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1. GENERAL TECHNIQUE

The object of our study is

S — (So, S\, ..., Sff) = (Sn)o<n<N (1)

where each Sn is a m-dimensional stochastic (real valued) vector, i.e.

Sn = ( S i 1 \ s i 2 \ . . . ,5W) (2)
denned on a probability space (fi, T, P) and adapted to a filtration
(^rn)o<n<N w i t n ^o being the cr-algebra consisting of all null sets and their
complements. In this paper we interpret Si, as the value of some financial
asset k at time n.

Remark: If the asset generates dividends or coupon payments, think of 5«
as to include these payments (cum dividend process). Think of dividends as
being reinvested immediately at the ex-dividend price.

Definition 1

(a) A sequence of random vectors

where
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is called a trading strategy. Since our time horizon ends at time N we must
always have fi^ = 0.
The interpretation is obvious: &„ stands for the number of shares of asset
k you hold in the time interval [n,n + 1). You must choose #„ at time n.

(b) The sequence of random variables

(4)

where 8% := ("Qn-\ — dn)Sn stands for the payment stream generated by -d
(set tf_i = 0 ).

Remarks:
i) Observe that dn, Sn are stochastic vectors, 8n is a simple random variable

and (•dn-x — i?«)5n has to be read as a scalar product. The best way to
think of the above is to consider Sn as the unit portfolio of all assets (you
hold one unit of each cum dividend asset), •&„ your trading strategy for
the period [n, n + 1) and •dnSn the value (at time n) of the portfolio held.

ii) Many papers in finance study the stream of discounted gains

^ ( Z V I S I - S A - I ) , n = \,2,...,N, (5)

for some discount factors Do, D\, ..., DN \ (where Z>n_i(> 0) is adapted
to Tn-\) which may be sometimes more convenient. In particular each
strategy then can be understood as an I to-integral.

Our definition of payment stream needs no external definition of discount
rates and is more natural from a cashflow point of view. Indeed, just think of
an investor who at one time point takes a (long or short) position in the
assets of his choice among S^ (k = 1, 2, ..., m). He may change positions at
every time point and has the obligation to liquidate all positions at time N
(hence i?# = 0). Typically one of the assets is a bank account earning
predictable interest. The latter means that the interest rate for the period
[k — 1, A;) is Tk-\— measurable, for all A: > 1.

Definition 2

1. Denote
(a) by M := {6^; "& a trading strategy] the set of all payment streams

generated by trading strategies,
(b) by K := {X; X > 0} the set of all non-negative stochastic payment

stream,
(c) by 0 the null payment stream and all equivalent payment streams.

2. We say that the trading strategy d provides an arbitrage opportunity if

6d = ( $ , tf, ..., 6%,) > 0, and ^ 0 with positive probability.
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3. The absence of arbitrage opportunities then means

MHK = {0}. (6)

We call (6) the No Arbitrage Condition (NAC).

Remarks:
i) Observe that we have defined no arbitrage based on the definition

i.e. S°n is the n-th component of the payment stream.
ii) If for some predictable discounts Dn^\ (n — 1, 2, ..., N) we use the

alternative definition

i.e. S'l is the stream of discounted gains, the condition (6) is called the
Alternative No Arbitrage Condition (ANAC).

iii) The equivalence of the two no arbitrage conditions is discussed in the
Appendix, from which one also can see the equivalence to the
traditional definition of self-financing strategy with positive terminal
value.

The basic idea of the whole pricing philosophy in finance consists in the
construction of a linear functional Q which strictly "separates" the payment
streams obtained from trading strategies. To be more precise we want to
prove the following theorem, which for the moment is stated loosely. Indeed,
the particular spaces where (Sn)0<n<N and (I?«)0<«<JV

 t a ^ e v a r u e s a r e n ° t yet
defined.

Theorem 1 The NAC (6) is a necessary and sufficient condition for the
existence of a strictly positive linear functional Q which is zero for all elements
ofM.

Remarks:
i) Because of its importance in finance the theorem above is usually

referred to as the Fundamental Theorem of Asset Pricing.
ii) The necessity of (6) follows immediately. The difficult part to prove is: if

(6) holds, then there exists a strictly positive linear functional Q such
that Q{S°) = 0 for all 8° e M.

iii) Observe that under the NAC (6) one can prove by convexity arguments
alone the existence of a nontrivial, non-negative functional H such that
H{S8) = 0 for all 6^ e M. Unfortunately this is of no help. In order to
prove the existence of a strictly positive linear functional Q such that
Q(8°) = 0 for all 6° e M we must introduce a topology in our linear
space.
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iv) It should be noted that many texts in finance treat the Fundamental
Theorem of Asset Pricing in a finite probability space. Most of the
proofs used in this context are - unfortunately - not valid for infinite
probability spaces.

2. TECHNIQUE IN A NORMED LINEAR SPACE

Let LP(P,W", J7) be the space of real valued random vectors taking values
in Rm, measurable with respect to T and with integrable /?-norm with
respect to P. For the sequel we assume the following conditions
(Cl) t > B e L 2 ( P , r , f n ) , 0<n<N,
(C2) Sn € L°°(P,Rm, Fn), 0<n<N.

Remarks:
(Cl) can be accepted as a reasonable restriction of strategies,
(C2) is discussed in Schachermayer [7] who shows that it can be assumed

without loss of generality.

Under (Cl) and (C2) the payment streams 6^ are elements of
L2(P,JRN+l, FN), briefly denoted by L2

N+V Observe that L?N+l is the space
of stochastic (N + l)-vectors with finite second moments for all components.
We do not require that the n-th component be ^-measurable. If we identify
vectors which are almost surely equal, then L2

N+] is a Hilbert space with
scalar product

N

(7)(X,Y) = Y,
_k=0

We now prove that under (Cl) and (C2) Theorem 1 holds.

Proof of necessity of NAC:
Assume Q exists. If we have 6^ > 0 and different from zero with positive
probability, then Q{8°) > 0 contradicting that Q is zero on M. Hence (6) is
necessary.

Proof of sufficiency of NAC, part 1:
We follow the reasoning developed by Schachermayer [7] who proved the
following Lemma:

Lemma 1 (Schachermayer's Lemma) If MnK — {0}, then also
M — KC\K = {0} where the closure is taken by L2 limits.

Remark: Schachermayer proved the lemma for the Alternative No Arbitrage
Condition (based on a stream of discounted gains). His proof can however be
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adapted to the No Arbitrage Condition (based on a stream of cash payments)
as used by us. The basic argument in the proof of the lemma is as follows:

If for 0 < n < N

where ^Kn > 0 for all n and r, then one can find a trading strategy
( ) 2L2

N+X such that

Yn < ((OO)TVI - ioo)dn)Sn for all n, 0 < n < N.

But, if Y = {YQ, YU ..., Yn, ..., YN) ^ 0, (°°)i? would allow arbitrage.
The convergence is in L2

N+X to start with, but by passing to an
appropriate subsequence one can argue by almost sure convergence.

Proof of sufficiency of NAC, part 2:
Take any strictly positive linear functional L and define for every e > 0

K£ = Knlx eL?N+x; L{X)>e and \\X\\ < - j

which is weakly compact and does not contain 0. We can hence separate
strictly M - K and K£; i.e. we have for some well chosen continuous linear
functional Q£ : L

2
N+i —>R,

Q£{Y)<QE(Xe) fora\\Y£M-K and all X e Ke.

As M — K is a cone, we must have

QE(Y) < 0 and hence Q£(tf>) - Q£{X) < 0 for all X e K, S° e M.

As this implies QE{8d) = 0, it follows that

Qe{X) > 0 for all X eK,

Q£{X) > 0 for all X e K£.

Take now au > 0 and e^ J, 0 such that YlT=i ak\\Qek\\ < °° and define

Q{X) :=Y,akQ£k{X). (8)
k=\

We then have

= 0 for all <S'? e M,

Q(X) > 0 for all X{± 0) e K.

The last line holds since every such X lies in some K£k for k sufficiently
large. •
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3. RIESZ REPRESENTATION IN L2
N+1

Because L2
N+l is a Hilbert space, any continuous linear functional Q defined

on the whole L2
N+l can be represented as a scalar product. We formulate this

fact as:

Theorem 2 Let Q be a strictly positive linear functional on L2
N+].

(a) There is a unique element <p G L2
N+X such that for all X € L2

N+X we have

Q(x) = EJT
k=0

(9)

(b) For all k = 0, 1, 2, ..., N we have <pk > 0.

(c) i) If Q is restricted to the subspace of componentwise adapted vectors
X £ Ljj+l, then there is an adapted version of ip (i.e. ipn is
Fn-measurable for every 0 < n < N) - call it <p^ - such that

Q(X) =E Y^ip[s)Xk (10)

for all X, adapted vectors in L2
N+].

ii) This ipW is unique, once Q is given.

Terminology: Following Duffie [3] we call ip a Deflator and ip^ a Standard
Deflator.

Remark: The interested reader should also note the links between price
deflator and the supermartingale potential representation as given by Rogers [6].

Proof:
(a) Follows immediately from the Riesz Representation Theorem since

L2
N+l is a Hilbert space.

(b) Since Q is a strictly positive linear functional.

(c) i) Define <p^ =E{<pic\3
rk\- Then for Xk, which is ^-measurable, we have

E[<pkXk] = E[E[tpkXk\Fk]] =
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ii) Suppose that we have two Standard Deflators <p^ and (p^. For any k
define A^ = ipk — <pk which is ^-measurable. For 0 < n < N we
must have

hence £[A|] = 0, whence Cpk = ipk with probability 1. D

Convention: As we shall in the following apply Q to vectors X with adapted
components only, we work from now on with the Standard Version <p® of
the Deflator (and drop the superscript s for convenience).

4. THE MARTINGALE PROPERTY

Let S, Q, ip be as in the previous section and consider the value process of
asset /,

c(/) _ (vC) o(') o(') e(')

The following theorem establishes the equivalence of Theorem 1 (together
with its Riesz representation as expressed by Theorem 2) with the so called
"Martingale property".

Theorem 3 Given a strictly linear functional Q satisfying Theorem 1 and its
representing (p = (</?i, (p2, ..., <PN)> then we have that
(a) (<pkSi ) is a martingale (with respect to the original probability

V /0<k<N

measure as assumed in Section 2) for all I = 1,2, .., m.
(b) Conversely any strictly positive ip for which (a) holds defines a Q

satisfying Theorem 1.

Proof:
(a) Assume existence of Q with deflator <p. Choose for fixed k

$k-\ = Ifi<-\ f° r some Fk-\ £ Fk-i, h k fixed,
•d^ = 0 f°r aH other values of j , g.

(For any Borel set A, I A denotes the indicator function" of A). This
defines a trading strategy 6 which buys exactly one unit of asset / at time
k — 1 provided Fk-\ occurs and, provided the unit has been bought, sells
the unit at time k. Hence

"k-l = —"Jfc-i^i-i) "k = ^k *Fk-\
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are the only components of 8s which differ from zero. Q{S°) = 0 can be
written as

f
JFk

(11)

Because equality (11) holds for all Fk-\ 6 Tk-\ a n d V/fc-i'S'i-.i ls Fk-\-
measurable, we must have

,- c(') I c \ < k < N
^ J j r \Jk 1 ) 1 ^ A . ^ 1 V <

which is the martingale property,

(b) For the converse look at

U=i

We have to check that Q{Sa) = 0 for all 8° e M. Rewrite

N
17

k=o L/=i

The second equality follows from summation by parts. Since
ifjSj — <£,•_] S/_i represent the increments of a m-dimensional martingale
the assertion Q{Sd) — 0 follows immediately. •

Remarks:
i) Note that the deflator 99 is universal, it turns all our asset price processes

into martingales.
ii) Observe that also the (standard) deflator Lpk is ^-measurable (but not

Tk-\-measurable) which in many applications in finance is considered to
be a handicap (as it cannot be observed at time k — 1) and hence gives
rise to a change of measure. We are not pursuing this line of thought
here. It will turn out to be of advantage to work with the original
probability measure.

iii) Observe also that the probability distribution of the deflator ip together
with the filtration (Jrn)n<M can be understood as a summary
characterizing the financiaF model. The task of modelling financial
markets can hence be understood as the choice of a filtration and of the
proper deflator and its probability distribution.
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5. THE BASIC PROBLEM

Suppose that you know the original probability law P of the stream of

random vectors S = (So, Si, ..., SN) where Sk = (S^, Sk
2\ ..., S{

k
m)). How

do you find a deflator <p — ((po, <p\, ..., <PN) such that lipkSk''j is a

martingale for every asset /?
(a) This problem represents the standard situation, whenever one wants to

model asset prices in a given market.
(b) The problem is mostly formulated in a different language using a

changed measure (which absorbs the deflator). As already mentioned we
do not follow this route here.

6. THE ESSCHER TRANSFORM

The Esscher Transform always allows us to find a deflator which achieves
the martingale property for all assets / = 1,2, ..., m. We work here more
conveniently with the so called span-deflator

Y = (YU Y2, . . , YN) where Yk:=-^, k=\,2,...,N.

We also use the span-discounts

Dk-x:=E[Yk\Fk-x}.

Observe that Dk-\ > 0 and At - i is Fk-\-measurable, hence represents the
discount in [k - 1,k) known at time k—\.
We assume that Dk-\, k = 1, 2, ..., N, are externally given. This is for
instance the case if at each time k — 1 there is a possibility to invest in an
asset (or in a portfolio) that pays exactly 1 at each time k. The random
variable Dk-\ is then the price of this asset (portfolio) at time k—\.

Theorem 4 If for all k and all (Tk- \ -measurable) ak-1 = {ak~ l > ak-1' • • • > ak-\)
we have that ak-\(Dk-\Sk — Sk-i) either vanishes with probability 1 or has
both signs with positive probability, then there exists a value of ak-x such that

\r(nk-\) n e

achieves the martingale probability, namely

E[Y(
k
nk ' ' ^ l ^ - i ] - S £ , M all / = 1, 2, ..., m. (13)
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You can think of (12) as changing the original measure P into />(Q*-') as
follows:

S^ < x\rk.x\ (14)

which leads for appropriate ak-\ to the martingale condition

4 - 1 f o r a11 ' = 1 . 2 , -.., m. (15)

The equivalence of (15) and (13) follows immediately from (12).

Definition 3
(a) i^0*-') as given by (14) is called the Esscher Transform of P with

coefficient ak-i-
(b) In view of the equivalence of (13) and (15) we also say that the span-

deflator Yj^k given by (12) achieves the Esscher Transform with
coefficient ak-\.

Remarks:
i) Observe that you can apply the Esscher Transform either to Sk or the

increment Sk — S/t-i- The resulting span-deflator YJc
ak~ turns out to be

the same.
ii) The condition in Theorem 4 is exactly the Alternative No Arbitrage

Condition (ANAC) based on the payment streams 6a with
S% = an^\{Dn^.\Sn — Sn-\), n = 1, 2, ..., N, as explained in Section 1.

Proof of Theorem 4: Look at the target function

Tk_l(a) = lnE\ie
o{D>-'Sk-s^\fk-]} , a 6 IRm. (16)

Assuming existence and finiteness of 7\_i(a) in the neighbourhood of
some a, we can see that the if-condition of the theorem guarantees that
the minimum of 7)t_i is assumed at an interior point a*. As Tk-\ (a*) — min,
we must have

d t [ ( i 4 i ) i ] __

or

= s f , for 1=1,2, ..., m, (18)
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which is exactly the martingale condition (13). Observe that the argument is
valid for all discounts which satisfy the condition in Theorem 4. At this point
it should also be clear that the log in defining Tk-\ (a) is introduced to ensure
that the derivative produces the Esscher Transform. •

The mathematics still to be done is proving that a* can be chosen to
be Tk~\-measurable. This can be done e.g. by the reasoning as found in
Rogers [5]. Hence the Esscher Transform with coefficient a.k-\ = ot*Dk-\
solves our basic problem denned in Section 5.

Remark: The Esscher Transform can also be used for explicit calculation of
prices. The reader who is interested in an explicit derivation of the Black-
Schoies formula using the Esscher Transform, should consult Gerber and
Shiu [4].

7. WHY ESSCHER TRANSFORM?

From Section 6 it is evident that Esscher Transforms are convenient. Are
there further reasons for choosing this transform? The following economical
reasoning may be an additional argument.

In this section there is a change of notation; we interpret (So, Si, ..., SN)
as a sequence of random variables Sk- Until now the vector
Sk = {Sk\ Sk

2\ ..., Sk
m^) was interpreted as values of the m assets in the

market. Now you should think of Sk as the total aggregate market value of
all assets, i.e. their unit values multiplied by their volumes

where Vk\ denotes the volume of asset / i n [k-l,k). The discounted
increase in [k — 1, k)

m

Wk = Afc-iS* - Sk-\ = Y, VJc-i(Dk-\S^ ~ 4 - i ) (20)
/=i

is the object of our study in this section. For simplicity we assume that for
all /, Vk\ are chosen at time k — 1 and remain constant in [k — 1, k), hence in
particular all Vk_x are Tk-\-measurable.

We want to study the Pareto optimal allocation of Wk- This justifies our
simplifying assumption that Sk, Sk-i are only one dimensional random
variables. It is well known that Pareto optimal allocations are always
functions of the aggregate value (see e.g. Borch [1]).
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In order to distribute Wk in a Pareto optimal way among M investors,
we characterize each investor j by his utility function

u y ( * ) = - ( l - e - * * ) , j=\,2,...,M. (21)

We hence suppose that you may describe the preferences of each investor j
by an exponential utility function, where jj is the risk aversion of investor j ,
or equivalently, - is the risk tolerance of investor /. The feasibility of this
assumption is discussed at the end of this section.

A Pareto optimal allocation

can be obtained as a Price Equilibrium. Denote by Price[Wk], the Tk-\-
measurable functional assigning a price to the random variable Wk held
during the time interval [k — \,k\. A Price Equilibrium is achieved if at time
k — 1 the following conditions are satisfied.

(a) For each j

E[uj(w^ - Price[fF«])|^_,] (22)

achieves a maximum among all possible random variables Wk £ L2.

(b) The allocation has to satisfy

M

E < = -̂
If we explicitly define the price functional by the span-deflator Yk,
we have

Price\w

then Borch's condition (see Borch [1]) must be satisfied, i.e.

u'j(Wf -E\YkWjp|^_,]) = CjYk for all j - 1, 2, ..., M, (23)

where C, must be Fk-i-measurable for ally = 1, 2, ..., M. Using the
exponential form of the utility functions, u'^x) = e~ljX, (23) turns into
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with Aj positive and Tk-\-measurable. Hence by taking logarithms

Wf l ^ l y

Now sum over j and use the abbreviation - := Yl!h=\ ~> t r i e s u m °f a ^
risk tolerance units. Then you find — Wk = Bk + -In Yk or
—7fF/t = 75^ + In Yjt, where Bk is ^ _ i -measurable. The condition
ElYkl^k-i] = Z>jt—1 allows you to get the value of Bk and

Discussion:
i) We have found an economic reason to use the Esscher Transform.

Indeed with our interpretation of Sk in this section we get an
economic interpretation for the Esscher parameter. We have

. hence

ii) The economic argument has led us to the Esscher Transform with span-
deflator

with K*_! = (v(
k% \f}v ..., V(

k
n
v ..., VJZty. Hence we have found the

Esscher parameter

On the other hand we have found in Section 6

otk-x = Dk-\a*

where a* minimizes Tk-\{a) as defined by (16). Comparing the two
results we must have

a* = -7Vk-i . (25)

Hence we can interpret the value a* which minimizes Tk-i(a) as follows:
(a) a* is proportional to the volume vector, and
(b) the (negative) proportionality factor for all components is 7 where -

equals the sum of the risk tolerance units of all investors.
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iii) Obviously this conclusion is only correct for an economy where all
investors have an exponential utility. Nevertheless you should note that
the risk aversion 7, of each investor is allowed to change over time. So, if
changes of values from one period to the next are not extremely large,
one can think of the exponential utility functions as approximations to
general (risk averse) utility functions. For an argument to understand
this approximation we refer to Buhlmann [2]. It would be interesting to
learn how the relation (25) compares with practical observations.

APPENDIX: EQUIVALENCE OF NO ARBITRAGE CONDITION AND ALTERNATIVE NO

ARBITRAGE CONDITION

We have two possibilities to define arbitrage opportunities.

First case: With the strategy 1? = ($0, $ 1; •••, $N) we define the payment stream

^ = (K)o<n<N with % := (tfn_i - tin)SH.

An arbitrage opportunity is given by a strategy d such that 8° does not
vanish and 8® > 0 for n = 1,2, ..., N.

Alternative case: The same definition is applied to the stream of discounted
gains

^ = (Oo<n<JV w i t h ^ : = ^ - i ( A , - i S n - £ „ _ , )

for some given discounts Do, D\, ..., DN \.
For both cases we refer to an arbitrage opportunity in [0, N\.

Definition 4 We say that there is an arbitrage opportunity in [n — 1, n] if there
is a $ of the form (0, 0, ..., 0, i?n_i, 0, ..., 0) which allows arbitrage in [0, N].
More explicitly if there is a -&n_\ such that,
in the first case:

where at least one of the two left sides does not vanish;
in the alternative case:

where the left side does not vanish.

Lemma 2 In both cases there is an arbitrage opportunity in [0, N] if and only if
there is an arbitrage opportunity in one of the intervals [n — \, n], n = \,2,..., N.
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Proof: We only have to show that the existence of an arbitrage opportunity
in [0, N] implies existence of an arbitrage opportunity in one of the intervals
[n—\,n];n = 1, 2, ..., N. In the alternative case the statement holds by
definition, which leaves us with the first case. Assume arbitrage in [0, N] in
this case, hence there exists a $ such that

> 0,

> 0,

where not all the left sides may vanish.
We proceed by induction of the interval length [0, N]:
(a) If i?Ar-iSV-i < 0 on A with P[A] ̂  0 take dN-\ =dN-\IA which

achieves arbitrage in [N — l,N].
(b) If i9yv_i5;v-i = 0 we have either arbitrage in [N — 1,/V] if tfjv-iSV ^ 0 or

arbitrage in [0,7V - 1] if $N-\SN = 0.
(c) If #Ar_iS;v-i > 0 (not vanishing), then also T^N^SN-I > 0 (not vanish-

ing), hence we have arbitrage in [0, N — 1].
From (a), (b), (c) it follows that we have either arbitrage in [N — l,N] or
arbitrage in [0, N - 1] which proves recursion from N to N - 1. •

Theorem 5 No Alternative Arbitrage implies No Arbitrage.

Proof: We show that any arbitrage opportunity allows to find an alternative
opportunity. Because of Lemma 2 we can restrict ourselves to arbitrage
opportunities in a unit interval [n - 1,«], e.g. [0, 1]. An arbitrage opportunity
means a strategy d such that -tfcSb > 0, ̂ o^i > 0, with not both left sides
vanishing. This implies for arbitrary discount Da > 0

- So) > 0,

not vanishing, hence an alternative arbitrage opportunity. •

Theorem 6 No Arbitrage implies No Alternative Arbitrage with conveniently
chosen discounts under the conditions used for proving Theorem 1.

Proof: The main point of the proof is that we need the Fundamental
Theorem of Asset Pricing. We argue again only in the interval [0, 1]. The
Fundamental Theorem of Asset Pricing guarantees the existence of the span-
deflator Y\ such that

- S{
o
l] for all / = 1, 2 , ..., m.
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Hence I&QE[YIS\\J7O] = tioSo for all $o which are .^-measurable

which implies by the mean value theorem that either ^(DQSI — So) = 0 or
#o(A)<S'i - So) has both signs with probability 1 for the Do = E[Y\ \Fo}- This
is exactly the Alternative No Arbitrage Condition. •
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