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1. Introduction. G. Gratzer in [4] proved that any Boolean algebra B is affine
complete, i.e. for every n =: 1, every function f :B"-*B preserving the congruences of B
is algebraic. Various generalizations of this result have been obtained (see [7]-[ll] and
[2], [3]).

In [2], R. Beazer characterized affine complete Stone algebras having a smallest
dense element and in [3] gave an analogous result for double Stone algebras with a
nonempty bounded core. For both these characterizations, a result of G. Gratzer is
pertinent: a bounded distributive lattice is affine complete iff it has no proper Boolean
interval (see [5]).

In this paper we show that any distributive p-algebra with a finite number of dense
elements is affine complete if and only if it is a Boolean algebra.

2. Preliminaries. A (distributive) p-algebra is an algebra L = (L: v, A, *, 0, 1)
where (L; v, A , 0 , 1) is a bounded (distributive) lattice and * is a unary operation of
pseudocomplementation, i.e. x £ a* iff S A a = 0. It is well known that the class 8ftw of all
distributive p -algebras is a variety and that the lattice of subvarieties of 9bm is a chain

S 8 _ , c % cz % c . . . c S8 n <= . . . <= 3ba

of type co + 1, where SLl5 58O> S8i are the classes of all trivial, Boolean and Stone
algebras, respectively.

In any distributive p-algebra L, an element a e L is called closed, if a = a**. The
set B(L) = {a e L; a = a**} of closed elements of L is a Boolean algebra in which the join
is defined by aVb = (a v by*. Moreover, fl(L) is a Boolean subalgebra of L iff L is a
Stone algebra. An element d e L is said to be dense if d* = 0. The set Z)(L) =
{d e L: d* = 0} of dense elements of L is a filter of L. For these and other properties of
distributive p -algebras as well as the standard rules of computation we refer the reader to
[1] or [6].

For a distributive p-algebra L, the clone A(L) of all algebraic functions of L is the
smallest set of functions on L containing the constant functions and the projections and
closed under the operations v, A and *. A function f:Ln-+L preserves the congruences
of L if for any congruence 8 of L and any elements au bl,...,an,bn,ai = bi{6),
/ = 1 , . . . , n yields / (a , , . . . , an) =f(bx,. . . , bn)(8). Following [12], a distributive p-
algebra L is said to be affine complete if all finitary functions preserving congruences of L
are algebraic. In [2], it is proved that a Stone algebra L with a bounded filter D(L) is
affine complete iff D(L) is an affine complete distributive lattice, i.e. no proper interval of
D(L) is a Boolean algebra.

3. Affine completeness. In this section we show that for any distributive p-algebra
L with a bounded filter D(L), the affine completeness of L yields the affine completeness
of D(L), partially generalizing the main result from [2]. Then the finiteness of D(L)
ensures that L is a Boolean algebra.

First we represent every algebraic function on a distributive p-algebra in a canonical
form.
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Let L be any distributive p-algebra. For n > l , we define the following n-ary
algebraic functions of L:

A ( x i , . . . , x n ) = V <x(h, ••• , ' „ ) ( •* 1 v * ? ) ' " • . . . (xn v x*)'«, ( 1 )
ie{0,2>"

B(xlt...,xn)=\/l V A-(y , , . . . , y B W' . . .* i 1 ") ( /ea>), (2)
, = 1 Ve{l,2}" /

where x°,x\ x2 denote S,x*,x**, respectively, xy is an abbreviation for x A y, V denotes
the join in the Boolean algebra fi(L), a(it,.. . ,in) are coefficients equal to 0 or 1,
A0i> • • • Jn) a r e elements of B(V), and the joins V?e{o,2}n m L and Vy-e{1 2)n in fl(L) are
taken over all n-tuples f = (/,, . . . , ; „ ) e {0, 2}" and all n-tuples / = (; , , . . . ,;„) € {1, 2}"
respectively. As usual, to is the set of all nonnegative integers. We shall further denote an
n-tuple (*!,. . . ,*n)byjc.

LEMMA. Any n-ary algebraic function f(xu. . . ,xn) on a distributive p-algebra L
can be represented in the form

m

f{x) = A (M*) v B,(x) v q) (me co), (*)

where At(x) and Bt(x) are algebraic functions of the form (1) and (2), respectively, and
c, e L.

Proof We show that the set A of all n-ary functions of the form (*) contains all
n-ary constant functions, projections and is closed under the operations v , A, and *.
From (1) and (2) we see that

A(x) = B(x) = 0, if a(T) = p,(j) = 0 for i = 1,. . . , / and all I e {0,2}", j e {1,2}".

(i) For every constant function ca(xu- • • ,xn) = a, a e L, it is sufficient to choose a
function f(x) e A in which m = 1, A^x) = Bx(x) = 0 and Cj = a. Then f(x) = a = ca(x).

(ii) We show that any n-ary projection p"k{xx,. . . , xn) = xk belongs to A. Again, from
(1), (2) we have:

* T /• • \ P for 4 = 0, ii = 2, ]±k
= xkvx*k, if flr(ilf... , !„)= . ' (3)

10 otherwise.

, •. * * . <• * , ^ f 1 for / = 1 and jk = 2~ , •. * * . <• * , ^ f 1 for / 1 and jk 2

« W - x j \ " « / , . . . . , ; . ) = {„ otherwise (4)
Indeed, in the latter case /?(;£) = JC£* A VJ6{II2}»-I X{1 . . . x'Hz\x'HX\. . . x'z = xt* A 1,

using the well known fact that V7e{12>» x\'. . . x% = 1 (cf. [1, Lemma 18, p. 92]). Hence,
we can choose the parameters of a function f(x) in A such that

and put c1 = c2 = 0. Then we have

f(x) = (xk v xt) Axp=xk =pn
k(x).

(iii) For every function f(x) eA the function f*(x) = (f(x))* e A. Indeed, using the
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identities

JC* =JC***, (JC Ay)* = x*Vy*, (x v y)* = x* Ay*,

we can represent the function/(f)* as an algebraic function of the Boolean algebra B(L),
and by a well known result in the theory of Boolean algebras such functions can be
represented in the form

hence also in the form (2) and thus in the form (*).
(iv) We show that A is closed under v. Let

/,(*)= A (A(*)vB,(*)vc,),
1 = 1

f2(x) = A (A',(x) v Bj(x) v cj)

be any n-ary functions belonging to A. Then

/,(*) V/2(JC) = A A (AM v B,(x) v c, v A}(x) v Bj(x) v cj).
1 = 1 y = l

O b v i o u s l y ,

Ai(x) v Aj(x) = V ( * / ( ' i > • • • . ' « ) v aj{iu ..., in))(x{ v x f ) ' > . . . (xn v * * ) ' " ,
Ie{0,2}"

which is an algebraic function of the form (1). Evidently, Bt{x) v Bj(x) is of the form (2).
Hence, fi(x) V/2(JC) is an algebraic function of the form (*).

(v) Clearly, A is closed under the operation A.
The proof is complete.

THEOREM. Let L be a distributive p-algebra with a smallest dense element. IfLis affine
complete then D(L) is an affine complete distributive lattice.

Proof. Let L be affine complete and d be the smallest dense element of L. Let
fD: D(L)n—> D(L) be a function preserving the (lattice) congruences of D(L). We define a
function / : L" -> L as follows:

/ ( * , , . . . ,xn)=fD{xx vd,. . . ,xn vrf).

Obviously, / f D(L)" =fD and / preserves the congruences of L. By hypothesis, / is an
algebraic function, so it can be represented in the form (*) by the Lemma. We show that
the function fD is an algebraic function of the lattice D(L).

(i) A,(x) \ D(L)n = V ar.-0'i, • • • ,M • • • *t where JC? = *„ xj = 1 and
/e{0.2}"

oi(/i, • • • ./«) e {0> !}"• Thus> Atf) \ D(L)n = a^x) is an algebraic function of the lattice
D(L).
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(ii) Bt{x) \ D(L)n = V A(2, • • • , 2), since x] = 0, xj = 1 for x, e D(L). Obviously,
/ = 1

fl,-(jt) f D(L)" is a constant function identically equal to ft, for some b, e L. Then for
x e D(L)n we get

m

fo(x) = A («,•(*) v ft, v c,).

[ m "I m

A («,(*) v b,,-v c,) v d = A K(*) v (6, v c, v </)].
Hence, fD is an algebraic function of the lattice D(L).

COROLLARY. Let L be a distributive p-algebra with a finite number of dense elements.
Then L is affine complete if and only if L is a Boolean algebra.

Proof. If L is affine complete then Z?(L) is an affine complete distributive lattice by
the Theorem. Thus |£>(L)| = 1 since D(L) is finite. Hence, L is a Boolean algebra. The
converse is obvious.

EXAMPLE. Let B be a Boolean algebra. We adjoin a new unit 1. Then we obtain a
distributive p-algebra L having exactly two dense elements 1 and 1. By the previous
result, L is not affine complete.
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