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THE MOMENTS OF THE DISCOUNTED LOSS
AND THE DISCOUNTED DIVIDENDS FOR A
SPECTRALLY NEGATIVE LÉVY RISK PROCESS
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Abstract

Consider a spectrally negative risk process where, on ruin, the deficit is immediately paid,
and the process restarts from 0. When the process reaches a threshold b, all the surplus
above b is paid as dividend. Applying the theory of exit times for a spectrally negative
Lévy process and its reflection at the maximum and at the minimum, we obtain recursive
formulae for the following moments. (i) The moments of the discounted loss until the
process reaches b. This is equivalent to the moments of the discounted dividends in the
dual model under the barrier strategy. (ii) The moments of the discounted loss for models
with and without a dividend barrier for the infinite horizon. (iii) The moments of the
discounted dividends for the infinite horizon.
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1. Introduction

The expected discounted dividends paid to shareholders is one of the performance measures
in risk theory. The most studied strategy is the barrier strategy with parameter b. Under this
strategy, no dividends are paid while the surplus is below b, and all the overflow above b is
paid as dividend. Dividends are paid until ruin occurs, i.e. until the first time that the surplus
is negative. De Finetti (1957) introduced the dividend model. When the risk process evolves
as a random walk in discrete time with steps ±1, he proved that the barrier strategy is optimal.
The optimality of this strategy was also proved when the risk process evolves as a Brownian
motion with drift, see Asmussen and Taksar (1997) and Asmussen et al. (2000), and for the
Cramer–Lundberg risk process with exponentially distributed claims, see Gerber (1969) and
also Schmidli (2008, Chapter 2).

In the recent years researchers have modelled the surplus of an insurance company as a
spectrally negative Lévy process, i.e. a process with stationary independent increments and
without positive jumps. In the sequel, we will call this model the primal model. For this
model, Avram et al. (2007) proved the optimality of the barrier strategy under some conditions
on the generator of the Lévy process. For more explicit conditions on the Lévy measure, see
Loeffen (2008).

Another model that has been studied lately is the dual risk model. In this model the surplus
of a company is described as a Lévy process without negative jumps. This model is appropriate
to describe the surplus of companies that specialize in inventions and discoveries. The barrier
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strategy for dividends in the dual model was considered byAvanzi et al. (2007) for the compound
Poisson dual model, and by Avanzi and Gerber (2008) for the compound Poisson dual model
perturbed by diffusion.

Renaud and Zhou (2007) and Kyprianou and Palmowski (2007) obtained the moments of the
discounted dividends until ruin, when the dividends are paid according to the barrier strategy.
Renaud and Zhou’s proof is based on some basic ideas from fluctuation theory, while Kyprianou
and Palmowski’s proof is based on excursion theory. They derived an elegant recursive formula
for the moments using recursion.

Lately, Cheung and Drekic (2008) considered the dual model, where gains arrive according
to a Poisson process. They obtained differential equations for the nth moment as a function of
lower-order moments and obtained an explicit solution when the gains have mixed exponential
distribution.

Since under the barrier strategy ruin occurs with probability 1, Dickson and Waters (2004)
considered models where the shareholders receive dividends according to the barrier strategy
but also pay the deficit whenever ruin occurs. Dickson and Waters obtained the expected
discounted dividends and the expected discounted deficit paid for the compound Poisson risk
model. Avram et al. (2007) considered such a model but for spectrally negative Lévy risk
processes. Kulenko and Schmidli (2008) and Avram et al. (2007) studied the optimal dividend
policy when the deficit is recovered whenever ruin occurs. Kulenko and Schmidli (2008)
considered the compound Poisson risk model and proved the optimality of the barrier strategy
under some conditions. Avram et al. (2007) proved under some conditions the optimality of
the barrier strategy for general spectrally negative Lévy processes; see also Loeffen (2008).

Avanzi et al. (2011) considered the dual model with capital injection, and proved the
optimality of the barrier strategy in the dual model in the case of a compound Poisson risk
process with exponentially distributed jumps. Bayrakatar et al. (2013) proved the optimality
of the barrier strategy for a generally Lévy process without negative jumps.

Consider the spectrally negative Lévy process X with dividend barrier b and recoveries.
Assume that at time 0 the surplus is u. Consider the discount dividend payments and the
discounted deficit payments. Consider the dual model b − X. Clearly, the dividends in the
primal model with initial reserve u are the same as the deficit payments in the dual model with
initial reserve b− u, and the deficit payments in the primal model are the same as the dividend
payments in the dual model.

This paper is motivated by Renaud and Zhou (2007) and Kyprianou and Palmowski (2007).
Our objective is to obtain recursive formulae for the moments of the discounted deficit payment
and the discounted dividend payments for the spectrally negative Lévy risk model with dividend
payments and recoveries.

The outline of this paper is as follows. In the next section we present some results on the
exit times for a spectrally negative Lévy process and its reflection at the infimum and at the
supremum. In Section 3 we obtain a recursive formula for the expected discounted loss until the
process reaches level b. In Section 4 we consider the expected discounted loss for the infinite
horizon for a risk process where dividends are paid according to the barrier strategy and the
deficit is always recovered. In Section 5 we obtain a recursive formula for the moments of
the discounted dividends for the model where the dividends are paid according to the barrier
strategy and the deficit is recovered.
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2. Preliminaries

2.1. Spectrally negative Lévy risk processes

Let (Xt , t ≥ 0) be a spectrally negative Lévy risk process. Throughout this paper, we denote
by Px , Ex the probability or expectation given that X0 = x. When X0 = 0, we simply write
P,E. The Laplace transform of Xt exists for θ ≥ 0 and is given by

E[eθXt ] = etψ(θ), (2.1)

where

ψ(θ) = dθ + 1

2
σ 2θ2 +

∫ 0

−∞
(eθz − 1 − θz 1(−1,0)(z))�(dz), (2.2)

and 1A(z) is the indicator function of a set A, and it is 1 if z ∈ A and 0 otherwise. We have
d ∈ R, σ ≥ 0, and � is a σ -finite measure on (−∞, 0), where

∫ 0

−∞
(1 ∧ z2)�(dz) < ∞.

We exclude processes with monotone paths. When the process has a bounded variation its
Laplace exponent is

ψ(θ) = cθ +
∫ 0

−∞
(eθz − 1)�(dz),

where c = d − ∫ 0
−1 x�(dx), ψ(θ) is strictly convex, and limθ→∞ ψ(θ) = ∞. Thus, there

exists a function �(θ) = sup{x ≥ 0 : ψ(x) = θ}, and �(ψ(θ)) = θ, θ ≥ 0.

2.2. Exit times

Let
T +
b = inf{t ≥ 0 : Xt ≥ b}, T −

a = inf{t ≥ 0 : Xt ≤ a},
where the convention is inf ∅ = ∞. For a < b, let

T(a,b) = min(T +
b , T

−
a ) = inf{t : Xt /∈ (a, b)}.

For q ≥ 0, there exists a unique continuous functionW(q) called a q-scale function defined by
its Laplace transform as

∫ ∞

0
e−θxW(q)(x) dx = 1

ψ(θ)− q
, θ > �(q).

For q = 0, we writeW(0) = W , whereW is called the scale function. It holds thatW(q)(x) = 0
for x < 0.

Another function related to the scale function is Z(q) given by

Z(q)(x) = 1 + q

∫ x

0
W(q)(y) dy. (2.3)

The following properties of W(q)(x) will be useful.

(P1) W(q)(0) = 0 if and only if X has unbounded variation. Otherwise, it is equal to 1/c,
where c > 0 is the drift; see Kyprianou (2006, Lemma 8.6).
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(P2) The left and right derivatives of W(q)(x) exist for x ∈ (0,∞) and are denoted by W(q)′
−

and W(q)′
+ , respectively; see Kyprianou (2006, Lemma 8.2) and Kuznetsov et al. (2012,

Lemma 2.3). If the paths of X are of unbounded variation, or when �(−∞,−x) is
continuous, then the derivative W(q)′(x) exists and it is continuous for all x > 0; see
Kuznetsov et al. (2012, Lemma 2.3).

(P3) It holds that

W
(q)′
+ (0) = lim

ε→0+
W(q)(ε)−W(q)(0)

ε
.

When σ > 0, W(q)′
+ (0) = 2/σ 2; see Pistorius (2004, Lemma 4) and Kuznetsov et al.

(2012, Lemma 3.2).

(P4) When σ > 0,

lim
ε→0

W
(q)′
+ (ε) = W

(q)′
+ (0) = 2

σ 2 .

This result can be proved directly by applying (P3), or by taking the limit as x → 0 of
Kusnetsov et al. (2012, Equation (65)).

The solution of the one-sided and two-sided exit problems for a spectrally negative Lévy
process is given in terms of the scale function.

Theorem 2.1. (Kyprianou (2006, Theorem 8.1.)) (i) For 0 < x ≤ b and q ≥ 0,

Ex[e−qT +
b 1{T +

b <T
−
0 }] = W(q)(x)

W(q)(b)
. (2.4)

(ii) For 0 < x ≤ b and q ≥ 0,

Ex[e−qT −
0 1{T −

0 <T
+
b }] = Z(q)(x)− Z(q)(b)

W(q)(x)

W(q)(b)
. (2.5)

Scale functions are used to describe the so-called potential measure associated with the
one-sided or two-sided exit problems. For x, y ∈ [0, b], we are interested in

U(q)(x, dy) =
∫ ∞

0
e−qt

Px(Xt ∈ dy, T(0,b) > t) dt. (2.6)

Here, U(q)(x, dy) (with U(0) = U ) is the q-potential measure of a spectrally negative Lévy
process Xt killed on exiting [0, b], where x, y ∈ [0, b].
Theorem 2.2. (Suprun (1976) and Bertoin (1997)) It holds that U(q)(x, dy) has a density
u(q)(x, y) given by

u(q)(x, y) = W(q)(x)W(q)(b − y)

W(q)(b)
−W(q)(x − y). (2.7)

For u < x < b and σ > 0, the following equality holds (see, e.g. Mijatović and Pistorius
(2012, Equation (2.6))):

Ex[e−qT(u,b) 1{XT(u,b)=u}] = σ 2

2

(
W
(q)′
+ (x − u)− W

(q)′
+ (b − u)

W(q)(b − u)
W(q)(x − u)

)
. (2.8)
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In the sequel, we apply also the results related to the reflected Lévy processes at the infimum
and at the supremum. Let St = sup0≤s≤t (Xs ∨ 0) and let It = inf0≤s≤t (Xt ∧ 0), where
c∨d = max(c, d) and c∧d = min(c, d). Let Y = X− I and Ŷ = S−X denote, respectively,
the Lévy process reflected at its past infimum I , and at its past supremum S. Let τb be the first
entrance time of Y to (b,∞), and τ̂b the first entrance time of Ŷ to (b,∞), b > 0. The Laplace
transform of τb and τ̂b can be expressed in terms of W(q) and Z(q) as

Ex[e−qτb ] = Z(q)(x)

Z(q)(b)
, (2.9)

E−x[e−qτ̂b ] = Z(q)(b − x)− qW(q)(b − x)
W(q)(b)

W
(q)′
+ (b)

for x ∈ [0, b]; (2.10)

see Pistorius (2004, Proposition 2). Note that when Ŷ0 = x > 0, X0 = −x. Let A ⊆ [0, b].
Similar to (2.6), we define

Rq(x,A) =
∫ ∞

0
P(Yt ∈ A, t < τb)e

−qt dt,

R̂q(x, A) =
∫ ∞

0
P(Ŷt ∈ A, t < τ̂b)e

−qt dt. (2.11)

Pistorius (2004, Theorem 1) proved the following theorem.

Theorem 2.3. (i) The measure Rq(x, ·) is absolutely continuous with respect to the Lebesgue
measure and a version of its density is given by

rq(x, y) = Z(q)(x)

Z(q)(b)
W(q)(b − y)−W(q)(x − y), x, y ∈ [0, b).

(ii) Let r̂(x, 0) = W(q)(b − x)W(q)(0)/W(q)′
+ (b) for x ≥ 0 and set

r̂q (x, y) = W(q)(b − x)
W
(q)′
+ (y)

W
(q)′
+ (b)

−W(q)(y − x), x, y ∈ [0, b), y �= 0. (2.12)

Then, r̂q (x, 0)δ0(dy)+ r̂q (x, y) dy is a version of the measure R̂(q)(x, dy).

3. Moments of the discounted loss until reaching b, or moments of the discounted
dividends in the dual model

Consider a spectrally negative Lévy risk process as described by (2.1) and (2.2). Assume that
whenever ruin occurs, i.e. the process down-crosses 0, the deficit is paid by the shareholders.
We are interested in the moments of the discounted loss (deficit) until the process reaches the
level b > 0.

Given that X0 = u, the discounted loss until the process reaches b is the same as the
discounted dividends, according to the barrier strategy in the dual model starting at b − u.

Throughout, we denote by q the discount factor. Let Lt be the loss until time t . Note that

Lt = −It .
The modified risk process with recoveries behaves as the reflected process at the infimum
Y = X − I . Note that when X0 = u > 0, I0 = 0, the process Y behaves as X until time T −

0 ,
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the first entrance time of Xt to (−∞, 0). Let Lb(u) = Lτb be the discounted loss until the
modified process Y reaches b when X0 = Y0 = u. For 0 ≤ u ≤ b, let


n(u, b) = Eu

[(∫ τb

0
e−qt dLt

)n]
.

In Sections 3 and 4, we assume that the following assumption holds.

Assumption 3.1. Assume that ∫ ∞

z=0
zi�(−dz) < ∞,

whenever such an integral appears.

Remark 3.1. Assumption 3.1 implies that the risk process is the sum of an independent
Brownian motion with variance σ 2 ≥ 0, and a bounded variation Lévy process with negative
jumps. Thus, the only source of unbounded variation is due to the Brownian motion component.

3.1. Bounded variation case, u = 0

In this section we obtain 
n(0, b) for the bounded variation case, i.e. σ = 0. Define

0(0, b) = 1.

Proposition 3.1. It holds that


n(0, b) = 1

Z(nq)(b)

n∑
i=1

(
n

i

) ∫ ∞

z=0
zi

∫ b

y=0
W(nq)(b − y)�(−y − dz) dy
n−i (0, b). (3.1)

Proof. Since Assumption 3.1 holds the right-hand side of (3.1) is finite, as well as similar
expressions in the rest of this section. Denote by Lb(0) the discounted loss until the process
hits b given that X0 = 0. We have

Lb(0) = 1{T −
0 <T

+
b } e−qT −

0 (|XT −
0

| + L̃b(0)), (3.2)

where L̃b(0) is the discounted loss until reaching b from the moment of the first recovery.
From the strong Markov property, L̃b(0) is independent of T −

0 and of XT −
0

and has the same
distribution as Lb(0). Taking the nth power of (3.2) yields

(Lb(0))n = 1{T −
0 <T

+
b } e−nqT −

0

n∑
i=0

(
n

i

)
(|XT −

0
|)i(L̃b(0))n−i . (3.3)

Taking the expectation of both sides of (3.3) and applying (2.6) and (2.7), we obtain


n(0, b) =
n∑
i=0

(
n

i

) ∫ ∞

z=0
zi

∫ b

y=0
e−nqt

P(T(0,b) > t,Xt ∈ dy)�(−y − dz) dy
n−i (0, b)

=
n∑
i=0

(
n

i

) ∫ ∞

z=0
zi

∫ b

y=0
u(nq)(0, y)�(−y − dz) dy
n−i (0, b). (3.4)
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Note that, by (2.5),

∫ ∞

z=0

∫ b

y=0
u(nq)(0, y)�(−y − dz) dy = E0[e−nqT −

0 1{T −
0 <Tb}]

= Z(nq)(0)− Z(nq)(b)W(nq)(0)

W(nq)(b)
. (3.5)

Substituting (2.7) and (3.5) into (3.4), and since W(nq)(y) = 0 for y < 0, and Z(nq)(0) = 1,
we obtain


n(0, b)
Z(nq)(b)W(nq)(0)

W(nq)(b)

=
n∑
i=1

(
n

i

) ∫ ∞

z=0
zi

∫ b

y=0

W(nq)(0)W(nq)(b − y)

W(nq)(b)
�(−y − dz) dy
n−i (0, b).

In the bounded variation caseW(nq)(0) = 1/c > 0. Dividing both sides of the last equation by
Z(nq)(b)W(nq)(0)/W(nq)(b) yields (3.1).

3.2. Unbounded variation case, u = 0

Due to Assumption 3.1 and Remark 3.1, the only source of unbounded variation is due to
the Brownian motion, thus in this section, we assume that σ > 0.

Proposition 3.2. Assume that σ > 0. Then, for n ≥ 1,


n(0, b) = 1

Z(nq)(b)

n∑
i=1

(
n

i

) ∫ ∞

z=0
zi

∫ b

y=0
W(nq)(b − y)�(−y − dz) dy
n−i (0, b)

+ n
σ 2

2

W(nq)(b)

Z(nq)(b)

n−1(0, b). (3.6)

Proof. We obtain lower and upper bounds for 
n(0, b). Let ε > 0. To obtain a lower bound,
we consider the following strategy. The first deficit payment is done only when Xt hits or
down-crosses −ε at time T −−ε. From that point the deficit is paid whenever it occurs until the
process reaches b. Let Lb,ε be the discounted losses according to this policy. Since the deficit
is discounted only from the moment it exceeds ε, we have Lb(0) ≥ Lb,ε for ε > 0. Then

Lb,ε = L
b,ε
1 + L

b,ε
2 ,

where

L
b,ε
1 = e−qT −−ε 1{XT(−ε,b)<−ε}(|XT(−ε,b) | + Lb(0)), (3.7)

L
b,ε
2 = e−qT −−ε 1{XT(−ε,b)=−ε}(ε + Lb(0)). (3.8)

Since
1{XT(−ε,b)<−ε} 1{XT(−ε,b)=−ε} = 0, (3.9)

we obtain
(Lb,ε)n = (L

b,ε
1 )n + (L

b,ε
2 )n.

https://doi.org/10.1239/jap/1445543839 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1445543839


672 E. FROSTIG

From (3.7) and (3.8), we have

(L
b,ε
1 )n = e−nqT −−ε 1{XT(−ε,b)<−ε}

n∑
i=0

(
n

i

)
(|XT(−ε,b) |)i(Lb(0))n−i ,

(L
b,ε
2 )n = e−nqT −−ε 1{XT(−ε,b)=−ε}

n∑
i=0

(
n

i

)
εi(Lb(0))n−i .

From (2.6)–(2.8) and by similar arguments leading to (3.4), it follows that

E0[(Lb,ε1 )n] =
n∑
i=0

(
n

i

) ∫ ∞

0
zi

∫ b+ε

0
u(nq)(ε, y)�(−y − dz) dy
n−i (0, b), (3.10)

E0[(Lb,ε2 )n] =
n∑
i=0

(
n

i

)
εi

(
σ 2

2
W(nq)′(ε)− W(nq)′(b + ε)

W(nq)(b + ε)
W(nq)(ε)

)

n−i (0, b). (3.11)

Properties (P1) and (P4) imply that for i ≥ 2,

εi
σ 2

2

(
W(nq)′(ε)− W(nq)′(b + ε)

W(nq)(b + ε)
W(nq)(ε)

)
= o(ε), (3.12)

ε
σ 2

2

(
W(nq)′(ε)− W(nq)′(b + ε)

W(nq)(b + ε)
W(nq)(ε)

)
= ε + o(ε). (3.13)

Similar to the derivation of (3.5), from (2.5) and (2.6)–(2.8), it follows that

E0[e−nqT −−ε 1{T −−ε<T +
b }] = Z(nq)(ε)− Z(nq)(b + ε)

W(nq)(ε)

W(nq)(b + ε)

=
∫ ∞

0

∫ b+ε

0
u(nq)(ε, y)�(−y − dz) dy

+ σ 2

2

(
W(nq)′(ε)− W(nq)′(b + ε)

W(nq)(b + ε)
W(nq)(ε)

)
. (3.14)

The second line of (3.14) is related to the case that the deficit at ruin is negative and the third
line is the probability of reaching −ε due to diffusion. Equations (3.10)–(3.14) imply that

E[Lε,b] = E0[(Lb,ε1 )n] + E0[(Lb,ε2 )n]

=
n∑
i=1

(
n

i

) ∫ ∞

0
zi

∫ b+ε

0
u(nq)(ε, y)�(−y − dz) dy
n−i (0, b)+ nε
n−1(0, b)

+
(
Z(nq)(ε)− Z(nq)(b + ε)

W(nq)(ε)

W(nq)(b + ε)

)

n(0, b)+ o(ε). (3.15)

To obtain an upper bound, assume that an amount of ε is injected at time 0. The losses are
not recovered until the process reaches −ε before reaching b. When the process reaches −ε by
creeping before hitting b, it restarts from 0 without deficit payment. If the process down-crosses
−ε by a jump then the deficit is paid and the process restarts from 0. From that point the deficits
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are recovered as they occur. Let L̄b,ε be the discounted loss under this regime. Since an amount
ε is paid in advance,

Lb(0) ≤ L̄b,ε, L̄b,ε = ε + L
b,ε
1 + L̄

b,ε
2 ,

where
L̄
b,ε
2 = e−qT(−ε,b) 1{XT(−ε,b)=−ε} Lb(0). (3.16)

From (3.9), we have

(L̄b,ε)n =
n∑
i=0

(
n

i

)
εi(L

b,ε
1 + L̄

b,ε
2 )n−i =

n∑
i=0

(
n

i

)
εi((L

b,ε
1 )n−i + (L̄

b,ε
2 )n−i ). (3.17)

Similarly to (3.10), it follows that

E0[(Lb,ε1 )n−i] =
n−i∑
j=0

(
n− i

j

) ∫ ∞

0
zj

∫ b+ε

0
u((n−i)q)(ε, y)�(−y − dz) dy
n−i−j (0, b),

where, by (2.7),

u((n−i)q)(ε, y) = W((n−i)q)(ε)W((n−i)q)(b + ε − y)

W((n−i)q)(b + ε)
−W((n−i)q)(ε − y).

Properties (P3) and (P4) of the q-scale function from Section 2.2 imply that, for i ≥ 1,

εiu((n−i)q)(ε, y) = o(ε),

and, therefore, since Assumption 3.1 holds

εiE0[(Lb,ε1 )n−i] = o(ε), i ≥ 1. (3.18)

From (2.8) and the right continuity of W(nq)′ at 0, we have

n∑
i=2

(
n

i

)
εiE[e−(n−i)qT(−ε,b) 1XT(−ε,b) ]
n−i (0, b) = o(ε).

Similarly, by properties (P2)–(P4),

εE[e−(n−1)qT(−ε,b) 1XT(−ε,b) ] = ε
σ 2

2

(
W((n−1)q)′(ε)− W((n−1)q)′(b)

W((n−1)q)(b)
W((n−1)q)(ε)

)

= ε + o(ε). (3.19)

From (2.8), (3.16)–(3.19), and (3.12)–(3.14), we obtain

E0[(L̄b,ε)n] =
n∑
i=1

(
n

i

) ∫ ∞

0
zi

∫ b+ε

0
u(nq)(ε, y)�(−y − dz) dy
n−i (0, b)

+ nε
n−1(0, b)+ o(ε)

+
(
Z(nq)(ε)− Z(nq)(b + ε)

W(nq)(ε)

W(nq)(b + ε)

)

n(0, b). (3.20)
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Since E0[(Lb,ε)n] ≤ 
n(0, b) ≤ E0[(L̄b,ε)n], (3.20) and (3.15) imply that up to o(ε),


n(0, b) = E0[(Lb,ε)n] = E0[(L̄b,ε)n].
Solving for 
n(0, b) yields


n(0, b)

(
−nq

∫ ε

0
W(nq)(x) dx + Z(nq)(b + ε)

W(nq)(ε)

W(nq)(b + ε)

)

=
n∑
i=1

(
n

i

) ∫ ∞

0
zi

∫ b+ε

0
u(nq)(ε, y)�(−y − dz) dy
n−i (0, b)

+ nε
n−1(0, b)+ o(ε).

Dividing both sides by ε, taking the limit as ε → 0, and applying properties (P3) and (P4), and
(2.3) yields (3.6).

3.3. Positive initial reserve 0 < u < b

Next, we obtain 
n(u, b) for 0 < u < b.

Proposition 3.3. For 0 ≤ u < b,


n(u, b) =
n∑
i=1

(
n

i

) ∫ ∞

0
zi

∫ b

0
u(nq)(u, y)�(−y − dz) dy
n−i (0, b)

+
(
Z(nq)(u)−W(nq)(u)

Z(nq)(b)

W(nq)(b)

)

n(0, b), (3.21)

where u(nq)(u, y) is given by (2.7).

Proof. We have


n(u, b) = Eu[e−nqT(0,b) 1{XT(0,b)<0}(|XT −
0

| + Lb(0))n + e−nqT(0,b) 1{XT(0,b)=0}(Lb(0))n]

= Eu

[ n∑
i=0

e−nqT(0,b) 1{XT(0,b)<0}
(
n

i

)
(|XT −

0
|)i(Lb(0))n−i

]

+ Eu[e−nqT(0,b) 1{XT(0,b)≤0}(Lb(0))n]

=
n∑
i=1

(
n

i

) ∫ ∞

0
zi

∫ b

0
u(nq)(u, y)�(−y − dz) dy
n−i (0, b)

+
(
Z(nq)(u)−W(nq)(u)

Z(nq)(b)

W(nq)(b)

)

n(0, b).

We applied the strong Markov property, (2.5), and (2.7) in the last equality.

3.4. Moments of the discounted loss with recovery and no barrier

Let

L =
∫ ∞

0
e−qt dIt .

Let 
n(u) = Eu[Ln]. Since Lb(u) is monotone in b, 
n(u) = limb→∞ 
n(u, b).
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Proposition 3.4. We have


n(0) = �(nq)

nq

n∑
i=1

(
n

i

) ∫ ∞

z=0
zi

∫ ∞

y=0
e−�(nq)y�(−y − dz) dy
n−i (0)

+ σ 2

2

�(nq)

q

n−1(0). (3.22)

For u > 0,


n(u) = �(nq)

nq

n∑
i=1

(
n

i

) ∫ ∞

z=0
zi

∫ ∞

y=0
(W(nq)(u)e−�(nq)y −W(nq)(u− y))

×�(−y − dz) dy
n−i (0)

+
(
Z(nq)(u)− nq

�(nq)
W(nq)(u)

)

n(0). (3.23)

Note that in the bounded variation case, σ = 0 in (3.22).

Proof. First we prove (3.22). Since W(q)(x) = 0 for x < 0, (3.6) can be written as


n(0, b) = 1

Z(nq)(b)

n∑
i=1

(
n

i

) ∫ ∞

z=0
zi

∫ ∞

y=0
W(nq)(b − y)�(−y − dz) dy
n−i (0, b)

+ n
σ 2

2

W(nq)(b)

Z(nq)(b)

n−1(0, b). (3.24)

Note that
W(nq)(b − y)

Z(nq)(b)
= W(nq)(b − y)

W(nq)(b)

W(nq)(b)

Z(nq)(b)
,

and
W(nq)(b − y)

W(nq)(b)
= Eb(e

−nqT +
b 1{T +

b+y<T
−
y }).

is increasing in b. This can be deduced also from the following identity:

W(nq)(b − y)

W(nq)(b)
= exp

(
−

∫ y

0
n(ε̄ > t + b − y) dt

)
,

where n is a measure on the space of excursions from the maximum, and ε̄ is the maximal
excursion height; see Bertoin (1996, Chapter 7). The following limit holds:

lim
b→∞

W(nq)(b − y)

W(nq)(b)
= e−φ(nq)y; (3.25)

see Kuznetsov et al. (2012, Lemma 3.3) or Hubalek and Kyprianou (2011, Section 3). For a
given x, 0 < x < b,

Ex[e−nqT −
0 1{T −

0 <T
+
b }] = Z(nq)(x)−W(nq)(x)

Z(nq)(b)

W(nq)(b)
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is increasing in b, thus W(nq)(b)/Z(nq)(b) is increasing in b. By Kuznetsov et al. (2012,
Lemma 3.3),

lim
b→∞

W(nq)(b)

Z(nq)(b)
= �(nq)

nq
. (3.26)

Taking the limit as b → ∞ in (3.24) and applying the monotone convergence theorem, we
obtain (3.22). Similarly, taking the limit as b → ∞ in (3.21), and substituting in (2.7), (3.22),
(3.25), and (3.26), we obtain (3.23).

4. Expected discounted loss with dividends and recovery

In this section we consider the following risk process. Whenever ruin occurs the deficit is
immediately recovered, and whenever the process reaches b the overflow is paid as dividends.
We consider the moments of the discounted loss. Let L

b(u) be the discounted loss given
that X0 = u, and let Ln(u, b) be its nth moment. Let Dt = sup0≤s≤t ((Xs − b)+), where
x+ = max(x, 0) and Dt is the dividends paid up to time t . Let Ũt = Xt −Dt and Ut =
b − Ũt . Note that Ut is the reflected process at its maximum. Throughout, we denote by
τ̂b = inf{t : Ut ≥ b} = inf{t : Ũt ≤ 0}.
4.1. Moments of the discounted loss—the bounded variation case

Proposition 4.1. The following recursion holds:

Ln(0, b) = W
(nq)′
+ (b)

nq(W(nq)(b))2

( n∑
i=1

(
n

i

) ∫ ∞

0
zi

∫ b

0
W(nq)(b − y)�(−y − dz) dyLn−i (0, b)

+
n∑
i=1

(
n

i

)(∫ ∞

0
zi

∫ b

0+
r̂ (nq)(0, y)�(−(b − y)− dz) dy

+
∫ ∞

0
zi r̂(nq)(0, 0)�(−b − dz)

)
Ln−i (0, b)

)
.

(4.1)

Note that in the bounded variation case r̂ (nq)(0, 0) > 0. Since Assumption 3.1, holds the
right-hand side of (4.1) as well as similar expressions in the rest of this section are finite.

Proof. First we consider L
b(0),

L
b(0) = L

b
1 + L

b
2,

where L
b
1 = 1{T −

0 <T
+
b } e−qT −

0 (|XT −
0

| + L
b(0)), and

L
b
2 = 1{T +

b <T
−
0 } e−qT +

b e−qτ̂b ((Uτ̂b − b)+ L
b(0)).

Recall that τ̂b is the time the process U hits b, or the time the process Ũ down-crosses 0.
Thus, given thatX0 = 0, T +

b + τ̂b is the time the process down-crosses 0 when T +
b < T −

0 , and
(Uτ̂b − b) is the deficit.

By the strong Markov property, T +
b and τ̂b are independent and independent of L

b(0).
Since 1{T −

0 <T
+
b } 1{T +

b <T
−
0 } = 0, we have (Lb(0))n = (Lb1)

n + (Lb2)
n and

Ln(0, b) = E0[(Lb1)n] + E0[(Lb2)n]. (4.2)
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Similar to (3.4),

E0[(Lb1)n] =
n∑
i=0

(
n

i

) ∫ ∞

z=0
zi

∫ b

y=0

W(nq)(0)W(nq)(b − y)

W(nq)(b)
�(−y−dz) dyLn−i (0, b). (4.3)

Consider now E0[(Lb2)n]. The strong Markov property implies that

E0[(Lb2)n] = E0[e−nqT +
b 1{T +

b <T
−
0 }]E0[e−nqτ̂b (Uτ̂b − b)+ L

b(0)n].
Applying the strong Markov property again, we have

E0[e−nqτ̂b ((Uτ̂b − b)+ L
b(0))n] = E0

[ n∑
i=0

e−nqτ̂b
(
n

i

)
(Uτ̂b − b)i(Lb(0))n−i

]

=
n∑
i=0

E0

[
e−nqτ̂b

(
n

i

)
(Uτ̂b − b)i

]
Ln−i (0, b).

Applying (2.11), and (2.12) of Theorem 2.3 yields

n∑
i=0

E0

[
e−nqτ̂b

(
n

i

)
(Uτ̂b − b)i

]
Ln−i (0, b)

=
n∑
i=0

(
n

i

)(∫ ∞

0
zi

∫ b

0+
r̂ (nq)(0, y)�(−(b − y)− dz) dy

+
∫ ∞

0
zi r̂(nq)(0, 0)�(−b − dz)

)
Ln−i (0, b),

where

r̂ (nq)(0, y) = W(nq)(b)
W
(nq)′
+ (y)

W
(nq)′
+ (b)

−W(nq)(y), r̂(nq)(0, 0) = W(nq)(b)
W(nq)(0)

W
(nq)′
+ (b)

.

By Theorem 2.1(i),

E[e−nqT +
b 1{T +

b <T
−
0 }] = W(nq)(0)

W(nq)(b)
= 1

cW(nq)(b)
. (4.4)

From (4.2)–(4.4), we conclude that

Ln(0, b) =
n∑
i=0

(
n

i

) ∫ ∞

0
zi

∫ b

0
u(nq)(0, y)�(−y − dz) dyLn−i (0, b)

+ W(nq)(0)

W(nq)(b)

n∑
i=0

(
n

i

)(∫ ∞

0
zi

∫ b

0+
r̂ (nq)(0, y)�(−(b − y)− dz) dy

+
∫ ∞

0
zi r̂(nq)(0, 0)�(−b − dz)

)
Ln−i (0, b).

(4.5)
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Note that, by (2.5),

∫ ∞

0

∫ b

0
u(nq)(0, y)�(−y − dz) dy = E0[e−nqT −

0 1{XT(0,b)≤0}]

= Z(nq)(0)−W(nq)(0)
Z(nq)(b)

W(nq)(b)
. (4.6)

Similarly, by (2.10),

∫ b

0+

∫ ∞

0
r̂ (nq)(0, y)�(−(b − y)− dz) dy +

∫ ∞

0
r̂ (nq)(0, 0)�(−b − dz)

= E0[e−nqτ̂b ]

= Z(nq)(b)− nq(W(nq)(b))2

W
(nq)′
+ (b)

. (4.7)

By applying (4.5)–(4.7) and some simple algebra, the following expression is obtained for
Ln(0, b):

Ln(0, b) = W
(nq)′
+ (b)

nqW(nq)(b)W(nq)(0)

×
( n∑
i=1

(
n

i

) ∫ ∞

0
zi

∫ b

0
u(nq)(0, y)�(−y − dz) dyLn−i (0, b)

+ W(nq)(0)

W(nq)(b)

n∑
i=1

(
n

i

)(∫ b

0+

∫ ∞

0
zi r̂(nq)(0, y)�(−(b − y)− dz) dy

+
∫ ∞

0
zi r̂(nq)(0, 0)�(−b − dz)

)

× Ln−i (0, b)
)
.

Equation (4.1) is obtained by substituting the expression for u(nq) as in (2.7).

4.2. The moments of discounted loss—the unbounded variation case (σ > 0)

Proposition 4.2. The following recursion holds:

Ln(0, b) = W(nq)′(b)

nq(W(nq)(b))2

×
( n∑
i=1

(
n

i

) ∫ ∞

0
zi

∫ b

0
W(nq)(b − y)�(−y − dz) dyLn−i (0, b)

+
n∑
i=1

(
n

i

) ∫ ∞

0
zi

∫ b

0+
r̂ (nq)(0, y)�(−(b − y)− dz) dyLn−i (0, b)

)

+ σ 2

2q

W(nq)′(b)

W(nq)(b)
Ln−1(0, b). (4.8)
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Proof. We consider lower and upper bounds for Ln(0, b). First consider a lower bound.
Assume that the first recovery occurs at time T −−ε when T −−ε < T +

b , and at time T +
b + τ̂b if

T +
b < T −−ε. From that point onwards recovery occurs whenever the process down-crosses or

hits 0. Let L
b,ε be the total discounted recovery under this policy. Since on (T −−ε < T +

b ), the
deficit is discounted only from time T −−ε, L

b,ε ≤ L
b(0). Then

L
b,ε = L

b,ε
1 + L

b,ε
2 + L

b,ε
3 + L

b,ε
4 ,

where

L
b,ε
1 = e−qT −−ε 1{T −−ε<T +

b ,XT−−ε
<−ε}(|XT −−ε | + L

b(0)),

L
b,ε
2 = e−qT −−ε 1{T −−ε<T +

b ,XT−−ε
=−ε}(ε + L

b(0)),

L
b,ε
3 = e−qT +

b 1{T +
b <T

−−ε} e−qτ̂b 1{Uτ̂b−b>0}((Uτ̂b − b)+ L
b(0)),

L
b,ε
4 = e−qT +

b 1{T +
b <T

−−ε} e−qτ̂b 1{Uτ̂b−b=0} L
b(0),

(Lb,ε)n = (L
b,ε
1 )n + (L

b,ε
2 )n + (L

b,ε
3 )n + (L

b,ε
4 )n. (4.9)

From (2.6) and (2.7), it follows that

E[(Lb,ε1 )n] =
n∑
i=0

(
n

i

) ∫ ∞

0
zi

∫ b+ε

0
u(nq)(ε, y)�(−y − dz) dyLn−i (0, b). (4.10)

Similarly, (2.4), (2.11), and (2.12) imply that

E[(Lb,ε3 )n]

= W(nq)(ε)

W(nq)(b + ε)

n∑
i=0

(
n

i

) ∫ ∞

0
zi

∫ b

0
r̂ (nq)(0, y)�(−(b − y)− dz) dyLn−i (0, b).

(4.11)

Applying the strong Markov property, (3.12), and (3.13), it follows that

E[(Lb,ε2 )n] = E[e−nqT −−ε 1{T −−ε<T +
b ,XT−−ε

=−ε}]E[(ε + L
b(0))n]

= σ 2

2

(
W(nq)′(ε)− W(nq)′(b)

W(nq)(b)
W(nq)(ε)

)
Ln(0, b)+ nεLn−1(0, b)+ o(ε).

(4.12)

The strong Markov property and (2.4) imply that

E[(Lb,ε4 )n] = E0[e−nqT +
b 1{T +

b <T
−−ε}]E0[e−nqτ̂b 1{Uτ̂b−b=0}]Ln(0, b)

= W(nq)(ε)

W(nq)(b + ε)
E0[e−nqτ̂b 1{Uτ̂b−b=0}]Ln(0, b). (4.13)
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Equations (4.9)–(4.13) imply that

Ln(0, b) ≥
n∑
i=0

(
n

i

) ∫ ∞

0
zi

∫ b+ε

0
u(nq)(ε, y)�(−y − dz) dyLn−i (0, b)

+ σ 2

2

(
W(nq)′(ε)− W(nq)′(b)

W(nq)(b)
W(nq)(ε)

)
Ln(0, b)+ nεLn−1(0, b)+ o(ε)

+ W(nq)(ε)

W(nq)(b + ε)

n∑
i=0

(
n

i

) ∫ b

0

∫ ∞

0
zi r̂(nq)(0, b − y)�(−y − dz) dyLn−i (0, b)

+ W(nq)(ε)

W(nq)(b + ε)
E0[e−nqτ̂b 1{Uτ̂b−b=0}]Ln(0, b). (4.14)

Next, we establish an upper bound. Suppose that an amount ε is injected at time 0. When
the process down-crosses −ε by a jump, the deficit is recovered and the process restarts from 0.
When the process reaches −ε by creeping before hitting b, it restarts from 0 (without deficit
payment). From that point, the deficit is recovered whenever it occurs. Let L

ε,b
be the amount

of the discounted money injected into the system. Since an amount ε is injected in advance,

L
ε,b ≥ Lb(0). Then

L
ε,b = ε + L

b,ε
1 + L

b,ε

2 + L
b,ε
3 + L

b,ε
4 , (4.15)

where

L
b,ε

2 = e−qT(−ε,b) 1{XT−ε,b=−ε} L
b(0). (4.16)

Thus,

(L
ε,b
)n =

n∑
i=0

(
n

i

)
εi(L

b,ε
1 + L

b,ε

2 + L
b,ε
3 + L

b,ε
4 )n−i

=
n∑
i=0

(
n

i

)
εi((L

b,ε
1 )n−i + (L

b,ε

2 )n−i + (L
b,ε
3 )n−i + (L

b,ε
4 )n−i ). (4.17)

Note that when σ > 0, properties (P3) and (P4) imply that εiW(nq)(ε) = o(ε) for i ≥ 1.
Thus, (4.10), (4.11), and (4.13) imply that εi(E[Lb,εj ])n−i = o(ε), i ≥ 1, j = 1, 3, 4.
Equations (2.8) and (4.16) imply that, for j = 1, . . . , n,

E[(L̄b,ε2 )j ] = σ 2

2

(
W(jq)′(ε)− W(jq)′(b)

W(jq)(b)
W(jq)(ε)

)
Lj (0, b). (4.18)

Equations (3.12), (3.13), and (4.15)–(4.18) yield

Ln(0) ≤ E[(Lb,ε1 )n] + E[(Lb,ε3 )n] + E[(Lb,ε4 )n] + nεLn−1(0, b)

+ σ 2

2
(W(nq)′(ε)− W(nq)′(b)

W(nq)(b)
W(nq)(ε))Ln(0, b)+ o(ε). (4.19)

Since the right-hand side of (4.14) and (4.19) are equal, we conclude that (4.14) holds as
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equality up to o(ε). Applying (2.8) and then (2.5) yields
∫ ∞

0

∫ b+ε

0
u(nq)(ε, y)�(−y − dz) dy + σ 2

2

(
W(nq)′(ε)− W(nq)′(b)

W(nq)(b)
W(nq)(ε)

)

= E[e−nqT −−ε 1{T −−ε<T +
b }]

= Z(nq)(ε)− Z(nq)(b + ε)
W(nq)(ε)

W(nq)(b + ε)
.

Equations (2.11), (2.12), and (2.10) imply that
∫ ∞

0

∫ b

0
r̂ (nq)(0, b − y)�(−y − dz) dy + E[e−τ̂b 1{Uτ̂b=b}]

= E[e−nqτ̂b ]

= Z(nq)(b)− nq
(W(nq)(b))2

W(nq)′(b)
. (4.20)

Substituting (3.13) and (4.20) into (4.14) (with equality) yields
(

1 − Z(nq)(ε)+ W(nq)(ε)

W(nq)(b + ε)
(Z(nq)(b + ε)− Z(nq)(b))

+ nq
W(nq)(ε)

W(nq)(b + ε)

(W(nq)(b))2

W(nq)′(b)

)
Ln(0, b)

=
n∑
i=1

(
n

i

) ∫ ∞

0
zi

∫ b+ε

0

W(nq)(ε)W(nq)(b − y)

W(nq)(b)
�(−y − dz) dyLn−i (0, b)

+ W(nq)(ε)

W(nq)(b + ε)

n∑
i=1

(
n

i

) ∫ b

0

∫ ∞

0
zi r̂(nq)(0, b − y)�(−y − dz) dyLn−i (0, b)

+ nεLn−1(0, b)+ o(ε). (4.21)

Note that

lim
ε→0

W(nq)(x + ε) = W(nq)(x) for x ≥ 0, lim
ε→0

Z(nq)(ε)− 1

ε
= W(nq)(0) = 0,

lim
ε→0

Z(nq)(b + ε)− Z(nq)(b)

ε
= W(nq)(b), lim

ε→0

W(nq)(ε)

ε
= W(nq)′(0) = 2

σ 2 .

Thus, dividing (4.21) by ε and taking the limit as ε → 0 yields

nqW(nq)′(0)
W(nq)(b)

W(nq)′(b)
Ln(b, 0)

= W(nq)′(0)

W(nq)(b)

n∑
i=1

(
n

i

) ∫ ∞

0
zi

∫ b

0
W(nq)(b − y)�(−y − dz) dyLn−i (0, b)

+ W(nq)′(0)

W(nq)(b)

n∑
i=1

(
n

i

) ∫ b

0

∫ ∞

0
zi r̂(nq)(0, b − y) dy�(−y − dz) dyLn−i (0, b)

+ nLn−1(0, b). (4.22)
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Since W(nq)′(0) = 2/σ 2 > 0, dividing both sides of (4.22) by

nqW(nq)′(0)
W(nq)(b)

W(nq)′(b)

yields (4.8).

Remark 4.1. Note that (4.1) and (4.8) are equivalent once we note that for the bounded variation
case σ = 0 and for the unbounded variation case r̂(0, 0) = 0.

4.3. Expected discounted moments when the initial reserve is greater than 0

Assume that X0 = x with 0 < x < b. Then

Ln(x, b) =
n∑
i=1

(
n

i

) ∫ ∞

0
zi

∫ b

0
u(nq)(x, y)�(−y − dz) dyLn−i (0, b)

+ W(nq)(x)

W(nq)(b)

n∑
i=1

(
n

i

)(∫ b

0

∫ ∞

0
zi r̂(nq)(b − x, b − y)�(−y − dz) dy

+
∫ ∞

0
zi r̂(nq)(0, 0)�(−b − dz)

)
Ln−i (0, b)

+
(
Z(nq)(x)− nq

W(nq)(b)W(nq)(x)

W
(nq)′
+ (b)

)
Ln(0, b). (4.23)

Proof. Similar arguments as in Sections 4.1 and 4.2 imply that

Ln(x, b) = Ex[(e−qT −
0 1{T −

0 <T
+
b ,XT−

0
<0}(|XT −

0
| + L

b(0)))n]

+ Ex[(e−qT −
0 1{T −

0 <T
+
b ,XT−

0
=0} L

b(0))n]

+ Ex[(e−qT +
b e−qτ̂b 1{T +

b <T
−
0 } 1{Uτ̂b>b}((Uτ̂b − b)+ L

b(0)))n]
+ Ex[(e−qT +

b e−qτ̂b 1{T +
b <T

−
0 } 1{Uτ̂b=b} L

b(0))n].
Expanding the above expressions, applying (2.4), (2.5), and (2.10), and using the same

arguments as in the previous sections yields the result. Note that the last term in (4.23) is

Ex[(e−nqT −
0 1{T −

0 <T
+
b ,XT−

0
≤0})+ (e−nqT +

b e−nqτ̂b 1{T +
b <T

−
0 } 1{Uτ̂b≥b})]Ln(0, b).

4.4. An example

We consider a similar example as in Schmidli and Kulenko (2008). Consider a risk process
with recoveries and dividend payments with the following parameters: claims arrive according
to a Poisson process at rate λ = 2, the premium rate is c = 4, the claims amount are independent
and identically distributed exponentially distributed with parameter α = 3, and the discounted
factor is q = 0.06. For this model Kulenko and Schmidli proved that the strategy that maximizes
the expected discounted dividends is the barrier strategy with b = 1.271. The q–scale function
for this process is

W(q)(x) = exp
(xξ2)

ψ ′(ξ2)
+ exp

(−xξ1)

ψ ′(−ξ1)
,
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Figure 1: The expected discounted loss (left) and the variance of the discounted loss (right).

where ψ(θ) is the Laplace exponent of the process,

ψ(θ) = cθ − λθ

α + θ
,

and ξi , i = 1, 2, are the roots of the equations ψ(θ) = q and are given by

ξ1 =
√
(λ+ q − cα)2 + 4cqα − λ− q + cα

2c

and

ξ2 =
√
(λ+ q − cα)2 + 4cqα + λ+ q − cα

2c
.

Schmidli and Kulenko obtained the first moment of the discounted deficit. Using the recursion,
we obtained the second moment and, hence, the variance of the discounted dividends varx
for the initial reserve x. In Figure 1 we show the expected discounted loss L1(x, b) and the
variance of the discounted loss as functions of the initial reserve x.

5. Discounted dividend payments in a model with dividend barrier and recovery

Consider a spectrally negative Lévy risk process with a dividend barrier b, where all the
overflow above b is paid as dividends. Let Ṽn(u) be the nth moment of the discounted dividends
until ruin when the initial reserve is u, 0 < u ≤ b. Renaud and Zhou (2007) and Kyprianou
and Palmowski (2007) obtained the following formula for Ṽn(u):

Ṽn(u) = W(nq)(u)

W(nq)(b)
n!

n∏
i=1

W(iq)(b)

W(iq)′(b)
.

In this section we consider a risk model with recoveries and dividend payments according to
the barrier strategy and compute the moments of the discounted dividends. We apply a similar
method as in Renaud and Zhou (2007). Let Dt be the dividends paid up to time t and let V (u)
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be the discounted dividends when the initial reserve is u. The nth moment of the discounted
dividends given initial reserve u is

Vn(u) = Eu

[∫ ∞

0
e−qt dDt

]n
.

When the initial reserve is b, then until Xt −Dt down-crosses 0, the process b− (Xt −Dt)
evolves as the process Ŷ—the reflection of Xt at its maximum. Similarly, from the moment of
recovery, the process evolves as Yt—the reflection at the infimum. In this section we do not
assume that Assumption 3.1 holds.

5.1. Moments when the initial reserve is b

First we obtain Vn(b).

Proposition 5.1. It holds that

Vn(b) = 1

qn

n∏
i=1

Z(iq)(b)

W(iq)(b)
.

Proof. First we construct a lower bound. Consider the following dividend strategy. If the
process reaches b+ ε before down-crossing 0, an amount of ε is paid, the process restarts form
b, and from that point onwards all the overflow above b is paid as dividends. When the process
down-crosses 0 before reaching b+ ε, no dividends are paid until the process reaches b again,
and then all the overflow above b is paid as dividends. Let V (b) be the discounted dividends
under this policy. Since with positive probability dividend payments are delayed, it follows
that

V (b) ≤ V (b), V (b) = e−qT +
b+ε 1{T +

b+ε<T
−
0 }(ε + V (b))+ e−qT −

0 1{T −
0 <T

+
b+ε} e−qτbV (b).

Recall that τb is the time that the reflected process at its infimum hits b. Therefore,

(V (b))n = e−nqT +
b+ε 1{T +

b+ε<T
−
0 }(ε + V (b))n + e−nqT −

0 1{T −
0 <T

+
b+ε} e−nqτb (V (b))n

= e−nqT +
b+ε 1{T +

b+ε<T
−
0 }

n∑
i=0

(
n

i

)
εi(V (b))n−i

+ e−nqT −
0 1{T −

0 <T
+
b+ε} e−nqτb (V (b))n. (5.1)

Taking expectations from both sides of (5.1), we obtain

Eb[(V (b))n] (5.2)

= W(nq)(b)

W(nq)(b + ε)

n∑
i=0

(
n

i

)
εiVn−i (b)

+
(
Z(nq)(b)− Z(nq)(b + ε)

W(nq)(b)

W(nq)(b + ε)

)
Z(nq)(0)

Z(nq)(b)
Vn(b)

= Vn(b)

(
W(nq)(b)

W(nq)(b + ε)
+

(
Z(nq)(b)− Z(nq)(b + ε)

W(nq)(b)

W(nq)(b + ε)

)
Z(nq)(0)

Z(nq)(b)

)

+ nε
W(nq)(b)

W(nq)(b + ε)
Vn−1(b)+ o(ε). (5.3)

We applied (2.4) in the first line of (5.3) and (2.5) and (2.9) in the second line.
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To obtain an upper bound consider the following strategy. An amount ε is paid at time 0, and
then the process restarts from b. No dividend is paid until time T +

b+ε ∧ T −
0 . If T +

b+ε < T −
0 , the

process restarts from b without dividend payment and from that point onwards all the overflow
is paid as dividends. If T −

0 < T +
b+ε, all the overflow above b is paid as dividends. Let V̄ (b) be

the discounted dividends under this strategy. Since ε is paid in advance V̄ (b) ≥ V (b), and

(V̄ (b))n = (ε + e−qT +
b+ε 1{T +

b+ε<T
−
0 } V (b)+ e−qT −

0 e−qτb 1{T −
0 <T

+
b+ε} V (b))

n.

Thus,

(V̄ (b))n =
n∑
i=0

(
n

i

)
εi(1{T +

b+ε<T
−
0 } e−(n−i)qT +

b+ε (V (b))n−i

+ 1{T −
0 <T

+
b+ε} e−(n−i)qT −

0 e−(n−i)qτb (V (b))n−i ).

Taking expectations and applying (2.4), (2.5), and (2.9), we obtain

E[V̄ (b)]n

=
(

W(nq)(b)

W(nq)(b + ε)
+

(
Z(nq)(b)− Z(nq)(b + ε)

W(nq)(b)

W(nq)(b + ε)

)
Z(nq)(0)

Z(nq)(b)

)
Vn(b)

+ nε

(
W((n−1)q)(b)

W((n−1)q)(b + ε)
+

(
Z((n−1)q)(b)− Z((n−1)q)(b + ε)

W((n−1)q)(b)

W((n−1)q)(b + ε)

)

× Z((n−1)q)(0)

Z((n−1)q)(b)

)
Vn−1(b)+ o(ε).

Let

A =
(
Z((n−1)q)(b)− Z((n−1)q)(b + ε)

W((n−1)q)(b)

W((n−1)q)(b + ε)

)
Z((n−1)q)(0)

Z((n−1)q)(b)
.

After some calculation A can be written as

A = Z((n−1)q)(b)(W((n−1)q)(b + ε)−W((n−1)q)(b))−W((n−1)q)(b)(Z((n−1)q)(b + ε)− Z((n−1)q)(b))

W((n−1)q)(b + ε)Z((n−1)q)(b)
,

SinceW(n−1)q is differentiable from the right at b (see Kuznetsov et al. (2012, Equation (32)))
andZ(n−1)q is differentiable, whereZ((n−1)q)′(b) = (n− 1)qW((n−1)q)(b), the last expression
can be written as follows:

A = 1

W((n−1)q)(b + ε)Z((n−1)q)(b)
Z((n−1)q)(b)W

((n−1)q)′
+ (b)ε − (n− 1)q(W((n−1)q)(b))2ε

+ o(ε).

Thus, εA = o(ε), and

E[V̄ (b)]n =
(

W(nq)(b)

W(nq)(b + ε)
+

(
Z(nq)(b)− Z(nq)(b + ε)

W(nq)(b)

W(nq)(b + ε)

)
Z(nq)(0)

Z(nq)(b)

)
Vn(b)

+ nε
W((n−1)q)(b)

W((n−1)q)(b + ε)
Vn−1(b)+ o(ε). (5.4)
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Equations (5.3) and (5.4) yield E[V̄ (b)]n = E[V (b)]n up to o(ε), and, thus,

Vn(b) =
(

W(nq)(b)

W(nq)(b + ε)
+

(
Z(nq)(b)− Z(nq)(b + ε)

W(nq)(b)

W(nq)(b + ε)

)
1

Z(nq)(b)

)
Vn(b)

+ nε
W((n−1)q)(b)

W((n−1)q)(b + ε)
Vn−1(b)+ o(ε).

Solving for Vn(b) yields

Vn(b)

(
W(nq)(b)

W(nq)(b + ε)

)(
Z(nq)(b + ε)− Z(nq)(b)

Z(nq)(b)

)
= nε

W((n−1)q)(b)

W((n−1)q)(b + ε)
Vn−1(b)+ o(ε).

Dividing by ε and taking the limit as ε goes to 0, we obtain

Vn(b) = Z(nq)(b)

qW(nq)(b)
Vn−1(b).

5.2. Moments when the initial reserve is u < b

Proposition 5.2. Let 0 ≤ u ≤ b then

Vn(u) =
(
W(nq)(u)

W(nq)(b)
+

(
Z(nq)(u)− Z(nq)(b)

W(nq)(u)

W(nq)(b)

)
1

Z(nq)(b)

)
Vn(b).

Proof. Starting atu, either b is reached before recovery, or recovery occurs before reaching b.
Applying the strong Markov property,

Vn(u) = (Eu[e−nqT +
b 1{T +

b <T
−
0 }] + Eu[e−nqT −

0 1{T −
0 <T

+
b }]E[e−nqτb ])Vn(b).

The result follows by applying (2.4), (2.5), and (2.9).
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