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NONLINEAR PROGRAMMING DUALITY AND
MATRIX GAME EQUIVALENCE

S. CHANDRA'-2, B. D. CRAVEN 2 AND B. MOND3

(Received 13 February 1984)

Abstract

Certain well known results on linear programming duality and matrix game equivalence
are extended to nonlinear and fractional programming problems.

1. Introduction

Consider the linear programming problem (LP) together with its dual (LD) as
follows:

(LP)

(LD)

Minimize cTx,

Maximize bTy,

subject to Ax ^

subject to ATy >

•b,

s£ c,

X

y
where c <= R", x e R", b e Rm, y e Rm, A = [a/y] is an (w X n) real matrix and
the symbol T denotes the transpose.

Now consider the matrix game associated with the following (n + m + 1) X (n
4- m + 1) skew symmetric matrix B:

B=

Since B is skew symmetric, the value of the matrix game associated with B is zero
and both players have the same optimal strategies. In the following, matrix game
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B will mean the matrix game associated with B and indices i andy will run from 1
to m and 1 to n respectively.

The following results due to Dantzig [5] are well known (Karlin [9], Gass [8]):

THEOREM 1. Let x and p be optimal solutions to (LP) and (LD) respectively. Let
z* = 1/(1 + ZJXJ + Lip,), x* = z*x, y* = z*p. Then (x*, y*, z*) solves the ma-
trix game B.

THEOREM 2. Let (x*, y*, z*) be an optimal strategy of the matrix game B with
z* > 0. Let Xj = (x*/z*), pi — (y*/z*). Then x and y are optimal solutions to
(LP) and (LD) respectively.

Thus Theorems 1 and 2 above give complete equivalence between linear
programming duality and the matrix game B. It is natural then to ask whether
such results hold for nonlinear programming problems as well. To the best of our
knowledge, there is no explicit mention of such results beyond linearity in the
literature. Of course, there are such results for infinite dimensions, e. g., Forgo [7]
for continuous linear programming and Tijs [13] for semi-infinite linear program-
ming.

The purpose of this note is to present analogues of Theorems 1 and 2 for
certain classes of nonlinear programming problems. These problems are finite
dimensional and satisfy certain generalized convexity requirements. Nonlinear
programming problems with linear constraints are studied in Section 2, while
those with nonlinear constraints are treated in Section 3. Finally, certain remarks
and conclusions about fractional programming and matrix games are included in
Section 4.

2. Linear constraints case

Let us consider the linearly constrained nonlinear programming problem (NP),
together with its dual (ND), as follows:

(NP): Minimize/(*)

subject to Ax > b, x > 0;

(ND): Maximize / (u ) -^ r (^u- fe )

subject to V / ( K ) - ATy > 0,
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Here x, y and A are as introduced in Section 1; u e R", / : R" -> R is differentia-
ble and V/(w) denotes the gradient (column) vector of/at u.

Now it is to be observed that (ND) is the Mond and Weir [12] type dual of
(NP) (in the presence of x > 0) and therefore if f(x) - yT(Ax - b) is a pseudo-
convex function of x for all feasible x, u and y, then there is weak duality between
(NP) and (ND). This will happen in particular if / is convex. Other examples
when / is not convex are given in [3].

Now similarly to B, we define the (n + m + 1) x(n + m + 1) skew symmetric
matrix 5x(x) (depending on x) and study relations between the primal-dual pair
(NP)-(ND) and the matrix game By(x), where

0 AT -V / (x
-A 0 b

V / ( x ) r -bT 0

The Mond and Weir dual [12] of (NP) is taken here for convenience. We could
also start with the Wolfe dual (e.g. Craven [4]), and prove similar equivalence
results.

LEMMA 1. For a matrix game described by a skew symmetric matrix B, the value
of the game is zero, and y is an optimal strategy for player II (or I) if and only if
By < 0.

PROOF. Let B be n X n. If (3c, y) is optimal for the game B, then xTBy < xTBy
< xTBy for all x, y G S, the set of probability vectors in R". Settingy — x shows
that xTBy < xTBx = 0, for all x e 5, hence By < 0. Note that skew symmetry of
B gives xTBx = 0, hence zero value for the game. Conversely, assume that
By < 0. Then xTBy < 0 for each x e S. So yTBy = 0 > xTBy = -yTBx since B is
skew symmetric. Hence yTBx > 0 = yTBy > xTBy. Then (Vx e S)xTBy «s yTBy
and (V_y G S)yTBy > yTBy, which show that (y, y) is optimal for the game.

THEOREM 3. Let x and (3c, y) be feasible solutions to (NP) and (ND) respectively,
such thatyT(Ax — b) = 0. Letz* = 1/(1 + HJXJ + E,^,), x* = z*xandy* = z*y.
Then (x*, y*, z*) solves the matrix game Bx(x).

PROOF. By the conditions of the theorem we have the following:

.43c > b, (1)

-ATy>0, (2)

)-ATy]^0, (3)
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yT{Ax -b) = 0, (4)

x 3* 0, y>0. (5)

But z* > 0 by (5), and hence, expressing relations (1) to (5) in terms of x*, y* we
get:

-Ax* + z*b < 0, (6)

ATy* - z*v/(3c) < 0, (7)

x*T[z*vf(x)-ATy*] <0, (8)

y*T(Ax* - z*b) = 0, (9)

x* >0, y*> 0, (10)

x* +y* + z* = 1. (11)

Now (8) and (9) give

z*[x*TVf(x)-y*Tb] <0,

i.e.,

[vf(x)]Tx*-bTy*^0. (12)

But (6), (7) and (12) imply

* x ( i c ) P < 0 , (13)

with | * = col(x*, y*, z*), where col denotes column vector. Now (13), together
with (10) and (11), implies by Lemma 1 that £* is an optimal strategy for Player II
in the matrix game BY{x). Since Bx{x) is skew symmetric, the value of the matrix
game Bt(x) is zero and £* is an optimal strategy to Player I as well. Thus
(x*, y*, z*) solves the matrix game Bx(x).

THEOREM 4. Let (x*, y*, z*) with z* > 0, solve the matrix game Bx(x), where
x = x*/z*. Let y = y*/z*. Then x and (3c, y) are feasible solutions to (NP) and
(ND) respectively with f(x) =/(3c) — yT(Ax — b). In addtion, if there is weak
duality between (NP) and (ND) then x and (3c, y) are optimal to the respective
problems.

PROOF. Let £* = col(x*, y*, z*). Then, by Lemma 1, Bx(x)£* < 0, thus

-Ax* + z*b < 0, (14)

ATy* - z*vf{x) < 0, (15)

[vf(x)]Tx*-bTy*^0, (16)

x*+y* + z* = l, (17)

x* >0, y* > 0, z* > 0. (18)

https://doi.org/10.1017/S033427000000463X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000463X


426 S. Chandra, B. D. Craven and B. Mond [s ]

Since z* > 0, (14) and (18) give the feasibility of x to (NP). Similarly (15), (16)
and (18) show that (3c, y) is feasible to (ND). Also, using (15) and (16),

yT(Ax - b) *s xTvf(x) - yTb < 0. (19)

But yT(Ax - b) > 0 by (14). Therefore (19) implies that yT(Ax - b) = 0. This
proves the equality of primal and dual objective functions and hence the theorem.

REMARK. The hypothesis of Theorem 4 seems to require a knowledge of 3c in
order to find 3c, but such results are not uncommon in nonlinear programming
(for reference see Karlin [9], Kortanek and Evans [10]). Sometimes these may
even be exploited for solving (NP) by developing certain systematic procedures of
suitably adjusting the parameter 3c, e.g. Frank and Wolfe [6], Mangasarian [11],
Bhat [2] and Bector and Bhat [1].

3. Nonlinear constraints case

Let us consider the general nonlinear programming problem (NP1) together

with its dual (ND1) as follows:

(NP1) Minimize f(x)

subject to g(x) > b, x > 0;

(ND1) Maximize/(u) -yT[g{u)-b]

subject to V/(«) - v ( j r g ) ( « ) > 0,

y>0.

Here x, u, b, y and / are the same as in Section 2, and g: R" -> Rm is continuously
differentiable. The gradient V/(*) is an n X 1 matrix, and Vg(x) is an n X m
matrix. The problem (ND1) is the Mond and Weir type dual [12] of (NP1), and
therefore under suitable assumptions, strong and converse duality theorems hold
between (NP1) and (ND1).

Define now the (n + m + 1) X (n + m + 1) skew symmetric matrix B2(x) by

0 Vg(x) - V / ( x )

-Vg(x)T 0 b-g(x)+(vg{x))TxB2(x) =

Vf(x)T -(b-g(x))T-xTVg{x) 0

THEOREM 5. Let x and (x, y) be feasible solutions to (NP1) and (ND1)
respectively, with yT(g(x) — b) = 0. Let z* = 1/(1 + T.jXj + E,j,), x* = z*x and
y* = z*y. Then (x*, y*, z*) solves the matrix game B2(x).
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PROOF. From the hypotheses of the theorem, we have the following

g(x) > b, (20)

V/(3E)-(vg(3c))j;>0, (21)

xT[vf(x)-(vg(x))y]^0, (22)

yT(g(x) - b) = 0, (23)

x > 0, y > 0. (24)

From Lemma 1, it suffices to prove that B2(x)£* < 0, where £* =
col(x*, y*, z*), namely that

-(Vg(ic)) V + (b- g(x) +(vg{x))Tx)z* < 0, (25)

v(y*Tg)(x)-z*vf{x)<0, (26)

**rV/(3c) -y*T(b - g(x)+(vg(x))Tx) < 0, (27)

x* +y* + z* = 1, (28)

x* > 0, y* > 0, z* > 0. (29)

Here (28) and (29) follow from (24) and the definitions x*,y* and z*; (26) follows
from (21) after multiplication by z*\ (25) follows from (20), with x* = z*x; and
(27) follows from (22) and (23), after multiplication by z*.

THEOREM 6. Let (x*, y*, z*) with z* > 0 solve the matrix game B2(x), where
x = x*/z*. Let y ~ y*/z*. Then x and (3c, y) are feasible solutions for (NPl) and
(NDl) respectively, with the two objective functions having equal values. If also weak
duality holds between (NPl) and (NDl), then x is optimal for (NPl) and (3c, y) is
optimal for (NDl).

PROOF. Let £* = col(x*, y*, z*). Since £* solves the game B2(x) and the matrix
is skew symmetric, 52(3c)£* < 0 by Lemma 1. Thus (25), (26), (27), (28) and (29)
hold. Dividing (25) by z* > 0 gives b - g(3c) < 0, so that 3c is feasible for (NPl).
Dividing (26) by z* gives V/(3c) > V(J'7g)(3c), hence, since x* > 0,
xTV(f - yTg){x) > 0. Dividing (27) by z* gives

Hence y\g(x) - b) < 0. But y > 0 from (29), and g(Jc) - b > 0 has
been proved; so yT(g(x) - b) > 0. Hence j>r(g(3c) - b) = 0, and also
xTV(f-yTg)(x) = 0. Thus (3c, y) is feasible for (NDl), and the objective
function of (NPl) at 3c equals the objective function of (NDl) at (3c, y). This, with
weak duality, proves that 3c is optimal for (NPl) and (3c, y) is optimal for (NDl).
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4. Fractional programming

Consider the following fractional programming problem (FP):

(FP) Min imize [f(x)/h(x)] subject to Ax > b, x>0.

Here h: R" -> R and/: R" -» R, over the feasible region of (FP), are differen-
tiable functions, with / > 0 and h > 0. One of the fractional duals to (FP) is the
following:

(FD): Maximizef(u)/h(u)-yT{Au-b)

subject to V [(///>)(«)] - ATy > 0.

uT[v(f/h)(u)-ATy]<0,
y>0.

Let us now define the (n + m + l ) x (n + m + 1) skew symmetric matrix B3(x)
as follows:

0
B3(x) =

-bT 0

Then we have the following theorems similar to Theorems 3 and 4:

THEOREM 7. Let x and (x, y) be feasible solutions to (FP) and (FD) respectively
such thatyT(Ax - b) = 0. L<?/z* = 1/(1 + E,*, + £,£), x* = z 'J imi/ / = z*y.
Then (x*, y*, z*) solves the matrix game 53(3c).

THEOREM 8. Let (x*, y*, z*) with z* > 0, solve the matrix game B3(x), where
x = x*/z*. Let y = y*/z*. Then x and (3c, y) are feasible solutions to (FP) and
(FD) respectively with objective functions being equal. In addition, if there is weak
duality between (FP) and (FD) then x and (x, y) are optimal to the respective
problems.

For fractional programs with nonlinear constraints, similar comments and
conclusions hold as in Section 3.
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