}N0 with η0 = +1. Therefore, Z has the cardinality of the continuum.

6. Proofs of the results in Section 3

Proof of Proposition 3·2. The equivalence of (a) and (b) is obvious. In addition, it is easy to
see that (b) is equivalent to ρ�(α) = ρ�(α), which in turn is equivalent to (c) by (3·2). Let
us now show that (a) implies (d). To this end, let us assume that, e.g., τ � is not continuous
at α. Then there are two sequences (αn) and (βn) in (−2, 2) such that αn → α and βn → α,
but t0 := limn τ �(αn) �= limn τ �(βn) =: t1. Since fβ(t) → fα(t) uniformly in t as β → α, it
follows that t0 and t1 are both maximisers of fα. Hence, (a) cannot hold. The continuity of
τ � is proved in the same way.

Finally, we show that (d) implies (b). To this end, let us assume by way of contradiction
that τ �(α) �= τ �(α) for some α ∈ (−2, 2). We show that it is not possible that both τ � and τ �

are continuous at α. To this end, let us assume that for instance τ � is continuous at α. Then
we select a sequence (βn) in Q ∈ (−2, 2)\{−1, +1} such that βn → α, and hence τ �(βn) →
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τ �(α). Lemma 4·1 implies that each βn is not a root for any Littlewood polynomial, and
hence τ �(βn) = τ �(βn) for each n. Therefore,

lim inf
n↑∞

|τ �(βn) − τ �(α)|

≥ lim inf
n↑∞

∣∣|τ �(βn) − τ �(α)| − |τ �(α) − τ �(α)|∣∣ = |τ �(α) − τ �(α)| > 0.

Thus, τ � is not continuous at α, and this completes our proof.

The following lemma uses a result from Moran [19] so as to determine the Hausdorff
dimension of certain sets in [0, 1] that are defined in terms of the Rademacher expansions of
their members. These sets are closely related to the uniform Cantor sets in Chapter 4 of [7].

LEMMA 6·1. For a given integer n ≥ 2 and k = 0, . . . , n − 1, let ρk ∈ {−1, 1} and ρ∗
k =

−ρk . Let C be the set of all numbers in [0, 1] that have a Rademacher expansion composed
of successive blocks of the form ρ0, ρ1, · · · , ρn−1 or ρ∗

0 , ρ∗
1 , · · · , ρ∗

n−1. Then C is a perfect
set of Hausdorff dimension 1/n and the 1/n-dimensional Hausdorff measure of C is finite
and strictly positive.

Proof. It is clear that C is closed and that every point t ∈ C is the limit of some sequence in
C \ {t}. Therefore, C is perfect.

Next, C is the disjoint union of the two sets C1 and C∗
1 that consist of all num-

bers t ∈ C that have a Rademacher expansion whose first n digits are formed by the
blocks ρ0, ρ1, . . . , ρn−1 and ρ∗

0 , ρ∗
1 , . . . , ρ∗

n−1, respectively. Clearly, the two sets C1 and
C∗

1 are similar geometrically to C but reduced in size by a factor 2−n . It therefore follows
from [19, Theorem II] that C has Hausdorff dimension log 2/ log 2n = 1/n and that the
1/n-dimensional Hausdorff measure of C if finite and strictly positive.

6·1. Proofs of the results in Section 3·1
Proof of Lemma 3·3. Note that

p2n(x) = 1 − x(1 − x2n)

1 − x
= q2n(x)

1 − x

for q2n(x) = 1 − 2x + x2n+1. On the one hand, if x ≤ −2, then q2n(x) = 1 + x(x2n − 2) ≤
−3. On the other hand, for x ∈ [−1, 0), we have q2n(x) ≥ −2x > 0. Therefore, all negative
roots of q2n , and equivalently of p2n , must be contained in (−2, −1). Next,

q ′
2n(x) = −2 + (2n + 1)x2n > 0 for x ∈ (−2, −1),

which together with q2n(−2) < 0 and q2n(−1) = 2 yields the existence of a unique negative
root, which belongs to (−2, −1). This observation furthermore yields that for x ∈ (−2, −1),

p2n(x) < 0 for x < xn and p2n(x) > 0 for x > xn . (6·1)

From here, we also get xn+1 > xn , because

q2n+2(xn) = q2n(xn) + x2n+3
n − x2n+1

n = x2n+3
n − x2n+1

n < 0.
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Finally, we show that limn xn = −1. To this end, we assume by way of contradiction that
x∞ := limn xn is strictly less than -1. Since x∞ > xn for all n, (6·1) gives

0 ≤ lim
n↑∞

q2n(x∞) = 1 − 2x∞ + lim
n↑∞

x2n+1
∞ = −∞,

which is the desired contradiction.

For the ease of notation, we define

R�
n(α) :=

n∑
m=0

αmρ�
m(α) and R�

n(α) :=
n∑

m=0

αmρ�
m(α).

LEMMA 6·2. In the setting of Theorem 3·4, we have for α ∈ (−2, −1) and n ∈N0,

ρ
�

1(α) = · · · = ρ
�

2n+1(α) = −1 for α ∈ [xn, xn+1),

ρ
�

1(α) = · · · = ρ
�

2n+1(α) = −1 for α ∈ (xn, xn+1].
Moreover, for m < 2n we have R�

m(α) > 0, and we have R�

2n(α) ≥ 0, where equality holds if
and only if α = xn.

Proof. We prove only the result for ρ�; the proof for ρ� is analogous. To this end, we note
first that R�

0(α) = 1 so that ρ
�

1(α) = −1. This settles the case n = 0. For arbitrary n ∈N, we
now show by induction on m ∈ {1, . . . , n} that R�

2m−1(α) > 0 and R�

2m(α) ≥ 0 with equal-
ity if and only if m = n and α = xn . Consider the case m = 1. We have R�

1(α) = 1 − α > 0
and, hence, R�

2(α) = p2(α), where p2m denotes the Littlewood polynomial introduced in
Lemma 3·3. Since α ≥ xn by assumption and xn ≥ x1 by Lemma 3·3, the observation (6·1)
gives p2(α) ≥ 0, with equality if and only if n = 1 and α = x1.

If the assertion has been proved for all k < m ≤ n, then the induction hypothesis implies
that R�

2m−1(α) = R�

2m−2(α) − α2m−1 ≥ −α2m−1 > 0. The induction hypothesis implies more-
over that R�

2m(α) = p2m(α). Since α ≥ xn by assumption and xn ≥ xm by Lemma 3·3, the
observation (6·1) gives p2m(α) ≥ 0, with equality if and only if m = n and α = xn . This
completes the proof.

LEMMA 6·3. In the setting of Theorem 3·4, we have for m, n ∈N0,

R�

2n+4m+1 > 0, R�

2n+4m+2 < 0, R�

2n+4m+3 < 0, R�

2n+4m+4 > 0 on [xn, xn+1),

R�

2n+4m+1 > 0, R�

2n+4m+2 < 0, R�

2n+4m+3 < 0, R�

2n+4m+4 > 0 on (xn, xn+1].
Proof. We prove only the result for R�; the proof for R� is analogous. We fix n ∈N0 and
α ∈ [xn, xn+1) (and α > x0 = −2 for n = 0) and proceed by induction on m. For m = 0
we get from Lemma 6·2 and (6·1) that R�

2n+1(α) = p2n(α) − α2n+1 > p2n(α) ≥ 0. Therefore
ρ

�

2n+2(α) = −1 and so R�

2n+2(α) = p2n+2(α) < 0 by Lemma 3·3. In turn, we get ρ
�

2n+3(α) =
+1 and so R�

2n+3(α) = R�

2n+2(α) + α2n+3 < 0. Therefore, ρ
�

2n+4(α) = +1 and, finally,

R�

2n+4(α) = R�

2n(α) − α2n+1 − α2n+2 + α2n+3 + α2n+4

= R�

2n(α) − α2n+1(1 + α − α2 − α3) > 0,

where we have used that R�

2n(α) ≥ 0 and that 1 + α − α2 − α3 > 0 for α < −1.
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Now suppose that m ≥ 1 and that the assertion has been established for all k < m. Then,
taking k := m − 1,

R�

2n+4m+1(α) = R�

2n+4k+1(α) − α2n+4k+2 + α2n+4k+3 + α2n+4k+4 − α2n+4k+5

= R�

2n+4k+1(α) − α2n+4k+2(1 − α − α2 + α3) > 0,

where we have used the induction hypothesis and the fact that 1 − α − α2 + α3 < 0 for α <

−1. It follows that ρ
�

2n+4m+2(α) = −1. Therefore, letting again k = m − 1,

R�

2n+4m+2(α) = R�

2n+4k+2(α) + α2n+4k+3 + α2n+4k+4 − α2n+4k+5 − α2n+4k+6

= R�

2n+4k+2(α) + α2n+4k+3(1 + α − α2 − α3) < 0.

It follows that ρ
�

2n+4m+3(α) = +1, and so R�

2n+4m+3(α) = R�

2n+4m+2(α) + α2n+4m+3 < 0.
Finally,

R�

2n+4m+4(α) = R�

2n+4(m−1)+4(α) − α2n+4(m−1)+5 − α2n+4m+2 + α2n+4m+3 + α2n+4m+4

= R�

2n+4(m−1)+4(α) − α2n+4m+1(1 + α − α2 − α3) > 0.

This concludes the proof.

Proof of Theorem 3·4. Let

Z (α) :=
{

n ∈N0

∣∣∣ R�
n(α) = 0

}
.

Then Lemmas 6·2 and 6·3 imply that |Z (α)| = 1 if α ∈ {x1, x2, . . . } and |Z (α)| = 0 other-
wise. Therefore, Proposition 2·7 yields that fα will have two maximisers in [0, 1/2] in the
first case and one in the second case. We will show next that these maximisers are given by
the numbers tn . Since those numbers are all different from 1/2, the assertion on the number
of maximisers in [0, 1] will follow.

Next, Lemma 6·3 implies that for m, n ∈N0,

ρ
�

2n+4m+2 = −1, ρ
�

2n+4m+3 = +1, ρ
�

2n+4m+4 = +1, ρ
�

2n+4m+5 = −1 on [xn, xn+1),

ρ
�

2n+4m+2 = −1, ρ
�

2n+4m+3 = +1, ρ
�

2n+4m+4 = +1, ρ
�

2n+4m+5 = −1 on (xn, xn+1].
With Lemma 6·2 we hence obtain that for α ∈ [xn, xn+1),

τ �(α) =
2n+1∑
m=1

2−(m+1) +
∞∑

m=0

(
2−(2n+4m+3) + 2−(2n+4m+6)

)
= 5 − 4−n

10
.

Finally, Lemmas 6·2 and 6·3 also give that τ �(α) = τ �(α−) for all α and this identifies the
maximum location(s).

To identify the value of the maximum, we need to compute fα(tn). The periodicity of φ

implies that

fα(tn) =
∞∑

m=0

αm

2m
φ
(

2m 5 − 4−n

10

)
= 5 − 4−n

10
+

∞∑
m=1

αm

2m
φ
(2m−2n

10

)
.
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If m ≤ 2n + 2, then 2m−2n

10 < 1/2, and so φ( 2m−2n

10 ) = 2m−2n

10 . It follows that

2n+2∑
m=1

αm

2m
φ
(2m−2n

10

)
= 2−2n

10
· α(α2n+2 − 1)

α − 1
.

If m ≥ 2n + 3, then φ( 2m−2n

10 ) = 1/5 if m is odd and φ( 2m−2n

10 ) = 2/5 if m is even. It follows
that

∞∑
m=2n+3

αm

2m
φ
(2m−2n

10

)
= α2n+3

22n+3

∞∑
k=0

1 + α

5
·
(α

2

)2k = α2n+3(1 + α)

5 · 22n+3(1 − (α/2)2)
.

Putting everything together and simplifying yields the assertion.

6·2. Proofs of the results in Section 3·3
We start with the following elementary lemma that is needed in the proofs of this sec-

tion. This lemma concerns the possibility of t = 1/2 being a maximiser of fα. As we saw
in Proposition 3·6, this is what happens for α ∈ [−1, 1/2]. The following result is also
contained in [10, theorem 4], but we can give a very short proof here.

LEMMA 6·4. The value t = 1/2 is not a maximiser of fα if α > 1/2.

Proof. Note that t = 1/2 has the Rademacher expansion ρ = (+1, −1, −1, . . . ). Thus, if
t = 1/2 were a maximiser, then ρ would have to satisfy the step condition by Theorem 2·3.
However, for α > 1/2, there exists n0 ∈N such that

∑n0

m=1 αm − 1 > 0, and at such n0, we
have ρn0+1

∑n0

m=0 αmρm = ∑n0

m=1 αm − 1 > 0. This contradicts Theorem 2·3, thus, t = 1/2 is
not a maximiser.

Proof of Theorem 3·7. In case (a), Proposition 2·7 yields that fα has a unique maximiser in
[0, 1/2]. By Lemma 6·4, this maximiser is strictly smaller than 1/2. Therefore, there are
exactly two maximisers in [0, 1].

In case (b), it is easy to see that a {−1, +1}-valued sequence satisfies the step con-
dition for α if and only if it is made up of successive blocks of the form ρ

�

0, . . . , ρ�
n0

or (−ρ
�

0), . . . , (−ρ�
n0

). Hence, Theorem 2·3 identifies precisely those sequences as the
Rademacher expansions of the minimisers of fα. Finally, Lemma 6·1 yields the assertion
on the Hausdorff dimension and the Hausdorff measure.

Proof of Corollary 3·8. Let us suppose by way of contraction that fα has a maximiser of
the form k2−n for some n ∈N and k ∈ {0, . . . , 2n}. By Lemma 6·4, we cannot have t = 1/2.
It is moreover clear that the cases t = 0 and t = 1 are impossible. By symmetry of fα, we
may thus assume that t ∈ (0, 1/2). Since t is a dyadic rational number, it will have two
distinct Rademacher expansions ρ and ρ̃ with ρ0 = ρ̃0 = 1. Moreover, there will be n1 ∈N

such that one of them, say ρ, satisfies ρn = +1 for n ≥ n1, whereas ρ̃n = −1 for n ≥ n1. By
Theorem 2·3, both ρ and ρ̃ satisfy the step condition. Hence, Proposition 2·7 implies that
there exists a minimal n0 ∈N such that

∑n0

m=0 αmρm = 0. By Theorem 3·7, both ρ and ρ̃ must
therefore be formed out of blocks of the form ρ0, . . . , ρn0 or (−ρ0), . . . , (−ρn0). But then
these two blocks must be equal to 1, . . . , 1 and −1, . . . , −1, and every sequence formed
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by these blocks must be a maximiser. This implies that 0 and 1 are maximisers, which is
impossible.

The proof of Theorem 3·9 will be based on the following lemmas, which describe the
asymptotic behaviour of the sequence Rn(α) := ∑n

m=0 ρmαm for a Rademacher expansion ρ

that satisfies the step condition for α ∈ (1/2, 1).

LEMMA 6·5. Suppose that ρ satisfies ρ0 = 1 and the step condition for α ∈ (1/2, 1).
Then, for any n ∈N0, there exists n0 > n such that

Rn0(α)Rn0+1(α) ≤ 0. (6·2)

Proof. If the maximiser of fα in [0, 1/2] is not unique, then Theorem 3·7 implies that there
exists n0 ∈N such that Rkn0(α) = 0 for all k ∈N. Hence, the assertion is obvious in this
case. Otherwise, we have ρ = ρ� = ρ�. Observe that 1 − ∑∞

m=1 αm = (1 − 2α)/(1 − α) < 0,
as α ∈ (1/2, 1). Therefore, there exists n0 > 0 such that

1 −
k∑

m=1

αm ≥ 0 for all k ≤ n0 and 1 −
n0+1∑
m=1

αm < 0. (6·3)

It follows that we must have ρ1 = · · · = ρn0+1 = −1 and ρn0+2 = +1. Moreover, the inequal-
ities (6·2) and on the left-hand side of (6·3) must be strict. Therefore, we have that
Rn0+1(α)Rn0(α) ≤ 0. This establishes the assertion for n = 0.

For general n, we proceed by induction. So let us suppose that n ≥ 1 and that the assertion
has been established for all m ≤ n − 1. By induction hypothesis, there exists n0 > n − 1 such
that (6·2) holds. If n0 > n, we are done. So we only need to consider the case n0 = n. Then
Rn(α)Rn+1(α) < 0. If Rn(α) > 0, then ρn+1 = −1 and hence 0 > Rn+1(α) = Rn(α) − αn+1 >

−αn+1. In turn we get ρn+2 = +1. Moreover, since α ∈ (1/2, 1),

Rn+1(α) +
∞∑

m=n+2

αm > −αn+1 + αn+2

1 − α
= αn+1(2α − 1)

1 − α
> 0.

Therefore, the assertion follows as in the case n = 0. If Rn(α) < 0, then we can use the same
argument with switched signs.

LEMMA 6·6. In the context of Lemma 6·5, we have Rn(α) −→ 0 as n ↑ ∞.

Proof. For any n ∈N, we have that Rn+1(α) = Rn(α) + ρn+1α
n+1. Hence, if

Rn+1(α)Rn(α) ≤ 0, then we must have that |Rn+1(α)| ≤ αn+1. Otherwise, the fact that
ρn+1 Rn(α) ≤ 0 implies that

|Rn+1(α)| = |Rn(α) + ρn+1α
n+1| ≤ |Rn(α)|.

Combining these two inequalities and using Lemma 6·5 yields that for any n ∈N, there
exists n0 > n, such that for all m > n0 we have |Rm(α)| ≤ αn0 . This proves the assertion.

LEMMA 6·7. For α ∈ (1/2, 1) and every ε > 0, there exists β ∈ (α − ε, α + ε) ∩ (1/2, 1)

such that ρ�(α) �= ρ�(β).
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Proof. Let us assume by way of contradiction that there exists α ∈ (1/2, 1) and ε >

0 that ρ := ρ�(α) = ρ�(β) for all β ∈ (α − ε, α + ε). Since lim supn
n
√|ρn| = 1, R(z) :=∑∞

m=0 ρm zm is an analytic function of z ∈ (−1, 1). Take ε > 0 so that (α − ε, α + ε) ⊂
(−1, 1). Then Lemma 6·6 implies that R(z) = 0 for all z ∈ (α − ε, α + ε) and in turn
R(z) = 0 for all z ∈ (−1, 1). But this implies ρn = 0 for all n and hence a contradiction.

Proof of Theorem 3·9. We prove the assertion only for τ �; the proof for τ � is identical. Let
α ∈ (1/2, 1) and ε > 0 be given. By Lemma 6·7 there exists β ∈ (α − ε, α + ε) ∩ (1/2, 1),
such that ρ�(α) �= ρ�(β). By Corollary 3·8, neither ρ�(α) nor ρ�(β) can be a Rademacher
expansion of a dyadic rational number. Therefore, we must have τ �(α) = T (ρ�(α)) �=
T (ρ�(β)) = τ �(β). Now suppose by way of contradiction that there are α ∈ (1/2, 1) and ε >

0 such that τ � is continuous on (α − ε, α + ε) ∩ (1/2, 1). Let β ∈ (α − ε, α + ε) ∩ (1/2, 1)

be as above. By the intermediate value theorem, the continuous function τ � would have to
take every value between τ �(α) and τ �(β), but this contradicts Corollary 3·8.

6·3. Proofs of the results in Section 3·5
Proof of Theorem 3·13. As discussed in Remark 2·5, we define λ�(α) and λ�(α) by λ

�

0(α) =
λ

�

0(α) = +1 and

λ�
n(α) =

{+1 if
∑n−1

m=0 αmλ�
m(α) > 0,

−1 otherwise,
λ�

n(α) =
{+1 if

∑n−1
m=0 αmλ�

m(α) ≥ 0,

−1 otherwise.

Then T (λ�(α)) is the largest and T (λ�(α)) is the smallest minimiser of fα in [0, 1/2]. For
simplicity, we will suppress the argument α in this proof. We also let L�

n := ∑n
m=0 αmλ�

m and
L�

n := ∑n
m=0 αmλ�

m .
(a) We prove by induction on n ∈N0 that both λ = λ� and λ = λ� satisfy

λ4n = +1, λ4n+1 = +1, λ4n+2 = −1, λ4n+3 = −1. (6·4)

Then fα will have a unique minimiser on [0, 1/2], which will be equal to

T (λ) =
∞∑

n=0

(1 − λn)2
−n−1 =

∞∑
n=0

2−4n(2−3 + 2−4) = 1

5
.

To prove (6·4), consider first the case n = 0. Then L0 = λ0 = +1 and so λ1 = +1. Hence
L1 = 1 + α < 0 and thus λ2 = −1. Finally, L2 = L1 − α2 < 0, so that λ3 = −1. Now suppose
that n ≥ 1 and the assertion has been proved for all m < n. Then

L4n−1 =
n−1∑
k=0

α4k(1 + α − α2 − α3) = (1 + α)2(1 − α)
1 − α4k

1 − α4
> 0.

Hence λ4n = +1. It follows that L4n = L4n−1 + α4n > 0 and in turn λ4n+1 > 0. Therefore,

L4n+1 = 1 + α −
n−1∑
k=0

α4k+2(1 + α − α2 − α3) = 1 + α − α2(1 + α)2(1 − α)
1 − α4k

1 − α4
< 0.

Hence λ4n+2 = −1 and so L4n+2 = L4n+1 − α4n+2 < 0. Thus, we finally get λ4n+3 = −1.
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To prove our formula for the minimum value, recall from the proof of Theorem 3·4 that
φ(2m/5) = 1/5 for m even and φ(2m/5) = 2/5 for m odd. Hence,

fα(1/5) =
∞∑

m=0

αm

2m
φ(2m/5) =

∞∑
m=0

α2m

22m

(1

5
+ α

2
· 2

5

)
= 1 + α

5(1 − (α/2)2)
.

(b) Suppose that λ is any sequence satisfying the step condition for minima, λn Ln−1 ≥ 0.
Then we have λ1L0 = λ1λ0 ≥ 0 and hence λ1 = λ0. Moreover, we have L1 = λ0 − λ1 = 0.
From here, it follows from a straightforward induction argument that we must have λ2n =
λ2n+1 for all n ∈N0 and that, conversely, any such sequence satisfies the step condition for
minima. Hence, Remark 2·5 in conjunction with Theorem 2·3 yields that the set of minimis-
ers of f−1 is equal to the set of all those t ∈ [0, 1] whose binary expansion, t = 0.ε0ε1 · · ·
satisfies ε2n = ε2n+1 for n ∈N0. Since this set contains t = 0, the minimum value of f−1

must be f−1(0) = 0. Clearly, the set of minimisers can also be represented as the set of those
t ∈ [0, 1] whose binary expansion is formed of successive blocks of the digits 11 and 00.
Therefore, the claim on its Hausdorff dimension follows from Lemma 6·1.

(c) Let α ∈ (−1, 2) be given. We show by induction on n that λ�
n = +1 for all n ∈N0.

For n = 0, we clearly have λ
�

0 = 1. Now suppose that the claim has been established for all
m ≤ n. Then

L�
n =

n∑
m=0

λ�
mαm =

n∑
m=0

αm = 1 − αn+1

1 − α
> 0,

which gives λ
�

n+1 = +1. It follows that T (λ�) = 0. Since T (λ�) is the largest minimiser in
[0, 1/2], the result follows.
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