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THE F2-COHOMOLOGY RINGS OF Sol3-MANIFOLDS
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Abstract

We compute the rings H∗(N; F2) for N a closed Sol3-manifold, and then determine the Borsuk–Ulam
indices BU(N, φ) with φ , 0 in H1(N; F2).
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The Borsuk–Ulam theorem states that any continuous function f : S n→ Rn takes the
same value at some antipodal pair of points. This may be put in a broader context
as follows. Let N be an n-manifold and let Nφ be the double cover associated to an
epimorphism φ : π→ Z/2Z. Let tφ be the covering involution. The Borsuk–Ulam index
BU(N, φ) is the maximal value of k such that for all maps f : Nφ→ R

k there is an x ∈
Nφ with f (x) = f (tφ(x)). Then the Borsuk–Ulam theorem is equivalent to the assertion
that BU(RPn, α) = n, where α : π1(RPn)→ Z/2Z is the canonical epimorphism.

In low dimensions this invariant may be determined cohomologically, and is known
for many pairs (N, φ), with N a Seifert fibred 3-manifold, including all those with
geometry E3, S3, S2 × E1,Nil3 orH2 × E1 [3, 1]. Here we shall determine this invariant
for all such pairs with N a closed Sol3-manifold. This follows easily once we know the
mod-2 cohomology rings of such manifolds. We compute these using Poincaré duality
and elementary properties of cup product in the low-degree cohomology of groups.
(Our approach can also be applied to E3- and Nil3-manifolds.)

1. Sol3-manifolds and their groups

Let M be a closed Sol3-manifold. Then π = π1(M) has a unique maximal abelian
normal subgroup

√
π, which is free abelian of rank two. (This subgroup is in fact the

Hirsch–Plotkin radical [8] of π.) The quotient π/
√
π is virtually Z (that is, has two

ends), and so is an extension of Z or D∞ = Z/2Z ∗ Z/2Z by a finite normal subgroup.
The preimage of this finite normal subgroup is torsion-free, and so is either Z2 or
Z o−1 Z (the Klein bottle group). Since Out(Z o−1 Z) is finite and π is not virtually
abelian, this preimage must be

√
π. Hence π/

√
π � Z or D∞.
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Suppose first that π/
√
π � Z. Then M is the mapping torus of a self-

homeomorphism of T = S 1 × S 1, and π � Z2 oΘ Z, where Θ =
(a c
b d

)
∈ GL(2, Z). Thus

π has a presentation

〈t, x, y | txt−1 = xayb, tyt−1 = xcyd, xy = yx〉.

Let ε = det Θ = ±1 and τ = tr Θ = a + d. Then M is orientable if and only if ε = 1, in
which case |τ| > 2, since π is not virtually nilpotent. Let θ be a root of det(Θ − XI2) =

X2 − τX + ε, the characteristic polynomial of Θ. Then θ is a unit in the quadratic
number field Q[θ], and

√
π is isomorphic to an ideal I in the ring Z[θ]. (The latter may

not be the full ring of integers in Q[θ]!)
There is a converse. Let [I] denote the isomorphism class of the ideal I. The Galois

involution of the quadratic field Q[θ] acts on the ring Z[θ], since θ̄ = τ − θ ∈ Z[θ], and
hence acts on the set of ideal classes.

T 1.1. Let α be a quadratic algebraic unit which is not a root of unity, and
let J be a nonzero ideal in Z[α]. Let A be the automorphism of J � Z2 given by left
multiplication by α, and let π = J oA Z. Then:

(1) π is a Sol3-group;
(2) the groups corresponding to two such pairs (α, J) and (β, K) are isomorphic if

and only if either β = α or α−1 and [K] = [J], or β = ᾱ or ᾱ−1 and [K] = [J];
(3) given α, the number of isomorphism classes of such groups π is finite.

P. The group π is the fundamental group of the mapping torus of a self-
homeomorphism of T . If α is not a root of unity then this is a Sol3-manifold.

Let
π = 〈J, t | t jt−1 = α j ∀ j ∈ J〉

and
π̃ = 〈k, t̃ | t̃ j̃t−1 = βk ∀k ∈ K〉

be two such groups. An isomorphism f : π � π̃ restricts to an isomorphism fJ : J =
√
π �
√
π̃ = K. Hence it induces an isomorphism π/

√
π � π̃/

√
π̃, and so f (t) = t̃ηk, for

some η = ±1 and k ∈ K. We may assume that f (t) = t̃, after replacing β by β−1, if
necessary. The characteristic polynomials of the automorphism of J and K induced
by conjugation by t and t̃ (respectively) must then agree. Thus either β = α and fJ is
an isomorphism of Z[α]-modules, or β = ᾱ and fJ : J→ K is an an isomorphism of
Z[α]-modules. The converse is similarly straightforward.

The group π is determined up to a finite ambiguity by α (equivalently, by the
polynomial t2 − τt + ε), since Z[α] has finitely many ideal classes, by the Jordan–
Zassenhaus theorem. �

If π/
√
π � D∞ then π � B ∗T C, where B and C are torsion-free, T � Z2 and [B :

T ] = [C : T ] = 2. Thus M is the union of two twisted I-bundles. Since β1(π; Q) = 0
and χ(M) = 0, M is orientable, and so B and C must be copies of the Klein bottle
group. Hence M is the union of two copies of the mapping cylinder of the double
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cover of the Klein bottle. The double cover of M corresponding to the preimage of
√

D∞ in π is a mapping torus.
In particular, π has a presentation

〈u, v, y, z | uyu−1 = y−1, vzv−1 = z−1, yz = zy, v2 = u2ayb, z = u2cyd〉,

where
(a c
b d

)
∈ GL(2, Z) corresponds to the identification of

√
C with T =

√
B. This

presentation simplifies immediately to

〈u, v, y | uyu−1 = y−1, v2 = u2ayb, vu2cydv−1 = u−2cy−d〉.

Hence πab � Z/4cZ ⊕ Z/4Z if b is odd, and πab � Z/4cZ ⊕ (Z/2Z)2 if b is even. Let
x = u2. Then conjugation by uv acts on 〈x, y〉 � Z2 via Ψ = η

(ad+bc 2ac
2bd ad+bc

)
, where

η = ad − bc = ±1. Hence det Ψ = 1, Ψ ≡ I2 (mod 2) and tr Ψ ≡ 2 (mod 4). (These
conditions are not independent, for if Ψ = I2 + 2N then tr Ψ = 2 + 2 tr N and det Ψ ≡

1 + 2 tr N (mod 4), so tr N is even and tr Ψ ≡ 2 (mod 4) if also det Ψ = 1.) Moreover,
abcd , 0, since M is not flat.

Conversely, any
(a c
b d

)
∈ GL(2, Z) with abcd , 0 gives rise to such a Sol3-manifold,

for then |trΨ| = 2|ad + bc| ≥ 6. Moreover, suppose that P =
(2k+1 2m

2n 2k+1
)
∈ SL(2, Z),

where mn , 0. Then k(k + 1) = mn, and so we may write m = m1m2 and n = n1n2,
with k = m1n1 and k + 1 = m2n2. The Sol3-rational homology sphere corresponding to( m1 −m2
−n2 n1

)
∈ GL(2, Z) is doubly covered by the mapping torus associated to P.

The above matrix calculations show that a quadratic unit α is realised by such a
Sol3-manifold if and only if αᾱ = 1, |α + ᾱ| > 2 and α + ᾱ ≡ 2 (mod 4). Determining
the possible ideal classes represented by

√
π is more complicated.

T 1.2. Let α be a quadratic unit which is not a root of unity, and let J be a
nonzero ideal in Z[α]. Let A be the automorphism of J � Z2 given by left multiplication
by α, and let κ = J oA Z. Then κ is a subgroup of index 2 in a Sol3-group π with π/

√
π �

D∞ if and only if αᾱ = 1, α ≡ 1 (mod 2 Z[α]) and there are λ, µ , 0 ∈ Z[α] and v, w ∈ J
such that λJ = µJ, λv̄ = µv and λw̄ = ᾱµw, but λ̄v , λ̄ j + µ̄ j̄ and λ̄w , λ̄ j + αµ̄ j̄ for any
j ∈ J.

Given α, the number of isomorphism classes of such groups π is finite.

P. Suppose that π = 〈κ, u〉with π/
√
π � D∞ and [π : κ] = 2, and that t ∈ κ generates

κ (mod
√
π). Then t−1 is conjugate to t, and so A and A−1 have the same characteristic

polynomial. Since tr A , 0, αᾱ = det A = 1.
Let B( j) = u ju−1 and f ( j) = B( j), for all j ∈ J. Then B is an isomorphism of

groups and f : J→ J is an isomorphism of Z[α]-modules. Let v = u2 and w = (tu)2.
Then B2 = (AB)2 = I, Bv = v and ABw = w. Since A has infinite order, B , I, and
so det B = −1. Moreover, B ≡ AB ≡ I2 (mod 2), since 〈J, u〉 and 〈J, tu〉 � π1(Kb).
Therefore A ≡ I2 (mod 2) also, and so α ≡ 1 (mod 2 Z[α]).

Since π is torsion-free, (u j)2 and (tu j)2 are nontrivial, for all j ∈ J. Equivalently,
v < (I + B)J and w < (I + AB)J.
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The isomorphism f extends to an automorphism fQ = idQ ⊗ f of Q[α], as a vector
space over itself. We may write fQ(1) = µ/λ, for some nonzero λ, µ ∈ Z[α]. (Note
that µµ̄/λλ̄ = det fQ = − det B = 1.) Then λ f ( j) = µ j, for all j ∈ J, since Z[α] is an
integral domain. The linear conditions on v and w become λv̄ = µv and λw̄ = ᾱµw,
while λ̄v , λ̄ j + µ̄ j̄ and λ̄w , λ̄ j + αµ̄ j̄ for any j ∈ J.

Conversely, suppose that these conditions hold. Let B j = (µ/λ) j, for all j ∈ J, and
let π be the group with presentation

〈κ, u | u2 = v, utu−1 = t−1wv−1, u ju−1 = B j ∀ j ∈ J〉.

Then π is torsion-free and has κ as a subgroup of index 2. and so is a Sol3-group.
Clearly π/

√
κ � D∞, and so

√
κ ≤
√
π ≤ κ. Hence

√
π =
√
κ and π/

√
π � D∞.

Since κ has trivial centre the extensions of Z/2Z by κ are determined by the image
in Out(κ) of the action of Z/2Z on κ. Since there are finitely many groups κ realising
α, by Theorem 1.1, and Out(κ) is finite, by [5, Theorem 8.10], there are finitely many
such groups π. �

In particular, the ideal class [J] must be fixed by the Galois involution. For example,
if αᾱ = 1 and α ≡ 1 (mod 2 Z[α]) then J = Z[α], v = 1 and w = α satisfy the other
conditions, with λ = µ = 1.

Note that if α is a quadratic unit such that αᾱ = 1 and δ = α − 1 ∈ 2Z[α] then
δ̄ = −α−1δ ∈ 2Z[α] also, and so α + ᾱ = 2 − δδ̄ ≡ 2 (mod 4). (This is equivalent to an
earlier matrix argument.)

Every subgroup of finite index in π can be generated by three elements, while
proper subgroups of infinite index need at most two generators. If a nontrivial normal
subgroup N has infinite index in π then it has Hirsch length at most 2. Hence it is
abelian, and so has finite index in

√
π. Thus proper quotients of a Sol3-group π either

have two ends or are finite.

2. The mod-2 cohomology ring

Martins has constructed an explicit free resolution P∗→ Z of the augmentation
Z[π]-module, and a diagonal approximation ∆ : P∗→ P∗ ⊗ P∗, which he used to
compute the integral and mod-p cohomology rings for semidirect products π � Z2 oΘ

Z with Θ ∈ GL(2, Z) [6].
We shall take a somewhat different approach, first computing cup products into

H2(π; F2) and then using Poincaré duality. Our strategy in determing relations in
H2(π; F2) shall be to use restrictions to subgroups (such as

√
π) and epimorphisms

to quotient groups (such as π/
√
π or small finite 2-groups), with known cohomology

rings.
We shall usually write H∗(X) and H∗(X) for the homology and cohomology of a

space or group X, with coefficients F2, and denote the cup product by juxtaposition.
In each case considered below, the given generators for a group G represent a basis
for H1(G), and we shall use the corresponding Kronecker dual bases for H1(G) =

Hom(H1(G), F2).
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L 2.1. Let w = w1(π). Then wαβ = α2β + αβ2, for all α, β ∈ H1(π). In particular,
if w = 0 then α2β = αβ2 and (α + β)3 = α3 + β3.

P. The first assertion follows from the Wu relation S q1z = wz, for all z ∈ Hn−1(X),
which holds for any PDn-complex X. The second follows easily. �

If G is a group let Xn(G) = 〈gn | g ∈G〉 be the subgroup generated by all nth powers.
The next lemma is a refinement of [4, Theorem 2] (which is restated here as part (1)
of the lemma).

L 2.2. Let G be a group, and ρ, φ, ψ ∈ H1(G). Let K = Ker(ρ) and L = K ∩
Ker( φ). Then:

(1) the kernel of cup product from the symmetric product �2H1(G) to H2(G) is the
dual of X2(G)/X4(G)[G, X2(G)];

(2) the canonical projections induce isomorphisms

H1(G/X2(K)) � H1(G/X2(L)) � H1(G/X4(G)) � H1(G);

(3) ρφ = 0 in H2(G) if and only if ρφ = 0 in H2(G/X2(K));
(4) φ2 = ρφ + ρψ in H2(G) if and only if φ2 = ρφ + ρψ in H2(G/X2(L)).

P. Part (1) is [4, Theorem 2], while part (2) is clear.
If φψ = 0 in H2(G) then there is a 1-cochain F : G→ F2 such that φ(g)ψ(h) =

δF(g, h) = F(gh) + F(g) + F(h), for all g, h ∈G. Part (3) follows easily, since F
restricts to a homomorphism on K, and is constant on cosets of X2(K).

Part (4) is similar. �

In many of the cases considered here, the coefficients in the linear relations
determining the kernel of cup product may be found by restricting to 2-generator
subgroups. However, this is not always enough to determine the triple products in
H3(π).

L 2.3. Let {T, Y} be the basis for H1(D8) corresponding to the presentation
D8 = 〈t, y | t2 = y4 = 1, tyt−1 = y−1〉. Then (T + Y)Y = 0 in H2(D8).

P. Let D∞ have the presentation 〈u, v | u2 = v2 = 1〉, and let U, V be the dual basis
for H1(D∞). Then H∗(D∞) = F2[U, V]/(UV). Let f : D∞→ D8 be the epimorphism
given by f (u) = t and f (v) = ty. Then f induces an isomorphism D∞/X4(D∞) � D8,
so H2( f ) is injective. Since f ∗U = T + Y and f ∗V = Y , we see that (T + Y)Y = 0 in
H2(D8). �

Let E be the ‘almost extraspecial’ 2-group with presentation

〈t, u, v | t2 = 1, u2 = v2, tut−1 = u−1, tv = vt, uv = vu〉.

L 2.4. Let {T, U, V} be the basis for H1(E) corresponding to the above
presentation. Then TU + U2 + V2 = 0 in H2(E).
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P. Since X2(E) � Z/2Z, the kernel of cup product from �2H1(G) to H2(G) has
dimension one [4]. Thus there is a unique nontrivial linear relation aT 2 + bU2 +

cV2 + dTU + eTV + f UV = 0 in H2(E). The coefficients can be determined by
restriction to the subgroups 〈t〉 � Z/4Z, 〈t, u〉 � D8, 〈t, v〉 � Z/4Z ⊕ Z/2Z, and 〈u, v〉 �
Z/4Z ⊕ Z/2Z. �

3. Mapping tori

Suppose that π � Z2 oΘ Z, where Θ =
(a c
b d

)
∈ GL(2, Z). Let ε = ad − bc = ±1

and τ = a + d. Let ∆1 = det(Θ − I2) = 1 − τ + ε and ∆2 = (a − 1, b, c, d − 1) be the
elementary divisors of Θ − I2. Then ∆2

2 divides ∆1, and

πab � Z ⊕ Z/(∆1/∆2)Z ⊕ Z/∆2Z.

Let β = β1(π; F2). Then 1 ≤ β ≤ 3, and β2(π; F2) = β, by Poincaré duality. Let
ρ : π→ Z/2Z be the unique epimorphism which factors through π/

√
π � Z. If π is

nonorientable then ρ = w1(M), and K = π+, the maximal orientable subgroup of π.
(1) If τ is odd then ∆1 is odd and πab � Z ⊕ odd. In this case ρ is the unique

epimorphism from π to Z/2Z, and

H∗(π) � F2[ρ, Ξ]/(ρ2, Ξ2),

where Ξ has degree two, by Poincaré duality.
(2) If τ ≡ ε − 1 (mod 4) then πab � Z ⊕ Z/2Z ⊕ odd, and β = 2. Hence H1(π) =

〈ρ, σ〉, where σ does not factor through Z/4Z. Moreover, if G = π/X4(π) then X2(G) �
(Z/2Z)2 is central in G. Thus ρ2 = ρσ = 0, by Lemma 2.2, while σ2 , 0. Hence
H2(π) = 〈σ2, Ξ〉, for some Ξ of degree two. Duality then implies that σ3 = ρΞ , 0.
We may assume also that σΞ = 0, and so

H∗(π) � F2[ρ, σ, Ξ]/(ρ2, ρσ, σΞ, ρΞ + σ3, Ξ2).

(3) If τ ≡ ε + 1 (mod 4) and ∆2 is odd then πab � Z ⊕ Z/2kZ ⊕ odd, for some k ≥ 2.
Hence H1(π) = 〈ρ, σ〉, where σ2 = ρ2 = 0. Since ρσ = 0, by the nondegeneracy of
Poincaré duality,

H∗(π) � F2[ρ, σ, Ξ,Ω]/(ρ2, ρσ, σ2, ρΩ, σΞ, ρΞ + σΩ, Ξ2,Ω2, ΞΩ),

where Ξ and Ω have degree two.
In all the remaining cases β = 3. For if τ ≡ ε + 1 (mod 4) and ∆2 is even then a and

d are odd and b and c are even. Hence ∆1 = 2kq and ∆2 = 2`q′, where 0 < ` ≤ k/2 and
q, q′ are odd. In this case πab � Z ⊕ Z/2k−`Z ⊕ Z/2`Z ⊕ odd, so the images of {t, x, y}
form a basis for H1(π). Let {ρ, σ, ψ} be the dual basis, so that

σ(x) = ψ(y) = 1 and σ(t) = σ(y) = ψ(t) = ψ(x) = 0.

If G = π/X4(π) then X2(G) = 〈t2, x2, y2〉 � (Z/2Z)3 is central in G, so the kernel of
cup product from �2H1(π) to H2(π) has rank three. It then follows from Poincaré
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duality that H∗(π) is generated as a ring by H1(π). In each case, ρσ2 = ρρσ = 0 and
ρψ2 = ρρψ = 0, by Lemma 2.1. Hence ρσψ , 0, by the nondegeneracy of Poincaré
duality. It then follows easily that ρσ, ρψ and σψ are linearly independent, and so
form a basis for H2(π). We may write

σ2 = mρσ + nρψ + pσψ and ψ2 = qρσ + rρψ + sσψ,

for some m, . . . , s. On restricting to
√
π, we see that p = s = 0, since σ2|√π = ψ2|√π = 0

and ρ|√π = 0, while σψ|√π , 0. Since ρσ2 = ρ2σ = ρψ2 = ρ2ψ = 0, taking cup products
with σ and ψ gives

σ3 = nρσψ, σ2ψ = mρσψ, ψ3 = qρσψ and σψ2 = rρσψ.

(4) If ` ≥ 2 then a ≡ d ≡ 1 and b, c ≡ 0 (mod 4), so ε ≡ 1 (mod 4) also, that is, π is
orientable. In this case σ2 = ψ2 = ρ2 = 0, and so

H∗(π) � F2[ρ, σ, ψ]/(ρ2, σ2, ψ2).

Suppose now that ` = 1.
(5) If π is orientable and ∆1 ≡ 0 (mod 8) we may assume that one of σ, ψ or σ + ψ

factors through Z/4Z. Thus either σ2 = 0, ψ2 = 0 or σ2 = ψ2. We may assume that
σ2 , 0. Then ρσ2 = ρ2σ = 0 and ψσ2 = ψ2σ = 0, and so σ3 , 0, by the nonsingularity
of Poincaré duality. Hence

H∗(π) � F2[ρ, σ, ψ]/(ρ2, ρψ + σ2, ψ2).

In this case we see that φ3 = 0 if and only if φ2 = 0.
If π is orientable and ∆1 ≡ 4 (mod 8) then τ ≡ 6 (mod 8) and a, d are odd, and so

a ≡ d (mod 4). In this case ψ2 , 0 and (σ + ψ)2 , 0 also, and so σ2 = mρσ + nρψ
and ψ2 = qρσ + rρψ are linearly independent. Hence mr + nq = 1 in F2. Since w = 0,
σ2ψ = σψ2 and so m = r.

(6) Suppose first that a ≡ 1 (mod 4). Then bc ≡ 4 (mod 8), and so b ≡ c ≡ 2 (mod 4).
Let Lφ = Ker(ρ) ∩ Ker(φ). Then π/X2(Lφ) has a presentation

〈t, x, y | t4 = x4 = y2 = 1, tx = xt, tyt−1 = x2y, xy = yx〉.

Let J = 〈t, x〉 � (Z/4Z)2. Then σ2|J = ρψ|J = 0, while ρσ|J , 0. Applying part (3) of
Lemma 2.2, we see that m = 0, and so σ2 = ρψ and ψ2 = ρσ. (Note, however, that
Lemma 2.2 does not assert that the relation ψ2 = qρσ + rρψ also holds in π/X2(Lφ)!
For this, we could use Lψ = Ker(ρ) ∩ Ker(ψ) instead.) Hence

H∗(π) � F2[ρ, σ, ψ]/(ρ2, ρψ + σ2, ρσ + ψ2).

In particular, σ3 = ψ3 = (ρ + σ)3 = (ρ + ψ)3 , 0.
If a ≡ −1 (mod 4) then bc ≡ 0 (mod 8). If, say, b ≡ 2 (mod 4) (so c ≡ 0 (mod 4))

then the change of basis x′ = x, y′ = xy reduces this case to the one just considered. In
terms of the given basis,

H∗(π) � F2[ρ, σ, ψ]/(ρ2, ρσ + σ2, ρψ + σ2 + ψ2).
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In this case σ3 , 0, but ψ3 = 0. A similar result holds if b ≡ 0 (mod 4) and c ≡
2 (mod 4).

(7) If, however, a ≡ −1 (mod 4) and b ≡ c ≡ 0 (mod 4) then π/X4(π) has a
presentation

〈t, x, y | t4 = x4 = y4 = 1, txt−1 = x−1, tyt−1 = y−1, xy = yx〉.

In this case J = 〈t, x〉 is nonabelian, and σ2|J , 0, while ρψ|J = 0. Hence we must have
m = r = 1. It is clear from the symmetry of the presentation for π/X4(π) that we must
also have n = q in this case, and so n = q = 0. Thus

H∗(π) � F2[ρ, σ, ψ]/(ρ2, ρσ + σ2, ρψ + ψ2).

We now find that φ3 = 0 for all φ ∈ H1(π).
If ` = 1 and M is nonorientable then a and d are odd, and ∆1 = −a − d ≡ 0 (mod 4).

In this case ρ = w1(M), and so σ2ψ + σψ2 = ρσψ , 0, by Lemma 2.1. After swapping
x and y, if necessary, we may assume that a ≡ 1 (mod 4).

(8) If bc ≡ 0 (mod 8) then, after a further change of basis of the form x′ = x, y′ = xy
or x′ = xy, y′ = y, if necessary, we may assume that b ≡ c ≡ 0 (mod 4). Then σ2 = 0,
and π/〈〈t2, x, y4〉〉 � D8, so (ρ + ψ)ψ = 0 also. Hence

H∗(π) � F2[ρ, σ, ψ]/(ρ2, σ2, ρψ + ψ2).

In particular, (σ + ψ)3 = (ρ + σ + ψ)3 , 0, and all other classes have cube 0. In terms
of the given bases, the other cases are as follows.

If b ≡ 0 and c ≡ 2 (mod 4) then

H∗(π) � F2[ρ, σ, ψ]/(ρ2, σ2 + ψ2, ρψ + ψ2, σ2ψ).

Here σ3 = (ρ + σ)3 , 0 and all other classes have cube 0.
If b ≡ 2 and c ≡ 0 (mod 4) then

H∗(π) � F2[ρ, σ, ψ]/(ρ2, σ2, ψ2 + ρσ + ρψ).

Here ψ3 = (ρ + ψ)3 , 0 and all other classes have cube 0.
(9) If b ≡ c ≡ 2 (mod 4) then σ2 and ψ2 are linearly independent. There are three

distinct epimorphisms from π to the almost extraspecial group E, given by f (x) = u−1v,
f (y) = u; g(x) = v, g(y) = uv−1; and h(x) = v, h(y) = u. Using these epimorphisms to
pull back the relation given in Lemma 2.3, we find that

H∗(π) � F2[ρ, σ, ψ]/(ρ2, σ2 + ρψ, ψ2 + ρσ + ρψ).

In particular, every epimorphism φ , ρ has nonzero cube.
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4. Unions of twisted I-bundles

Suppose that π/
√
π � D∞. Then π is orientable, and has a presentation

〈u, v, y | uyu−1 = y−1, v2 = u2ayb, vu2cydv−1 = u−2cy−d〉,

where ad − bc = ±1 and abcd , 0. Let B = 〈u, y〉 and C = 〈v, u2cyd〉.
If b is odd then πab � Z/4cZ ⊕ Z/4Z, where the summands are generated by u and

u−av, respectively. Let U(u) = V(v) = 1, U(v) = a and V(u) = 0. Then

H∗(π) � F2[U, V, Ξ,Ω]/(U2, UV, V2, UΞ + VΩ, Ξ2,Ω2, ΞΩ),

where Ξ and Ω have degree two.
If b is even then πab � Z/4cZ ⊕ (Z/2Z)2 and the images of u, v and y represent a

basis for H1(π). Let {U, V, Y} ∈ H1(π) be the dual basis. Then U2, V2 and Y2 are all
nonzero, but W = U + V lifts to a homomorphism from π to Z/4Z, and so W2 = 0.
Hence U2 = V2. Since U and V are induced from classes in H1(D∞) we have UV = 0.
We also have UY |B = Y2|B and VY |C = Y2|C , while U |C , V |B, U2|B and V2|C are all 0.

Suppose that pU2 + qY2 + rUY + sVY = 0 in H2(π). On restricting to the
subgroups B and C, we find that q + r = q + s = 0. Since U2 , 0 we must have q =

r = s = 1. Multiplying by U and V , we find that UY2 + U2Y = 0 and VY2 + V2Y = 0.
Poincaré duality for π now implies that {U2, Y2, UY} is a basis for H2(π), while UY2 =

U2Y = VY2 generates H3(π). We see also that U3 = U2V = UV2 = V3 = (U + V)3 = 0,
while (U + Y)3 = (V + Y)3 = (U + V + Y)3 = Y3.

If b ≡ 0 (mod 4) then G = π/〈〈uv, u2, y4〉〉 � D8. Hence (U + V + Y)Y = 0 in H3(π).
It follows easily that Y3 = 0, and so all cubes are 0 in H3(π).

If b ≡ 2 (mod 4) then π/〈〈u2, (uv)2, v4, y4〉〉 has a presentation

〈u, v, y | u2 = (uv)2 = v4 = 1, uyu−1 = vyv−1 = y−1, v2 = y2〉.

Hence there is an epimorphism f : π→ E, given by f (u) = t, f (v) = u and f (y) =

u−1t−1v. Since f ∗T = U + Y , f ∗U = V + Y , f ∗V = Y and UV = 0, it follows from
Lemma 2.4 that UY + VY + V2 + Y2 = 0 in H2(π). Multiplying by Y , we find that
UY2 + Y3 = 0 and so Y3 , 0. In this case, only the cubes induced from H∗(π/

√
π) are

zero.

5. The Borsuk–Ulam index

We may identify an epimorphism φ with a nonzero class in H1(N; F2). Then
BU(N, φ) = 1 if and only if φ lifts to an integral class Φ ∈ H1(N; Z), while BU(N, φ) =

n if and only if φn , 0 in Hn(N; F2). In general, 1 ≤ BU(N, φ) ≤ n. See [3]. When
n = 3 the remaining possibility is that BU(M, φ) = 2 if and only if φ2 = 0 but φ is not
the reduction of an integral class.

Suppose first that π/
√
π � Z. Then the following results are immediate from

Section 3.
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(1) If ρ : π→ Z/2Z is the unique epimorphism which factors through π/
√
π � Z then

BU(M, ρ) = 1.
(2) If τ ≡ ε − 1 (mod 4) then BU(M, φ) = 3 for all φ , ρ.
(3) If τ ≡ ε + 1 (mod 4) and either ∆2 is odd or a ≡ d ≡ 1 (mod 4) and b, c are

divisible by 4, then BU(M, φ) = 2 for all φ , ρ.
(4) If ε = 1, ∆1 ≡ 0 (mod 8) and ∆2 ≡ 2 (mod 4) then BU(M, φ) = 2 for the

two epimorphisms φ , ρ such that φ2 = 0 (that is, that factor through Z/4Z) and
BU(M, φ) = 3 for the four such that φ2 , 0.

(5) If ε = 1, ∆1 ≡ 4 (mod 8) and Θ ≡ −I2 (mod 4) then BU(M, φ) = 2 for all φ , ρ.
(6) If ε = 1 and ∆1 ≡ 4 (mod 8), but Θ . −I2 (mod 4), then BU(M, φ) = 2 for the two

epimorphisms φ , ρ such that φ2 = 0 and BU(M, φ) = 3 for the four such that φ2 , 0.
(7) If ε = −1, τ ≡ 0 (mod 4), ∆2 ≡ 2 (mod 4) and bc ≡ 0 (mod 8) then BU(M, φ) = 2

for the four epimorphisms φ , ρ such that φ3 = 0 and BU(M, φ) = 3 for the two such
that φ3 , 0.

(8) If ε = −1, τ ≡ 0 (mod 4), ∆2 ≡ 2 (mod 4) and bc ≡ 4 (mod 8) then BU(M, φ) = 3
for all φ , ρ.

Suppose now that π/
√
π � D∞. Then the following results are immediate from

Section 4.
(9) If πab � Z/4cZ ⊕ Z/4Z then BU(M, φ) = 2 for all φ.
(10) If πab � Z/4cZ ⊕ (Z/2Z)2 and b ≡ 0 (mod 4) then BU(M, φ) = 2 for all φ.
(11) If πab � Z/4cZ ⊕ (Z/2Z)2 and b ≡ 2 (mod 4) then BU(M, φ) = 2 for

epimorphisms φ which factor through π/
√
π, while BU(M, φ) = 3 otherwise.

6. Other geometries

We remark finally that similar arguments may be used to determine the F2-
cohomology rings and Borsuk–Ulam invariants for pairs (N, φ) with N a closed E3-
or Nil3-manifold. These manifolds are all Seifert fibred over flat 2-orbifolds. Since
they have been covered in [1], we shall confine ourselves to some brief observations.

The ten closed flat 3-manifolds may be easily treated individually. The only one
admitting a class φ with φ3 , 0 has group G4, with holonomy Z/4Z and abelianisation
Z ⊕ Z/2Z. Thus H1(π) = 〈T, X〉, where T 2 = 0 and X2 , 0. We may deduce that
T X = 0 also, by mapping G4 onto D8. It follows easily that

H∗(G4) � F2[T, X,Ω]/(T 2, T X, XΩ, TΩ + X3,Ω2),

where Ω has degree two. (Thus X3 = (T + X)3 , 0. These classes correspond to the
two epimorphisms without integral lifts.)

The possible Seifert bases B of closed Nil3-manifolds are the seven flat 2-orbifolds
with no reflector curves: B = T , Kb, S (2, 2, 2, 2), S (2, 4, 4), S (2, 3, 6), S (3, 3, 3) or
P(2, 2). Let β = πorb

1 (B) be the orbifold fundamental group of the base. Then πab is
an extension of βab by a finite cyclic group Z/qZ, if the base is orientable (B , Kb or
P(2, 2)), and by Z/(2, q)Z otherwise. The ring H∗(π) depends only on the base B and
the residue of q (mod 4).
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If B = T or Kb then π � Z2 oΘ Z, for some Θ ∈ GL(2, Z). These are in fact the
cases requiring most effort. In all other cases πab is finite, and the projection of π
onto β induces an isomorphism H1(π) � H1(β). When B = S (2, 3, 6) or S (3, 3, 3) this
group is cyclic. (In particular, such Nil3-manifolds are neither mapping tori nor unions
of twisted I-bundles.) When B = S (2, 4, 4) we have π/X4(π) � β/X4(β) �G4/X4(G4).
The cases of S (2, 2, 2, 2) and P(2, 2) are related to those of the flat 3-manifolds G2 and
B4, respectively.

The Borsuk–Ulam theorem and its applications and extensions are treated in detail
in the book [7].
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