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Abstract

Clark et al. [‘The axiomatizability of topological prevarieties’, Adv. Math. 218 (2008), 1604–1653] have
shown that, for k ≥ 2, there exists a Boolean topological graph that is k-colourable but not topologically
k-colourable; that is, for every ε > 0, it cannot be coloured by a paintbrush of width ε. We generalize
this result to show that, for k ≥ 2, there is a Boolean topological graph that is 2-colourable but not
topologically k-colourable. This graph is an inverse limit of finite graphs which are shown to exist by
an Erdős-style probabilistic argument of Hell and Nešetřil [‘The core of a graph’, Discrete Math. 109
(1992), 117–126]. We use the fact that there exists a Boolean topological graph that is 2-colourable
but not k-colourable, and some other results (some new and some previously known), to answer the
question of which finitely generated topological residual classes of graphs are axiomatizable by universal
Horn sentences. A more general version of this question was raised in the above-mentioned paper by
Clark et al., and has been investigated by various authors for other structures.

2000 Mathematics subject classification: primary 05C80; secondary 08C15, 05C15, 57M15.
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1. Introduction

Let C be the topological graph shown in Figure 1, where the points of the topological
space are the vertices, and the topology is that inherited from R2. (This is a modified
version of the graph in Figure 4 of Clark et al. [5].)

Clearly C is 2-colourable; indeed it is a disjoint union of two paths. However, C
is not topologically 2-colourable, that is, for each ε > 0, the graph C cannot
be 2-coloured by a paintbrush of width ε; equivalently, there is no continuous
homomorphism from C to K2, where K2 is the complete graph on two vertices
endowed with the discrete topology. To see that C is not topologically 2-colourable,
note that a and b must be different colours, and therefore by backwards induction
a1 and b1 are different colours, which is impossible since both are related to c.
Theorem 7.5 of [5] shows that an analogous graph also exists for k ≥ 3; indeed, for
every k ≥ 2, there is a topological graph whose topology is Boolean (that is, compact,
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[2] Residual properties of simple graphs 489

FIGURE 1. A topological graph that is 2-colourable but not topologically 2-colourable.

totally disconnected, with topologically closed edge relation) that is k-colourable but
not topologically k-colourable.

We will generalize this result and show that for all k ≥ 2, there is a Boolean
topological graph that is 2-colourable but not topologically k-colourable. The proof is
not constructive: the required graph is an inverse limit of finite graphs, each of which
is shown to exist by a probabilistic argument from Hell and Nešetřil [10] (based on an
argument of Erdős). However, it is possible to give a constructive proof of a related
result; see Section 4.

The notion of (topological) k-colourability is in fact a particularization of a more
general idea, that of being (topologically) residually a subgraph of another graph.
Nešetřil and Pultr [13] showed that for each k, there is a graph Ck such that a graph G
is k-colourable if and only if it is residually a subgraph of Ck . Moreover, it is shown
in [5] that if G is a Boolean topological graph, then G is topologically k-colourable if
and only if it is topologically residually a subgraph of Ck . (Throughout this paper, we
will use ‘subgraph’ to mean ‘induced subgraph’, except where we make it clear that
we are using another definition.)

Let G be a finite graph with the discrete topology. The graph in Figure 1 and
the result of Nešetřil and Pultr (and its topological analogue) demonstrate that the
following property does not always hold:

(∗) every Boolean topological graph that is residually a subgraph of G is also
topologically residually a subgraph of G.

In this paper, we characterize the finite graphs G for which (∗) holds.
It turns out that the property (∗) is related to the axiomatizability by first-order

sentences of the class RCT(S(G)) of compact graphs that are topologically residually
subgraphs of G. Indeed, (∗) holds if and only if RCT(S(G)) is axiomatizable among
Boolean topological graphs by a certain type of first-order sentences, called universal
Horn (uH) sentences. In this case we say that RCT(S(G)) is uH axiomatizable. We
will characterize the simple graphs G for which RCT(S(G)) is uH axiomatizable. We
also consider a weaker version of uH axiomatizability. If RCT(S(G)) is axiomatizable
(among Boolean topological graphs) by a set of first-order sentences, we say it is first-
order axiomatizable. We will give results about first-order axiomatizability for simple
graphs in a few specific cases.

The concept of uH axiomatizability for classes RCT(S(X)), where X is a finite
structure, was introduced by Clark et al. [4], who called it standardness. The theory
of standardness has been applied in duality theory (see Davey and Talukder [7] and
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Davey [6]). Also, connections between standardness and other areas of algebra have
been explored. Clark et al. [3] showed how standardness is related to certain properties
of the syntactic congruences of an algebra. Jackson [12] discusses the relationship
between residual bounds and standardness for Boolean topological algebras, in
particular semigroups and groups.

2. Preliminaries

A simple graph G= 〈G; ∼〉 is a structure with a single symmetric and anti-reflexive
binary relation ∼. We will just write ‘graph’ to mean ‘simple graph’, and we will use
the same notation for graphs, or classes of graphs, and their corresponding topological
versions. Much of the following discussion can be generalized to arbitrary structures
with operations and relations; see [5].

Let C be a class of graphs and G a graph. We say that G is residually in C if
there exists a homomorphism from G to some member of C; and, for all a, b ∈G with
a 6= b or a � b, there exists H ∈ C and a surjective homomorphism φ :G→H such
that φ(a) 6= φ(b) or φ(a)� φ(b), respectively. (The first part of the condition ensures
that the one-element looped graph is not in R(C), which simplifies the statements of
our later results.) We will denote the class of graphs residually in C by R(C). If C

consists of topological graphs, and G is also a topological graph, we say that G is
topologically residually in C if the above condition holds and the homomorphisms
can be chosen to be continuous. We write RCT(C) for the class of compact topological
graphs topologically residually in U. We write S(C) (or just S(G) if C= {G}) to denote
the class of (induced) subgraphs of members of C. It is well known that, for any class C

of structures, R(S(C)) consists of the structures isomorphic to a substructure of a direct
product (with nonempty index set) of members of C, and that RCT(S(C)) is the class
of topological structures isomorphic to a topologically closed substructure of a direct
product (with nonempty index set) of members of C, where the direct product has the
usual product topology.

A universal Horn sentence is a universally quantified first-order sentence of the
form ∨

i∈I

¬αi or
(∧

i∈I

αi

)
−→ β

where I is finite (and possibly empty) and the αi and β are statements of the form
a ≈ b or a ∼ b. A universal Horn class is one that can be axiomatized by universal
Horn sentences. If G is a finite graph, then R(S(G)) is a uH class; indeed it is
exactly the class of models of the universal Horn theory of G, that is, we have
R(S(G))=Mod(ThuH(G)) (see Burris and Sankappanavar [1, Theorem V.2.23]). A
uH class U is finitely generated if U= R(S(C)) for some finite class of finite graphs C.
Note that if U is a uH class, then S(U)= U= R(U).

Caicedo [2] gives the following classification and description of finitely generated
uH classes of graphs, using results of Nešetřil and Pultr [13]. Throughout this paper,
Sn denotes the n-element path and An denotes the n-element antichain.
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[4] Residual properties of simple graphs 491

THEOREM 2.1. Let U be a finitely generated uH class of graphs. Then exactly one of
the following is true:

(1) U= R(S(A1));
(2) U= R(S(A2));
(3) U= R(S(S2));
(4) U= R(S(S3));
(5) U⊇ R(S(S4)).

The class R(S(S3)) is the uH class of all disjoint unions of complete bipartite graphs,
and R(S(S4)) is the uH class of all bipartite graphs. Furthermore, U is finitely
axiomatizable by uH sentences if and only if it is one of the types (1)–(4).

Recall from the introduction that a Boolean topological graph is a graph with a
compact, totally disconnected topology where the edge relation is a closed subset
of G×G. If U is a class of graphs, we write UBt to denote the class of Boolean
topological graphs whose underlying graph is in U, and Ufin for the class of finite
members of U, where each has the discrete topology. We will call RCT(Ufin) a
topological residual class. When U is the uH class generated by a finite graph G,
we have RCT(Ufin)= RCT(S(G)), and this is called the topological residual class
generated by G. We now give more precise statements of two theorems mentioned
in the introduction.

THEOREM 2.2 [13, Example 2.9(4)]. Let k ∈ N. There exists a finite graph Ck such
that a graph G is k-colourable if and only if G ∈ R(S(Ck)).

THEOREM 2.3 [5, Proposition 7.2]. Let k ∈ N. Then a Boolean topological graph G
is topologically k-colourable if and only if G ∈ RCT(S(Ck)), where Ck is as in
Theorem 2.2.

If 6 is a set of sentences, we write ModBt(6) to denote the set of Boolean
topological models of 6. Recall from the introduction that RCT(S(G)) is uH
axiomatizable if and only if there exists a set 6 of uH sentences such that
RCT(S(G))=ModBt(6). Since taking direct products and substructures preserves
uH sentences, uH axiomatizability of RCT(S(G)) is equivalent to the property that
RCT(S(G))=ModBt(ThuH(G)). If U is a uH class, we say that RCT(Ufin) is uH
axiomatizable if it is the class of Boolean topological models of some set of uH
sentences. Using the fact that U is locally finite, it can be shown that RCT(Ufin) is
uH axiomatizable if and only if RCT(Ufin)= UBt.

As noted in the introduction, for finite structures X, uH axiomatizability of
RCT(S(X)) is equivalent to standardness, as defined in [4]. Clark et al. [5] extend
the definition of standardness to include classes of the form RCT(Ufin) where U is a
uH class of structures. They define U to be standard if RCT(Ufin)= UBt. If U is locally
finite (in particular, if U consists of relational structures or U is finitely generated), then
RCT(Ufin) is standard if and only if it is uH axiomatizable, but in general standardness
is stronger than uH axiomatizability; see [5, Example 2.7].
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In this paper we classify the uH axiomatizability of RCT(Ufin) for finitely generated
uH classes U of simple graphs. The topological residual classes generated by A1
and A2 are obviously uH axiomatizable. We will show that RCT(S(S2)) is also
uH axiomatizable. We give a constructive inverse limit proof that U= R(S(S3)) is
not uH axiomatizable. Finally, for U containing S4, we show that RCT(Ufin)

is not uH axiomatizable by applying an inverse limit technique from [5] to a
probabilistic construction from [10]. This gives the following characterization of uH
axiomatizability for simple graphs.

THEOREM 2.4. Let U be a finitely generated uH class of graphs. Then RCT(Ufin) is
uH axiomatizable if and only if:

(1) U= R(S(A1)); or
(2) U= R(S(A2)); or
(3) U= R(S(S2)).

We will mainly consider uH axiomatizability for finitely generated uH classes
of simple graphs; however, it has also been studied more generally. For example,
if U is the uH class of all simple graphs (which is not finitely generated), then
RCT(Ufin) is uH axiomatizable (see [5, Theorem 7.3]); that is, RCT(Ufin) is exactly
the class of Boolean topological simple graphs. Stralka [14] showed that the class of
Priestly spaces, RCT(Pfin), where P is the class of reflexive, anti-symmetric, transitive
directed graphs, is not uH axiomatizable. In [15, 16], the author characterizes uH
axiomatizability for some topological residual classes of directed graphs with certain
properties. In particular, [16] contains a generalization of Stralka’s result which
characterizes uH axiomatizability for all topological residual classes of reflexive anti-
symmetric digraphs. Other generalizations of Stralka’s example can be found in [5,
Section 6]. UH axiomatizability, and the related concept of standardness, have also
been studied for structures with operations, partial operations and relations; see [3–5]
for many examples.

The following generalization of uH axiomatizability was introduced in [5]. Let U

be a uH class. We say that RCT(Ufin) is first-order axiomatizable if every Boolean
topological model of Th(RCT(Ufin)) is in RCT(Ufin), that is, if RCT(Ufin) is precisely
the class of Boolean topological models of some set 6 of first-order sentences.
Obviously, every uH axiomatizable topological residual class is also first-order
axiomatizable.

We do not have a characterization of first-order axiomatizability for finitely
generated topological residual classes of graphs; however, some results are known. For
example, [5, Theorem 7.6] shows that the class of topologically k-colourable graphs is
not first-order axiomatizable. In Section 3, we will show that the topological residual
class generated by S3 is not first-order axiomatizable. In Section 4 we consider, for
k ≥ 3, the class of Boolean topological graphs with the property of free topological
k-colourability, a strengthening of topological k-colourability. We show that this class
is not first-order axiomatizable.
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There are no known counter-examples to the conjecture that for simple graphs (or
indeed, directed graphs in general), uH axiomatizability is equivalent to first-order
axiomatizability. However, this is not true for arbitrary structures; see [5, Example 4.3]
for an example of a finite lattice generating a topological residual class that is first-
order axiomatizable but not uH axiomatizable.

3. Universal Horn axiomatizability for finitely generated uH classes

In this section we prove Theorem 2.4. We also show that RCT(S(S3)) is not first-
order axiomatizable.

We start by showing that RCT(S(S2)) is uH axiomatizable. The following theorem
is proved by Edwards [8, Ch. 5, Claim 6]; we give a similar proof here. If G is a
graph and X ⊆ G, we say that X is independent if (X × X) ∩ ∼=∅. Also we define
R(X) := {y ∈ G | (∃x ∈ X) x ∼ y}. Note that if X is closed, then so is R(X).

THEOREM 3.1. The class RCT(S(S2)) is uH axiomatizable.

PROOF. Let G be a topological graph in ModBt(ThuH(S2)). We label the vertices of S2
by 0, 1. We first prove the following claim.

Claim. If A and B are disjoint closed independent subsets of G, then there exists
a continuous homomorphism φ :G→ S2 such that φ(A)= {0} and φ(B)= {1}.

Now we will prove the claim. Since A is closed and (A × A) ∩ ∼=∅, there
exists a clopen set U0 ⊇ A such that (U0 ×U0) ∩ ∼=∅ (that is, U0 is independent),
and U0 ∩ B =∅. Similarly, there exists a clopen independent set V0 ⊇ B such that
V0 ∩U0 =∅. For each x ∈ G \ (U0 ∪ V0), let Wx ⊆ G \ (U0 ∪ V0) be a clopen
independent set. Now {Wx | x ∈ G \ (U0 ∪ V0)} is an open cover of G \ (U0 ∪ V0),
so there exists a finite subcover, {W0, . . . , Wn}, for some n. Assume that i ≥ 0 and we
have defined disjoint clopen independent sets Ui , Vi such that A ⊆Ui and B ⊆ Vi , and
Ui ∪ Vi ⊇

⋃i
k=0 Wi . We define Ui+1, Vi+1 with the same properties. Since G contains

no path of length greater than 1 and Ui , Vi are disjoint, the sets Wi+1 ∩ R(Ui ) and
Wi+1 ∩ R(Vi ) are disjoint. Therefore there exists a clopen set Y ⊆Wi+1 containing
Wi+1 ∩ R(Ui ) and disjoint from Wi+1 ∩ R(Vi ). Let Ui+1 =Ui ∪ (Wi+1 \ Y ) and
Vi+1 = Vi ∪ Y . It is easy to see that Ui+1 and Vi+1 have the required properties.
Now let U =Un and V = Vn , so that U and V are independent and {U, V } is a clopen
partition of G. Let φ :G→ S2 be given by φ(x)= 0 if x ∈U and φ(x)= 1 otherwise.
This proves the claim.

Let x, y ∈G with x 6= y. Then since {x} and {y} are closed independent sets, by the
claim there exists a map φ :G→ S2 with φ(x)= 0 and φ(y)= 1. Now let x, y ∈G
with x � y. Then {x, y} is a closed independent set. Therefore by the claim there exists
a continuous homomorphism φ :G→ S2 with φ(x)= φ(y)= 0, so φ(x)� φ(y). 2

To show that RCT(S(3)) is not uH axiomatizable, we use a theorem from [5] that
gives a way of constructing Boolean topological graphs, as inverse limits, to witness
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non-uH-axiomatizability. We will now give a brief outline of the theory of inverse
systems of graphs and state the theorem from [5] that we will use. A more detailed
and general discussion of inverse limits can be found in [5].

An inverse system over N of topological graphs is a set {Xn | n ∈ N} of topological
graphs and a set of continuous connecting homomorphisms φn : Xn+1→ Xn . The
inverse limit of the system is the set{

x ∈
∏
n∈N

Xn | (∀n) φn(xn+1)= xn

}
,

and is denoted lim
←−
{Xn | n ∈ N}. If each Xn is a finite nonempty graph (with the discrete

topology), then the inverse limit is nonempty, and is a Boolean topological graph.
The following theorem is a simplified version of Theorem 3.5 in [5], and is stated

here only for the case of graphs. We say that an inverse limit X= lim
←−
{Xn | n ∈ N}

is pointwise nonseparable with respect to a uH class U if there exists r ∈ {∼,=}
and a, b ∈ X such that (a, b) /∈ r but, for all n ∈ N, every G ∈ Ufin and every
homomorphism ψ : Xn→G, we have (ψ(an), ψ(bn)) ∈ r .

THEOREM 3.2 [5, Theorem 3.5]. Let U be a uH class of graphs, and let X=
lim
←−
{Xn | n ∈ N} be an inverse limit of finite graphs with surjective connecting maps.

Assume that X is pointwise nonseparable with respect to U and that, for each n
and each Y ⊆ Xn+1 such that φn�Y is one-to-one, the graph Y is in Ufin. Then
X ∈ UBt \ RCT(Ufin), so RCT(Ufin) is not uH axiomatizable.

We will use another theorem from [5] to show that the topological graph
that we construct to witness non-uH-axiomatizability also witnesses non-first-order
axiomatizability. The statement below is a simplified version that applies to graphs.

THEOREM 3.3 [5, Theorem 5.2]. Let U be a uH class of graphs and suppose that X
is a topological graph witnessing the non-uH-axiomatizability of RCT(Ufin) (that is,
X ∈ UBt \ RCT(Ufin)). If, up to isomorphism, there are only finitely many different
connected components in X, and they are all finite, then RCT(Ufin) is not first-order
axiomatizable.

THEOREM 3.4. The class RCT(S(S3)) is not uH axiomatizable.

PROOF. For n ∈ N let Tn be the (3n
+ 1)-element path with vertices labelled

1, 2, . . . , 3n+1. Let φn : Tn+1→ Tn be given by φn(x)= qx + rx , where qx and rx
are, respectively, the quotient and remainder when x is divided by 3. Figure 2 shows
φ1 and φ2. It is obvious from the picture (and easy to check) that the connecting maps
are homomorphisms.

For each n, we have 1� 3n
+ 1 in Tn . Let ψ : Tn→ S3 be a homomorphism.

Note that S3 satisfies the uH formula x1 ∼ x2 ∼ x3 ∼ x4 −→ x1 ∼ x4, so ψ(Tn) also
satisfies this uH formula. So ψ(1)∼ ψ(4), and if ψ(1)∼ ψ(2k) for some k, then

ψ(1)∼ ψ(2k)∼ ψ(2k + 1)∼ ψ(2k + 2)= ψ(2(k + 1)),
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FIGURE 2. The maps φ1 and φ2 (indicated by grey arrows).

so that ψ(1)∼ ψ(2(k + 1)). Therefore by induction we have ψ(1)∼ ψ(2k) for each
k ≥ 2, and in particular ψ(1)∼ ψ(3n

+ 1). So T := lim
←−
{Tn | n ∈ N} is pointwise

nonseparable with respect to R(S(S3)).
Now let Y ⊆ Tn+1 and suppose that Y contains a path of more than three elements,

that is, there exists i such that i, i + 1, i + 2, i + 3 ∈ Y . We show that φn : Tn+1→ Tn
is not one-to-one on Y. If ri = 0, then

φn(i + 1)= qi+1 + ri+1 = qi + 1= qi+3 + ri+3 = φn(i + 3);

if ri = 1, then

φn(i)= qi + ri = qi + 1= qi+2 + ri+2 = φn(i + 2);

and if ri = 2, then

φn(i)= qi + ri = qi + 2= qi+2 + ri+2 = φn(i + 2).

https://doi.org/10.1017/S0004972710000420 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710000420


496 B. Trotta [9]

Therefore, if φn is one-to-one on Y, then Y contains no path of more than three
elements, that is, Y is a disjoint union of isolated vertices, and paths with two or three
elements. Thus Y is a disjoint union of complete bipartite graphs and is therefore
in R(S(S3)), by Theorem 2.1. Theorem 3.2 now shows that RCT(S(S3)) is not uH
axiomatizable. 2

COROLLARY 3.5. RCT(S(S3)) is not first-order axiomatizable.

PROOF. Let X be the inverse limit constructed in the proof of Theorem 3.4. Suppose
that X contains a path with more than three elements, so that there exist distinct
elements a, b, c, d of X with a ∼ b ∼ c ∼ d . Then there exists n such that, for
m ≥ n, we have am, bm, cm, dm all distinct. In particular, an+1, bn+1, cn+1, dn+1 are
all distinct, and an+1 ∼ bn+1 ∼ cn+1 ∼ dn+1. But then, by the argument in the proof
of Theorem 3.1, we have |φn({an+1, bn+1, cn+1, dn+1})|< 4, a contradiction. So X
contains no path with more than three elements. Also, the degree of each vertex in X
is at most two, since this is true for every graph Tn . Therefore, up to isomorphism,
there are only finitely many connected components in X and they are all finite, so by
Theorem 3.3 the class RCT(S(S3)) is not first-order axiomatizable. 2

We now show that if U is a uH class of graphs that has a bound on the chromatic
number of its members and contains the uH class of all bipartite graphs, the class
RCT(Ufin) is not uH axiomatizable. In particular, this means that for every finitely
generated uH class U of graphs containing the uH class of all bipartite graphs,
RCT(Ufin) is not uH axiomatizable. Again, we use an inverse limit technique from [5].
The following theorem is a restatement of Theorem 3.9 from [5] restricted to the case
of graphs.

THEOREM 3.6. Let U, V,W be uH classes of graphs with V⊆ U⊆W, and X=
lim
←−
{Xn | n ∈ N} an inverse limit of finite graphs, where the connecting maps are

all surjective. Suppose that X is pointwise nonseparable with respect to W, and,
for all n, every subgraph of Xn with at most n elements is a member of V. Then
X ∈ VBt \ RCT(Wfin), so RCT(Ufin) is not uH axiomatizable.

Note that it suffices to find an inverse system of finite graphs {Xn | n ∈ N} with
surjective connecting maps, such that the inverse limit is pointwise nonseparable with
respect to W, and, for each n, each proper subgraph of Xn is in V.

The following result of Hell and Nešetřil [10] implies the existence of an inverse
limit with the required properties. A similar result, applying to structures with finitely
many relations of finite arity, is proved in Feder and Vardi [9, Theorem 5]. Also, an
inverse system with the required properties can be constructed from Theorem 2.3 of
Hodkinson and Venema [11]; however, the Hell and Nešetřil construction is slightly
simpler, and gives a more interesting result from the point of view of this paper; the
inverse limit is a forest rather than just bipartite.

Throughout this paper, we use Kk to denote the complete graph with k elements,
labelled 1, 2, . . . , k.
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THEOREM 3.7 [10, Theorem 4]. Let n ∈ N, and let G and G′ be finite graphs such
that there is no homomorphism from G to G′. Then there is a finite graph H such that
H contains no cycles of length less than n, and there is a homomorphism from H to G
but no homomorphism from H to G′.

COROLLARY 3.8. Let k ≥ 2. There exists an inverse system over N, with surjective
connecting maps, of finite graphs Hn such that, for each n, the chromatic number of
Hn is at least k + 1 and Hn has no cycles of length less than n + 1.

PROOF. We construct the digraphs Hn inductively. Let H1 be the graph Kk+1. Now
suppose that we have constructed Hn with the required properties, so that there is no
homomorphism from Hn to Kk . By Theorem 3.7 there exists a graph Hn+1 and a
surjective connecting homomorphism from Hn+1 to Hn such that Hn+1 has no cycles
of length less than n + 2, and there are no homomorphisms from Hn+1 to Kk , that is,
Hn+1 has chromatic number at least k + 1. 2

THEOREM 3.9. Let k ≥ 2. Then there exists a Boolean topological graph that is
2-colourable, but not topologically k-colourable. Therefore:

(1) if U is a uH class of graphs such that all graphs in U are k-colourable,
and U contains the class of all bipartite graphs, then RCT(Ufin) is not uH
axiomatizable;

(2) if U is a finitely generated uH class containing the uH class of all bipartite
graphs, then RCT(Ufin) is not uH axiomatizable.

PROOF. We prove the first statement; the others will follow easily. Let V be the
class of 2-colourable graphs, and let W be the class of k-colourable graphs. Both
are uH classes by Theorem 2.2. By Corollary 3.8, there exists an inverse system
{Hn | n ∈ N} of graphs with surjective connecting homomorphisms φn :Hn+1→Hn
such that each n-element subgraph of Hn is bipartite (indeed, it is a forest) and
therefore in V, but Hn has chromatic number at least k + 1. For each n, there are
no homomorphisms from Hn to Kk , where Kk is the complete graph with k elements,
and therefore no homomorphisms from Hn to G for G ∈W. So the inverse limit H
is (vacuously) pointwise nonseparable with respect to W. Thus, by Theorem 3.6, we
have H ∈ VBt \ RCT(Wfin). By Theorem 2.3, RCT(Wfin) is the class of topologically
k-colourable graphs, so that H is 2-colourable but not topologically k-colourable. To
prove (1), note that since V⊆ U⊆W, the class RCT(Ufin) is not uH axiomatizable.
Finally, (2) is a special case of (1). 2

We can now prove Theorem 2.4.

PROOF OF THEOREM 2.4. Let U be a finitely generated uH class. If U is R(S(A1)) or
R(S(A2)), then it is trivial to prove that RCT(Ufin) is uH axiomatizable. Theorem 3.1
shows that R(S(S2)) is also uH axiomatizable. For the converse, suppose that U is not
one of R(S(A1)), R(S(A2)) or R(S(S2)). Then by Theorem 2.1, U is either the class
R(S(S3)), or U contains the class of all bipartite graphs. Therefore Theorem 3.4 or
Theorem 3.9 shows that RCT(Ufin) is not uH axiomatizable. 2
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4. Freely k-colourable graphs

We say that a graph G is freely k-colourable if there exists a homomorphism
from G to Kk (that is, G is k-colourable) and, for each pair u, v ∈G with u � v
and u 6= v, there exist homomorphisms φ1, φ2 :G→Kk such that φ1(u)= φ1(v) and
φ2(u) 6= φ2(v) (that is, the pair u, v may be coloured the same or differently). We say
that a topological graph is freely topologically k-colourable if it is freely k-colourable
and the homomorphisms witnessing this can be chosen to be continuous. We will show
that the class of Boolean topological graphs that are freely topologically k-colourable
is not first-order axiomatizable.

LEMMA 4.1. A graph G is freely k-colourable if and only if G ∈ R(S(Kk)).

PROOF. First let G be freely k-colourable. Let u, v ∈G with u 6= v. If u ∼ v, then
since G is k-colourable, there is a homomorphism φ :G→Kk , and φ(u) 6= φ(v).
If u � v then since G is freely k-colourable there is a homomorphism φ :G→Kk
with φ(u) 6= φ(v). Now let u, v ∈ G with u � v. If u 6= v, then since G is freely k-
colourable, there is a homomorphism φ :G→Kk with φ(u)= φ(v), so φ(u)� φ(v).
In the case where u = v, every homomorphism φ :G→Kk has φ(u)� φ(v).

Suppose that G ∈ R(S(Kk)). Clearly G is k-colourable. Let u, v ∈G with u � v
and u 6= v. Since u 6= v there is a homomorphism φ :G→Kk with φ(u) 6= φ(v).
Since u � v, there is a homomorphism φ :G→Kk with φ(u)� φ(v), which means
that φ(u)= φ(v) as Kk is a complete graph. 2

LEMMA 4.2. A Boolean topological graph G is freely topologically k-colourable if
and only if G ∈ RCT(S(Kk)).

PROOF. The argument is the same as that in the proof of Lemma 4.1, except that the
homomorphisms are replaced by continuous homomorphisms. 2

Let k ≥ 3. We will prove that RCT(Kk) is not uH axiomatizable. Since R(S(Kk))

contains the class of all bipartite graphs, this result is a consequence of Theorem 3.9.
However, in this particular case, we can give a nonprobabilistic construction of a
topological graph witnessing non-uH-axiomatizability. Furthermore, we will also be
able to use this construction to prove that RCT(S(Kk)) is not first-order axiomatizable,
using another technique from [5], Theorem 4.6 below.

We begin by showing that RCT(S(K3)) is not uH axiomatizable, and the proof for
larger k will proceed by induction. The proof uses Theorem 3.6.

LEMMA 4.3. RCT(S(K3)) is not uH axiomatizable.

PROOF. For n ≥ 3, let Gn be the graph with elements

{a, b, a1, . . . , an, b1, . . . , bn−1}

and the relation ∼ where:
• a ∼ ai , for all i ;
• a1 ∼ an;
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FIGURE 3. The graph G4.

• ai ∼ bi , for 1≤ i ≤ n − 1;
• ai ∼ bi−1, for 2≤ i ≤ n;
• b ∼ bi , for all i .
Figure 3 shows the graph G4. Define the connecting homomorphisms φn :Gn+1→

Gn as follows. Relabel the vertices of Gn+1 by a′, b′, a′1, . . . , a′n+1, b′1, . . . , b′n . Let
φn be the map with φn(a′)= a, φn(b′)= b, φn(a′i )= ai for i ≤ n, φn(a′n+1)= an ,
φn(b′i )= bi for i ≤ n − 1, and φn(b′n)= bn−1, so φn is obviously a homomorphism.

If φ :Gn→K3 is a homomorphism, then φ(a)∼ φ(b), because otherwise φ(a)=
φ(b), and therefore {a1, . . . , an, b1, . . . , bn−1}must be 2-colourable, a contradiction.
So Gn is pointwise nonseparable with respect to R(S(K3)).

Let A = {a1, . . . , an} and B = {b1, . . . bn−1}. Note that Gn is 3-colourable;
the map f0 :Gn→K3 with f0(a)= 1, f0(a1)= 2, f0(A \ {a1})= 3, f0(B)= 1,
f0(b)= 2 is a colouring. We show that every proper subgraph of Gn is freely
3-colourable, and therefore in R(S(K3)). We first show that for every pair x, y ∈Gn
with x � y and x 6= y, there is a colouring of Gn where x, y are coloured differently,
and, provided {x, y} 6= {a, b}, there is also a colouring of Gn where x, y are coloured
the same. It then remains to show that if H is a proper subgraph of G with a, b ∈ H ,
there is a colouring of H where a and b are the same colour.

Let x, y ∈Gn with x 6= y and x � y. We give a homomorphism f :Gn→K3 that
colours x, y differently.

Case A1. x = a, y ∈ B. At most one of a1, an is related to y. Without loss of
generality, a1 � y. Let f be the map with f (a)= 1, f (a1)= 2, f (A \ {a1})= 3,
f (y)= 2, f (B \ {y})= 1, f (b)= 3.

Case A2. x = a, y = b. Let f := f0.

Case A3. x, y ∈ A. We have either x /∈ {a1, an} or y /∈ {a1, an}. Suppose, without
loss of generality, that x /∈ {a1, an}. Let f be the map with f (a)= 1, f (a1)= 2,

f (x)=

{
3 if y = a1,

2 otherwise,

f (A \ {a1, x})= 3, f (B)= 1, f (b)= 2.
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Case A4. x ∈ A, y ∈ B. Let f := f0.

Case A5. x ∈ A, y = b. If x 6= a1, let f := f0. Otherwise, let f = f1 be the map
where f (a)= 1, f (a1)= 2, f (A \ {a1})= 3, f (B)= 1, and f (b)= 3.

Case A6. x, y ∈ B, say x = bi , y = b j with i < j . Let f be the map with
f (a)= 1,

f (ak)=

{
2 if k < j,

3 if k ≥ j,

f (y)= 2, f (B \ {y})= 1, f (b)= 3.

We now show that if {x, y} 6= {a, b} there is a map g :Gn→Kk that colours x, y
the same. (Recall that x, y are points such that x 6= y and x � y.)

Case B1. x = a, y ∈ B. Let g := f0.

Case B2. x, y ∈ A. Then a1 /∈ {x, y} or an /∈ {x, y}. Suppose, without loss of
generality, that a1 /∈ {x, y}. Let g := f0.

Case B3. x ∈ A, y ∈ B, say x = ai and y = b j . Either i < j or i > j + 1. If i < j ,
let g be the map with g(a)= 1,

g(ak)=

{
2 if k ≤ i,

3 if k > i,

g(y)= 2, g(B \ {y})= 1, g(b)= 3. If i > j + 1, let g be the map with g(a)= 1,

g(ak)=

{
2 if k < i,

3 if k ≥ i,

g(y)= 3, g(B \ {y})= 1, g(b)= 2.

Case B4. x ∈ A, y = b. We have x 6= a1 or x 6= an; without loss of generality,
x 6= a1. Let g be the map f1 from case A5.

Case B5. x, y ∈ B. Let g := f0.

We now show that for every proper subgraph H of Gn with a, b ∈ H , there is a
colouring of H where a and b are coloured the same. Clearly it suffices to prove this
for all the graphs H=Gn \ {z}, where z /∈ {a, b}. If z = a1 or z = an , then Gn \ {z}
is bipartite. If z = ai or z = bi for some i , then H \ {a, b} is a tree, and therefore
bipartite, so clearly there is a 3-colouring f of H with f (a)= f (b).

Thus every proper subgraph of Gn is freely 3-colourable, and therefore in
R(S(K3)). Define G := lim

←−
{Gn | n ∈ N}. Then by Theorem 3.6,

G ∈ModBt(ThuH(K3)) \ RCT(S(K3)),

so RCT(S(K3)) is not uH axiomatizable. 2
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LEMMA 4.4. Let G be a k-colourable graph. Then G is freely (k + 1)-colourable.

PROOF. Label the vertices of Kk by 1, 2, . . . , k. Let a, b ∈G with a � b and
a 6= b. To colour a, b the same, let φ :G \ {a, b} → {1, . . . , k} be a k-colouring of
G \ {a, b}. Then the map φ ∪ {(a, k + 1), (b, k + 1)} is a (k + 1)-colouring of G. To
colour a, b differently, let φ :G \ {a} → {1, . . . , k} be a k-colouring of G \ {a}. Then
the map φ ∪ {(a, k + 1)} is a (k + 1)-colouring of G. 2

THEOREM 4.5. Let k ≥ 3, and let Kk be the complete graph on k vertices. Then
RCT(S(Kk)) is not uH axiomatizable.

PROOF. The proof is by induction. Let k ≥ 3. The inductive hypothesis is that
there is an inverse system of graphs {Gk

n | n ∈ N} with connecting homomorphisms
φk

n :G
k
n+1→Gk

n such that:

(1) there exist elements ak, bk of the inverse limit such that, for each n, we have
ak

n � bk
n but, for every homomorphism ψ :Gk

n→Kk , we have ψ(ak
n)∼ ψ(b

k
n);

(2) Gk
n is k-colourable;

(3) every proper subgraph of Gk
n is in R(S(Kk)).

By the proof of Lemma 4.3, this is true for k = 3. Now assume it is true for some k ≥ 3.
We construct an inverse system {Gk+1

n | n ∈ N} satisfying (1)–(3). For each n, let Gk+1
n

be the graph with underlying set Gk
n ∪ {yn} and the relation that contains all the edges

from Gk
n and the additional edges {x, yn} for each x ∈ Gk

n . Let φk+1
n :Gk+1

n+1→Gk+1
n

be the map φk
n ∪ {(yn+1, yn)}, so φk+1

n is clearly a homomorphism, since φk
n is.

To show that (1) holds for Gk+1
n , choose ak+1

:= ak and bk+1
:= bk , and suppose

that ψ :Gk+1
n →Kk+1 is a homomorphism. Since yn ∼ xn for each xn ∈ Gk

n , there
exists i ∈ Kk+1 such that ψ(yn)= i and ψ(Gk

n)= ψ(G
k+1
n \ {yn})⊆ Kk+1 \ {i}.

Without loss of generality we can assume that i = k + 1, so that ψ�Gk
n
(Gk

n)⊆ Kk .

Therefore, since (1) holds for k, we have ψ(ak+1
n )∼ ψ(bk+1

n ).
Since Gk

n is k-colourable, it is obvious that Gk+1
n is (k + 1)-colourable, so (2) holds.

To prove (3), let H be a proper subgraph of Gk+1
n . Since Gk+1

n is (k + 1)-colourable,
H is also (k + 1)-colourable. We now show that H is freely (k + 1)-colourable. If
yn /∈ H , then H ⊆ Gk

n , so H is k-colourable and therefore freely (k + 1)-colourable by
Lemma 4.4. Now assume thatyn ∈ H , and let un, vn ∈H with un 6= vn and un � vn .
Then un, vn 6= yn . Since H \ {yn} is a proper subgraph of Gk

n and (3) holds for
Gk

n , there exist homomorphisms φ′1 :H \ {yn} →Kk and φ′2 :H \ {yn} →Kk such that
φ′1(un)= φ

′

1(vn) and φ′2(un) 6= φ
′

2(vn). The maps φ1 :H→Kk+1 and φ2 :H→Kk+1
given by

φ1 = φ
′

1 ∪ {(yn, k + 1)} and φ2 = φ
′

2 ∪ {(yn, k + 1)}

are homomorphisms and we have φ1(un)= φ1(vn) and φ2(un) 6= φ2(vn). Thus (3)
holds for k + 1.

Therefore by induction, for each k ≥ 3, there exists an inverse system satisfying (1)
and (3), so by Theorem 3.6, RCT(S(Kk)) is not uH axiomatizable. 2
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FIGURE 4. The inverse limit constructed in the proof of Theorem 4.5, where k = 4. The vertex y1 is
related to every other vertex, but these edges are not shown. In general, for k = n, there are vertices

y1, . . . , yn−3 that are related to every other vertex.

We will again use a theorem from [5] to show that RCT(S(Kk)) is not first-order
axiomatizable. We give the simplified version of the theorem that is applicable in the
case of graphs. We first require some basic facts about compactifications. Let X be
a set and λ ∈ N. A λ-compactification of X is an idempotent map f : X→ X such
that | f (X)| ≤ λ. A λ-compactification f of X is a unary operation on X , and we write
〈X; ∼, f 〉 to denote the structure consisting of the set X with the graph edge relation∼
and the operation f . If f : X→ X is a λ-compactification, the λ-compactification
topology induced by f is the topology where U is open if and only if, for each element
x of f (X) in U , the set U contains cofinitely many elements of f −1(x) (in particular,
U is open if f (X) ∩U is empty). The λ-compactification topology is always Boolean.
Also, the property that f is a λ-compactification of X can be expressed by universal
sentences, so if f is a λ-compactification of X and 〈Y ; g〉 satisfies the universal theory
of 〈X; f 〉, then g is a λ-compactification of Y .

THEOREM 4.6 [5, Theorem 5.3]. Let U be a uH class and λ ∈ N. Suppose that
X ∈ UBt \ RCT(Ufin) is such that:

(1) the topology on X is the λ-compactification topology; and
(2) for every model 〈Y ; FG, g〉 of the universal theory of 〈X; ∼, f 〉, the relation FG

is closed in Y 2, where Y has the λ-compactification topology induced by g.

Then RCT(Ufin) is not first-order axiomatizable.

THEOREM 4.7. Let k ≥ 3 and let Kk be the complete graph on k vertices. Then
RCT(S(Kk)) is not first-order axiomatizable.

PROOF. Let X := lim
←−
{Gk

n : n ∈ N} be the inverse limit constructed in Theorem 4.5.
The case k = 4 is shown in Figure 4. The topological graph X has underlying set

{a1, . . . , a∞, b1, . . . , b∞, a, b, y1, . . . , yk−3}
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and relation ∼ such that:
• a ∼ ai , for all i ;
• a1 ∼ a∞;
• ai ∼ bi , for all i ;
• ai ∼ bi−1, for 2≤ i <∞;
• b ∼ bi , for all i ;
• yi ∼ x , for all i and all x ∈ X \ {yi }.
The topology on X is the (k + 1)-compactification topology induced by the map
f : X→ X given by f (a)= a, f (b)= b, f (ai )= a∞ for all i , f (bi )= b∞ for all i ,
and f (yi )= yi for all i .

Now let 〈Y ; FG, g〉 be a model of the universal theory of 〈X; ∼, f 〉, so that g is a
(k + 1)-compactification of Y and 〈Y ; FG, g〉 satisfies the following sentences.

(1) (∀x, y) x FG y −→ g(x) FG g(y) or g(x)≈ g(y);
(2) (∀x, y, z, w) (x FG y & g(x)≈ g(y)& z FG w & g(z)≈ g(w))−→

{x, y} ≈ {z, w};
(3) (∀x, z1, . . . , zk+1) (x FG z1 & x FG z2 & · · · & x FG zk+1)−→

(g(x)≈ x or zi ≈ z j for some i, j ≤ k with i 6= j).

Note that (2) says that there is at most one set {x, y} such that x FG y and g(x)= g(y),
and (3) says that if g(x) 6= x then x is related to at most k other vertices.

To show that FG is closed in Y 2, let u, v ∈ Y with u 6FG v. We must find an open set
U 3 (u, v) such that U ∩ FG =∅. We need the following observation, which follows
from the fact that g is idempotent:

(∗) if u ∈ g(Y ), then g−1(u) ∩ g(Y )= {u}. Hence, if u ∈ g(Y ) and F is finite, then
g−1(u) \ F is open.

Case 1. u, v /∈ g(Y ). Then {u} × {v} is open and disjoint from FG.

Case 2. u, v ∈ g(Y ).

Case 2a. u = v. Let W be the set of all pairs (x, y) such that x FG y and
g(x)= g(y). Clearly (g−1(u)× g−1(u)) \W contains (u, v) and is disjoint from FG.
Also, by (2), we have |W | ≤ 2, so (g−1(u)× g−1(u)) \W is open by (∗).

Case 2b. u 6= v. The set g−1(u)× g−1(v) contains (u, v) and by (∗) it is open.
Also, by (1) it is disjoint from FG.

Case 3. u ∈ g(Y ) and v /∈ g(Y ). Then {v} is open. Let X = {x | x FG v}. Now
g(v) 6= v, so by (3), we have |X | ≤ k. Therefore by (∗), the set g−1(u) \ X is open. So
(g−1(u) \ X)× {v} is open, contains (u, v), and is disjoint from FG.

We have shown that FG is closed. Hence RCT(S(Kk)) is not first-order axiomatizable
by Theorem 4.6. 2
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