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OPTIMAL STOPPING OF THE MAXIMUM PROCESS
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Abstract

We consider a class of optimal stopping problems involving both the running maximum
as well as the prevailing state of a linear diffusion. Instead of tackling the problem
directly via the standard free boundary approach, we take an alternative route and present
a parameterized family of standard stopping problems of the underlying diffusion. We
apply this family to delineate circumstances under which the original problem admits
a unique, well-defined solution. We then develop a discretized approach resulting in a
numerical algorithm for solving the considered class of stopping problems. We illustrate
the use of the algorithm in both a geometric Brownian motion and a mean reverting
diffusion setting.

Keywords: Optimal stopping; linear diffusions; maximum process

2010 Mathematics Subject Classification: Primary 60J60; 62L15
Secondary 60G40

1. Introduction

Let Xt be an Itô diffusion evolving on the state space R+, and denote by St = sups≤t {Xt }
its running supremum. In this paper our objective is to analyze and solve the infinite-horizon
optimal stopping problem

sup
τ

E(x,s){e−rτ f (Xτ , Sτ )}, (1.1)

where the exercise payoff f (x, s) is assumed to be decreasing in x and increasing in s, r > 0
denotes the exogenously given constant discount rate, and τ is a stopping time. Two well-
known examples belonging to this class of stopping problems are the Russian option for which
f (x, s) = s (see, e.g. [19] and [27]) and the American lookback option with a floating strike for
which f (x, s) = s − x (see, e.g. [9] and [19]). While both of these cases constitute perpetual
path-dependent options, the latter problem also has an alternative interpretation as a measure
of a risk for a stock (see [10] and [20]).

Typically, optimal stopping problems of the type (1.1) are solved by considering an associated
free boundary problem (for a pioneering treatment, see [25]; for a comprehensive treatment
of these problems, see Chapter III and Section 13 of [26]). In [25] the considered stopping
problem was of the form

sup
τ

E(x,s)

{
F(Sτ )−

∫ τ

0
c(Xs) ds

}
,
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Optimal stopping of the maximum process 819

where F is an increasing function, c is a positive function, and Xt is Brownian motion. In
that study, a powerful maximality principle was developed. According to that principle, the
first-order differential equation characterizing the optimal exercise boundary admits a maximal
solution which stays strictly below the diagonal in R

2+. It was then shown that the maximality
principle is equivalent to the existence of a finite solution, and that the optimal stopping strategy
can be characterized as the first time the process Xt falls below the maximal solution. More
recently, this technique has been further refined by Obłój [22], who extended the original
results of [25] to a more general setting. The optimal stopping of the running minimum within
an optimal prediction of the ultimate minimum setting has recently been investigated and solved
in [12] by relying on a free boundary approach. Furthermore, the maximality principle has also
been adapted to problems involving spectrally negative Lévy processes (see, e.g. [18], [23], and
the references therein).

In this paper we address the optimal stopping problem (1.1) under a set of reasonable basic
regularity and smoothness assumptions on the exercise payoff and the underlying diffusion.
Instead of relying on a free boundary approach, we take an alternative route and present a
parameterized family of associated standard stopping problems which we solve explicitly by
relying on ordinary optimization techniques. We subsequently apply our findings in deriving,
independently of the free boundary problem, a set of sufficient conditions under which (1.1)
indeed attains a finite solution. Our approach relies on the r-excessivity of the values of the
associated stopping problems. In that way it avoids the immediate application of the smooth
pasting and instantaneous reflection conditions, even though especially the former of these
conditions is to some extent embedded in the considered class of optimization problems.

Having established the existence of a solution for the considered class of stopping problems,
we then develop a discretized approach which can be applied to determining the optimal policy
and its value. In a finite-horizon case of the problem, one can discretize time, leading to a
familiar binomial tree framework similar to the well-known CRR model (see, e.g. [4] and [16]).
However, within an infinite-time horizon setting this approach is no longer possible and a
somewhat different discretization is required. As our study demonstrates, discretizing the
state of the supremum process is an appropriate technique leading to a desired outcome. In
the chosen discretization framework, the supremum process can only take values from an
arithmetic sequence. Since the supremum process increases only at states where it coincides
with the underlying diffusion, we note that at any given date the underlying process has hit
only finitely many times its discretized supremum. Between these hitting times, the two-
dimensional process (Xt , St ) behaves as a one-dimensional process. It then follows that the
discretized problem can be seen as a countable sequence of relatively easily solvable one-
dimensional subproblems. Since this sequence is shown to converge to the optimal solution
under a set of typically satisfied conditions, our study complements the existing approaches by
presenting a technique which does not require the analysis of the ordinary differential equation
characterizing the optimal boundary. This discretization simultaneously results in an algorithm
for finding the optimal threshold and value numerically as a limit of a converging sequence.
In this way we do not only prove that there exists a unique threshold rule, we also identify it.
For the sake of generality, we also consider an extension of the original problem (1.1) in a case
where there are no monotonicity requirements for the exercise payoff f (x, s). It turns out that
our approach applies in that case as well, leading to a convergent sequence approaching the
solution.

In order to illustrate our findings explicitly, we solve the value and optimal exercise strategy
of a lookback option with a floating strike for a general Itô diffusion. We also determine the value
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and optimal stopping strategy of aπ -option (f (x, s) = xκsη −K , withκ, η,K ≥ 0) introduced
in [14]. The efficiency of the developed discrete algorithm is then illustrated for these two option
models under two different dynamic specifications for the underlying diffusion process. All in
all, our examples seem to indicate that the discretization method can be successfully used to
solve a great variety of different stopping problems involving a running supremum process, the
primary restrictive factor being an s-Hölder continuity of f .

It is at this point worth mentioning that there are also other approaches that avoid the use
of the free boundary conditions and the maximality principle. In [5] an alternative technique
based on a measure transform was introduced. This technique, known as the Beibel–Lerche
approach, has been successfully applied in the solution of some optimal stopping problems of
the running supremum of a geometric Brownian motion (see [19]). Another alternative approach
was developed in [15]. Instead of analyzing the free boundary problem subject to appropriate
boundary conditions, Hobson [15] directly computed the expected value of stopping strategies
defined with respect to a suitable class of boundaries and then chose the optimal one by relying
on arguments familiar from the calculus of variations.

The contents of this study are as follows. The problem and the basic assumptions are
represented in an exact form in Section 2. In Section 3 we then prove the existence of a
solution to (1.1) by solving a parameterized family of associated stopping problems. We show
in Section 4 that the optimal value and stopping boundary can also be found by using the
discretization method. Our findings are then illustrated numerically in Sections 5 and 6.

2. The optimal stopping problem

Let (�,P, {Ft }t≥0,F ) be a complete filtered probability space satisfying the usual condi-
tions (see [7, p. 2]). LetXt be a regular linear diffusion defined on (�,P, {Ft }t≥0,F ), evolving
on R+ according to the dynamics described by the Itô differential equation

dXt = μ(Xt) dt + σ(Xt ) dWt, X0 = x.

Here Wt denotes the standard Brownian motion, and both the drift term μ : R+ → R and
volatility term σ : R+ → R+ are assumed to be sufficiently smooth to guarantee the existence
and uniqueness of a (weak) solution for the above stochastic differential equation (for example,
if the conditions of Theorem 5.15 of [17] are met). Specifically, we assume that σ(x) > 0
for x ∈ R+ in order to avoid interior singularities. We also assume that the boundaries of the
state space are natural for the process Xt . Furthermore, given the underlying diffusion Xt , we
denote by

St = max{s, sup
0<u≤t

{Xu}}, S0 = s ≥ x,

the supremum up to date t of the underlying diffusion. The time t = 0 can be interpreted as the
time when the considered optimal stopping problem arises, e.g. as the time when the lookback
option is issued. In this light s can be seen as the historical supremum ofX, reached before the
stopping problem arose, explaining the case s > x.

As usual, we define the differential operator associated with the underlying diffusion as

A = 1

2
σ 2(x)

d2

dx2 + μ(x)
d

dx
,

and denote by Gr := A − r the differential operator associated with the underlying diffu-
sion killed at the constant rate r . Given these differential operators, we denote by ψ and
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ϕ the increasing and decreasing fundamental solutions of the ordinary differential equation
(Gru)(x) = 0, respectively. As is well known from the literature on linear diffusions,BL′(x) =
ψ ′(x)ϕ(x)− ϕ′(x)ψ(x), where B is the constant Wronskian of the fundamental solutions and

L′(x) = exp

(
−

∫ x 2μ(y)

σ 2(y)
dy

)

denotes the density of the scale function ofXt . Moreover,m′(x) = 2/(σ 2(x)L′(x)) denotes the
density of the speed measure ofXt . For a complete characterization of the basic characteristics
of a linear diffusion and the associated fundamental solutions, see Chapter 2 of [7].

Given the underlying diffusion and its running maximum, our objective is to analyze and
solve the infinite-horizon optimal stopping problem

V (x, s) = sup
τ

E(x,s){e−rτ f (Xτ , Sτ )} (2.1)

under the following standing assumptions.

Assumption 2.1. We assume that the exercise payoff f : R
2+ �→ R is x-nonincreasing, s-

increasing, and satisfies the following conditions:

(a) f (x, s) ∈ C2,1(R2+) for all 0 < x ≤ s < ∞ and 0 < f (0+, s) < ∞ for all s > 0;

(b) for a given s > 0, there exists x̃s ∈ (0, s] such that (Grf )(x, s) � 0 for all x � x̃s and
that (Grf )(0+, s) < 0.

3. Associated stopping problem

3.1. The auxiliary problem and its solution

Instead of tackling the considered two-dimensional optimal stopping problem directly via
variational inequalities, we now take an alternative approach and consider first an associated
parameterized family of one-dimensional stopping problems of the underlying linear diffusion
process. To this end, let Q(s) be a (finite) nonnegative continuous function satisfying the
inequality Q(s) ≥ f (s, s) for all s ∈ R+. Our first aim is to solve, for x ≤ s, the auxiliary
problem

VQ(x, s) = sup
τ

Ex{e−rτ f (Xτ , s) 1{τ<γs } +e−rγsQ(s) 1{τ≥γs }}, (3.1)

where γs = inf{t ≥ 0 | Xt = s}. This problem can be seen as a one-dimensional problem on
the state space (0, s], where the boundary s is killing and, once reached, it leads to a terminal
value Q(s). In what follows, we will show that the set {VQ} generates a family of r-excessive
majorants for the payoff f , from which we can later choose the specific VQ constituting the
solution to the original problem (2.1). It is worth pointing out that an approach based on first
exit times from open intervals has also been utilized in [13].

To attain our objective, respectively denote by

ψ̂(x) = ϕ(y)ψ(x)− ψ(y)ϕ(x) and ϕ̂(x) = ϕ(x)ψ(s)− ψ(x)ϕ(s)

the increasing and decreasing minimal r-excessive mappings for X killed at the boundaries y
and s, y < s (cf. [7, pp. 18–20]). Moreover, for the sake of notational simplicity, we also
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define, for any twice continuously differentiable r-harmonic function u and sufficiently smooth
function g, the functional (Lug) as

(Lug)(x, s) = g′
x(x, s)

L′(x)
u(x)− u′(x)

L′(x)
g(x, s). (3.2)

We note that differentiating (3.2) with respect to the current state x yields

(Lug)
′
x(x, s) = (Grg)(x, s)u(x)m

′(x),

owing to the assumed r-harmonicity of the function u(x).
We now restrict our analysis to ordinary first passage time type stopping rules τy = inf{t ≥

0 | Xt ≤ y} and consider, for a given upper boundary s ∈ R+ and initial state x ∈ [y, s] the
functional

v(y, x, s) = E(x,s){e−rτy f (Xτy , s) 1{τy<γs } +e−rγsQ(s) 1{τy≥γs }}

= ϕ̂(x)

ϕ̂(y)
f (y, s)+ ψ̂(x)

ψ̂(s)
Q(s). (3.3)

Having stated the associated valuation (3.3), we will show that there exists a unique threshold
a
Q
s = a(s,Q) ∈ (0, s] maximizing the functional v(y, x, s) as a function of the boundary y.

Moreover, we will prove that the associated stopping rule τ
a
Q
s

constitutes the optimal stopping
rule for the auxiliary problem (3.1). We first observe by differentiating the functional v(y, x, s)
with respect to y that

∂v(y, x, s)

∂y
= ϕ̂(x)L′(y)

ϕ̂2(y)
{(Lϕ̂f )(y, s)− BQ(s)}.

Consequently, we find that a maximizing threshold exists provided that the difference in the
brackets changes sign from positive to negative only once on the state space (0, s]. This result
is established in the following auxiliary lemma.

Lemma 3.1. There exists a unique maximizing threshold aQs ∈ (0, x̃s] satisfying the ordinary
first-order condition (Lϕ̂f )(a

Q
s , s) = BQ(s).

Proof. Consider the functionalH(x, s) = (Lϕ̂f )(x, s)− BQ(s). We first note that limx↑s
H(x, s) ≤ 0, demonstrating that H(x, s) is nonpositive at the upper boundary s. On the other
hand, since H ′

x(x, s) = (Grf )(x, s)ϕ̂(x)m
′(x), the functional H(x, s) can be re-expressed as

H(x, s) = B(f (s, s)−Q(s))−
∫ s

x

(Grf )(t, s)ϕ̂(t)m
′(t) dt,

showing thatH(x, s) < 0 for all x ∈ (x̃s , s] byAssumption 2.1(b). Moreover, for x < x1 < x̃s ,
applying the mean value theorem for integrals, we obtain

H(x, s) = H(x1, s)−
∫ x1

x

(Grf )(t, s)ϕ̂(t)m
′(t) dt

= H(x1, s)− 1

r
(Grf )(ξ, s)

{
ϕ̂′(x1)

L′(x1)
− ϕ̂′(x)
L′(x)

}
,

where ξ ∈ (x, x1). The assumed boundary behavior together withAssumption 2.1(b) guarantees
that H(0+, s) = ∞. Combining this observation with the continuity and monotonicity of the
functionalH(x, s) then completes the proof of the existence and uniqueness of the maximizing
boundary aQs ∈ (0, x̃s).
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Having demonstrated that there is a unique boundary maximizing the functional (3.3), we
are now in position to prove the following result.

Theorem 3.1. Let Assumption 2.1 hold. Then, for a given s, τ
a
Q
s

= inf{t ≥ 0 | Xt ≤ a
Q
s } is

the optimal stopping time for the problem (3.1) and the value is

VQ(x, s) =
{
v(a

Q
s , x, s), x ∈ (aQs , s],

f (x, s), x ∈ (0, aQs ]. (3.4)

Moreover, if Q(s) is differentiable then

lim
x↑s

∂V Q(x, s)

∂s
= {Q′(s)B − (L
f )(a

Q
s , s)}

ϕ̂2(a
Q
s )

B
, (3.5)

where 
(x) = ϕ(x)ψ ′(s) − ϕ′(s)ψ(x) denotes the minimal decreasing r-excessive function
for the underlying diffusion reflected at s.

Proof. Let VQ(x, s) be the solution to (3.1), and denote by J (x, s) the value given in (3.4).
Obviously, J (x, s) is obtained by following an admissible stopping strategy and, therefore,
VQ(x, s) ≥ J (x, s). In order to prove the opposite inequality, we first observe that it is
clear by construction that J (x, s) is continuous on (0, s] and that J ′

x(a
Q
s −, s) = f ′

x(a
Q
s , s).

Furthermore, since

∂v(a
Q
s , x, s)

∂x
= ϕ(a

Q
s )Q(s)− ϕ(s)f (a

Q
s , s)

ϕ̂(a
Q
s )

ψ ′(x)+ ψ(s)f (a
Q
s , s)− ψ(a

Q
s )Q(s)

ϕ̂(a
Q
s )

ϕ′(x),

we find, by letting x ↓ aQs and invoking the optimality condition (Lϕ̂f )(a
Q
s , s) = BQ(s),

that J ′
x(a

Q
s +, s) = f ′

x(a
Q
s , s), proving the continuous differentiability of J (x, s). Next, let

x ∈ (aQs , s]. Then v(aQs , x, s) ≥ v(x−, x, s) = f (x, s), where the inequality follows from the
optimality of aQs . This shows that J (x, s) is a continuously differentiable majorant of f (x, s).

It remains to establish that J (x, s) is r-excessive for the underlying diffusion X killed
at s. To see that this is indeed the case, we first observe that (GrJ )(x, s) = 0 on (aQs , s] and
(GrJ )(x, s) = (Grf )(x, s) < 0 on (0, aQs ). The alleged result then follows from the inequality
|f ′′
xx(a

Q
s ±, s)| < ∞. We have thus established that J (x, s) is an r-excessive majorant of

f (x, s). Since the optimal value VQ is the smallest of such majorants, we conclude that
J ≥ VQ.

Finally, differentiating the value J (x, s) with respect to s and invoking the optimality
condition (Lϕ̂f )(a

Q
s , s) = Q(s)B then yields (3.5).

Given the assumed differentiability of the exercise payoff, we note by implicit differentiation
that the sensitivity of the optimal threshold with respect to changes in the exogenous upper
boundary s can be expressed as

aQs
′ = BQ′(s)− (L
f )(a

Q
s , s)− (Lϕ̂fs)(a

Q
s , s)

(Grf )(a
Q
s , s)ϕ̂(a

Q
s )m

′(aQs )
.

On the other hand, Theorem 3.1 guarantees that VQ(x, s) constitutes an excessive majorant of
the exercise payoff as long as the inequalityQ(s) ≥ f (s, s) is fulfilled. Combining these obser-
vations shows that ifQ(s) is chosen so that the condition (L
f )(a

Q
s , s) = BQ′(s) is also sat-

isfied, then the value VQ(x, s) satisfies the instantaneous reflection condition VQs ′(s−, s) = 0
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as well and the optimal exercise boundary satisfies the differential equation

aQs
′ = 1

2
σ 2(aQs )

ϕ̂′(aQs )f ′
s (a

Q
s , s)− ϕ̂(a

Q
s )f

′′
xs(a

Q
s , s)

(Grf )(a
Q
s , s)ϕ̂(a

Q
s )

. (3.6)

It is worth pointing out that utilizing the standard free boundary approach for solving the
considered stopping problem results in the differential equation (3.6) as well (cf. Section 13
of [26]).

3.2. The solution to the main problem

Before proving our main existence theorem for (2.1), we first need to ensure the finiteness
of the value of the stopping problem.

Lemma 3.2. Let Assumption 2.1 hold, and assume that
∫ ∞

0 E(x,s){e−rtf (0, St )} dt < ∞ for
all 0 < x ≤ s < ∞. Then the value function (2.1) is finite.

Proof. Fix 0 < x ≤ s < ∞, and denote by Tr ∼ Exp(r) an exponentially distributed
random time, independent of Wt . Since f is continuous and (Xt , St ) is a strong Markov
process, it is known (see, e.g. Proposition 2.1 of [11] and also Lemma 2.2 of [8]) that

u(x, s) := E(x,s)

{
sup

0≤t≤Tr
f (0, St )

}
= E(x,s){f (0, STr )}

is r-excessive. Moreover, it is clear that

f (x, s) ≤ f (0, s) = E(x,s){f (0, s)} ≤ E(x,s){f (0, STr )} = u(x, s),

demonstrating that u dominates f . Since V constitutes the minimal r-excessive majorant of f ,
we note that V ≤ u.

Furthermore, by straightforward calculations,

u(x, s)= E(x,s){f (0, STr )} = E(x,s)

{
r

∫ ∞

0
e−rtf (0, St ) dt

}
= r

∫ ∞

0
E(x,s){e−rtf (0, St )} dt.

The last term on the right-hand side of this equality is finite by assumption and, thus, V (x, s) ≤
u(x, s) < ∞.

Having established the finiteness of the value of the optimal stopping strategy we are now
in position to state our main theorem characterizing the value and optimal exercise policy of
problem (2.1).

Theorem 3.2. Let Assumption 2.1 hold, and assume that
∫ ∞

0 E(x,s){e−rtf (0, St )} dt < ∞.
Then there exists a unique function a∗

s ∈ (0, x̃s) such that τa∗
s

= inf{t ≥ 0 | Xt ≤ a∗
St

} is the
optimal stopping time for the considered problem (2.1). Moreover, there exists a unique Q(s)
for which the value V (x, s) reads as in (3.4).

Proof. For x ≤ s, problem (2.1) can be rewritten as

sup
τ

E(x,s){e−rτ f (Xτ , s) 1{τ<γs } +e−rγs sup
ξ

E{s,s}{e−rξ f (Xξ , Sξ )} 1{τ≥γs }},

where γs = inf{t ≥ 0 | Xt = s}, so that it is of the form of the auxiliary problem (3.1), with

Q(s) = sup
ξ

E{s,s}{e−rξ f (Xξ , Sξ )}.
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Obviously, Q(s) ≥ f (s, s) and, by Lemma 3.2, Q(s) < ∞ for all s < ∞. Therefore, the
claim now follows from Theorem 3.1.

Theorem 3.2 states a set of sufficient conditions under which the auxiliary stopping problem
constitutes the value of the optimal stopping problem (2.1). The sensitivity of the value and
optimal boundary with respect to changes in the volatility of the underlying diffusion are now
summarized in the following result.

Theorem 3.3. Assume that the conditions of Theorem 3.2 are satisfied, that the difference
μ(x) − rx is nonincreasing, and that a transversality condition limt→∞ Ex{e−rtXt } = 0
holds. Then the value function is strictly convex as a function of the current state x on the
continuation set (a∗

s , s], and increased volatility increases the value V (x, s) and decreases the
optimal stopping boundary a∗

s .

Proof. Fix s < ∞, and let σ1(x) ≤ σ2(x) for all x. For i = 1, 2, denote by Vi and
a∗
i the value function and the optimal stopping boundary for the problem (2.1), respectively,

with respect to σi . The assumed monotonicity of the difference μ(x) − rx together with the
transversality condition guarantee that the fundamental solutions are convex (see Corollary 1
of [2]). Furthermore, the r-excessivity of the value V (x, s) implies that it constitutes a positive
affine transformation of the minimal solutions ψ(x) and ϕ(x) on the set (a∗

s , s) where it is
r-harmonic, and, consequently, it is convex there. Since the sign of the relationship between
increased volatility and the value of an r-excessive mapping is positive on the set where it is
r-harmonic (cf. Theorem 4 of [2]), we find that V1(x, s) ≤ V2(x, s). Suppose, contrary to our
claim, that a∗

1 < a∗
2 , and let x ∈ (a∗

1 , a
∗
2) so that x is in the continuation region with respect

to V1, and in the stopping region with respect to V2. Then V2(x, s) = f (x, s) < V1(x, s),
which contradicts the inequality derived above.

Theorem 3.3 states a set of conditions under which increased volatility unambiguously
increases the value of the optimal stopping policy and postpones exercise by lowering the
optimal boundary.

3.3. A useful extension

It turns out that our existence result can be directly generalized to also cover a general class
of continuous exercise payoffs satisfying a boundedness condition. To this end, we consider
the problem (2.1) under the following weakened assumptions.

Assumption 3.1. For each s > 0, let xs ∈ [0, s] be the point at which f (x, s) is maximized.
Assume also that the exercise payoff f : R

2+ �→ R satisfies the following conditions.

(a) f (x, s) ∈ C(R2+) for all 0 < x ≤ s < ∞ and 0 < f (xs, s) < ∞ for all s > 0.

(b) E(x,s){sup0≤t≤Tr f (xSt , St )} < ∞.

Under this assumption, we can again constitute the auxiliary problem (3.1) for a nonnegative,
continuous Q(s) satisfying Q(s) ≥ f (s, s), and the following proposition holds. (Denote by
τ ∗
Q and τ ∗ the optimal stopping times for auxiliary problem (3.1) and (2.1), respectively.)

Proposition 3.1. Let Assumption 3.1 hold. Then

(a) the value V (x, s) is finite;

(b) there exists a unique Q(s) such that VQ(x, s) = V (x, s). Moreover, if τ ∗
Q < ∞ a.s.,

τ ∗ = τ ∗
Q.
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Proof. (a) The proof is completely analogous to that of Lemma 3.2.
(b) For each finiteQ(s), the linear auxiliary problem (3.1) has a solution by general existence

results concerning linear diffusions (see, e.g. [26]). Establishing the alleged claim is analogous
to the proof of Theorem 3.2.

Interestingly, the unique existence of a solution to the general problem involving a maximum
process can be reduced to the search for a unique solution to a linear diffusion problem.
However, with general assumptions we cannot, naturally, guarantee the shape of the stopping
region. The following corollary presents an example of how this existence result can be used
(cf. Proposition 6.1 below).

Corollary 3.1. Let Assumption 3.1 hold. Furthermore, assume that, for all s > 0 and Q(s),
there exists a unique stopping region S

Q
s such that τ ∗

Q = {t ≥ 0 | Xt ∈ S
Q
s } is the optimal

stopping time for the auxiliary problem (3.1). Then, for each s > 0, there exists a unique
stopping region Ss ⊂ [0, s] such that τ ∗ = {t ≥ 0 | Xt ∈ SSt }, where Ss = S

Q
s for someQ.

4. The discretization

Our objective is now to develop a sequence of optimal stopping problems by discretizing
the state of the supremum process and to show that the sequence converges in the limit to the
original stopping problem (2.1). To this end, we need the following two additional assumptions.

Assumption 4.1. Assume, in addition to Assumption 2.1, that

(a)
∫ ∞

0 E(x,s){e−rtf (0, St )} dt < ∞ for all 0 < x ≤ s < ∞;

(b) f (x, s) is s-Hölder continuous, i.e. there exist M > 0 and 0 < α ≤ 1 such that
|f (x, s1)− f (x, s2)| ≤ M|s1 − s2|α for all s1, s2 ∈ R+ and x < min{s1, s2}.

First of all, let us prove an equivalent condition to Assumption 4.1(a).

Lemma 4.1. Let Assumption 2.1 hold. Then
∫ ∞
s
(f ′
s (0, u)/ψ(u)) du < ∞ for all s ∈ R+ if

and only if Assumption 4.1(a) holds.

Proof. Let T ∼ Exp(r). From the proof of Lemma 3.2 we know that E(x,s){f (0, ST )} =
r
∫ ∞

0 E(x,s){e−rtf (0, St )} dt .
Observe that (see [7, p. 26]), for all x < y, we have Px(ST ≤ y) = Px(τy > T ) =

1 − ψ(x)/ψ(y), where τy = inf{t ≥ 0 | Xt ≥ y}. Using this fact and Fubini’s theorem, we
can calculate

r

∫ ∞

0
E(x,s){e−rtf (0, St )} dt = E(x,s){f (0, ST )}

=
∫ ∞

s

f (0, y) dP(ST ≤ y)

=
∫ ∞

s

f (0, y)
ψ(x)ψ ′(y)
ψ2(y)

dy

= f (0, s)+ ψ(x)

∫ ∞

s

f ′
s (0, u)

ψ(u)
du,

whence the claim follows.
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4.1. Introducing the recursive algorithm

Fix a step size z > 0, number of steps n ∈ N, and starting points (X0, S0) = (x, s) with
0 < x < s, and, for all s, fix a terminal payoff function Q(s), which satisfies Q(s) ≥ f (s, s)

and limt→∞ E(x,s){e−rtQ(St )} = 0. Define sk := s + kz for k ∈ N. From now on in this
section we assume that the supremum process St can only take values sk, k = 0, 1, 2, . . . , n
(for convenience, we define s := s0). That is, as we start from (x, s), the supremum process St
jumps to the state s1 when the diffusionXt reaches the point s and we ‘restart’ (Xt , St ) from the
state (s, s1). Again, when Xt reaches the new supremum value s1, the process St jumps to s2
and we again ‘restart’ (Xt , St ), now from (s1, s2). The discretization is graphically illustrated
in Figure 1. It is worth mentioning that, since St takes values from a finite arithmetic sequence,
we know that at any time t > 0 there has been only finitely many jumps in the path of the
discretized supremum. Furthermore, we consider sn to be the highest possible level for Xt ,
and, consequently, for St . This means that, when Xt reaches sn, the process is stopped (killed)
and we receive the terminal payoff Q(sn) at that state.

Having presented the discretized version of the running supremum of the underlying dif-
fusion, we now apply the findings of our Theorem 3.1 and define recursively a sequence of
continuously differentiable r-excessive values dominating the exercise payoff. To this end, we
first define the terminal value of the sequence as Vn+1 ≡ Q(sn). Given the terminal value Vn+1,
we now define recursively for any index 1 ≤ k ≤ n the values Vk as Vk := J (sk−1, sk),

J (x, sk) = sup
τ

E(x,sk){e−rτ f (Xτ , sk) 1{τ<γsk } +e−rγsk Vk+1 1{τ≥γsk }}

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ(x)ψ(sk)− ψ(x)ϕ(sk)

ϕ(âsk )ψ(sk)− ψ(âsk )ϕ(sk)
f (âsk , sk)

+ ψ(x)ϕ(âsk )− ϕ(x)ψ(âsk )

ψ(sk)ϕ(âsk )− ϕ(sk)ψ(âsk )
Vk+1, x ∈ (âsk , sk],

f (x, sk), x ∈ (0, âsk ].

(4.1)

âs

âs1

âs2

âs3

âs4x

s

Xt

s1

s2

s3

s4

Figure 1: An illustrative example of how a sample path evolves in the constructed discretized problem.
Here n = 4 and âsk is the optimal stopping boundary at step k for k = 0, 1, 2, 3, 4. We stop immediately
after the diffusion hits either the lower boundary âsk , when we receive a payoff f (âk, sk), or the maximum

level s4, implying payoff Q(s4) (exogenously given terminal function).
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Here γsk = inf{t ≥ 0 | Xt = sk} for k = 1, . . . , n denotes the first hitting time of X to the
state sk , and âsk ∈ (0, x̃sk ) constitutes the unique root of the ordinary first-order condition
(Lϕ̂f )(âsk , sk) = BVk+1 (cf. Theorem 3.1). Finally, the initial value is chosen asV0 = J (x, s).
It is clear that these identities completely characterize the sequence of values {Vk}n+1

k=0 and the
sequence of optimal exercise boundaries {âsk }nk=0. Moreover, we also observe that, for z > 0
and n ∈ N, this discretized problem can be written in the compact form

J (z, n, x, s) := sup
τ

E(x,s)

{
e−rτ f

(
Xτ , s + z

n−1∑
k=1

1{γsk<τ }
)

1{τ<γsn } +e−rγsnQ(sn) 1{τ≥γsn }
}

= sup
τ

E(x,s)

{
e−rτ f (Xτ , Sτ ) 1{τ<γsn } +e−rγsnQ(sn) 1{τ≥γsn }

}
, (4.2)

where St denotes the discretized supremum process.
In this section we shall denote by St a discretized supremum process, whereas the normal

continuous process is denoted by S0
t .

4.2. Proving that the algorithm works

Let us first establish that the limiting value function of the sequence does not depend on the
choice of terminal value function Q(s).

Lemma 4.2. Let Assumption 4.1 hold, and fix s, z > 0. Furthermore, let Q(s) ≥ f (s, s)

be such that limt→∞ E(x,s){e−rtQ(S0
t )} = 0. Then the limit limn→∞ J (z, n, x, s) does not

depend on the choice of Q(s).

Proof. Fix n ∈ N and Q1(s) > Q2(s). For i = 1, 2, denote by J i the value function
associated to the terminal payoff Qi(s), and let τ1 be the optimal stopping rule maximizing
the discretized problem with Q1(s) as a terminal value (this exists by Theorem 3.1). Since
Q1(s) > Q2(s), we know that J 1(z, n, x, s)− J 2(z, n, x, s) ≥ 0. On the other hand, we can
apply (4.2) to make an estimate:

J 1(z, n, x, s)− J 2(z, n, x, s)

= E(x,s){e−rτ1f (Xτ1 , Sτ1) 1{τ1<γsn } +e−rγsnQ1(sn) 1{τ1≥γsn }}
− sup

τ
E(x,s){e−rτ f (Xτ , Sτ ) 1{τ<γsn } +e−rγsnQ2(sn) 1{τ≥γsn }}

≤ E(x,s){e−rτ1f (Xτ1 , Sτ1) 1{τ1<γsn } +e−rγsnQ1(sn) 1{τ1≥γsn }}
− E(x,s){e−rτ1f (Xτ1 , Sτ1) 1{τ1<γsn } +e−rγsnQ2(sn) 1{τ1≥γsn }}

= E(x,s){e−rγsn (Q1(sn)−Q2(sn)) 1{τ1≥γsn }}
≤ E(x,s){e−rγsn (Q1(sn)−Q2(sn))}.

Since limn→∞ E(x,s){e−rγsnQi(sn)} = 0 for i = 1, 2, by assumption, we note that the last term
tends to 0 as n approaches ∞.

According to Lemma 4.2 the algorithm results into the same value irrespective of the chosen
terminal valueQ(s) as long as it satisfies the relatively weak conditions of our lemma. Hence,
depending on the precise form of the exercise payoff and its behavior at the upper boundary
s, natural choices for Q(s) are, for example, additive forms Q(s) = f (s, s) + a, a ≥ 0, or
multiplicative forms Q(s) = bf (s, s), b ≥ 1.

https://doi.org/10.1239/jap/1409932676 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932676


Optimal stopping of the maximum process 829

It remains to establish that the sequences of optimal boundaries and value functions converge
towards the corresponding ones of the original problem (2.1) as n → ∞ and z → 0. This
property is established in our next theorem.

Theorem 4.1. Let Assumption 4.1 hold.

(a) Fix z > 0. Then the limit J (z, x, s) := limn→∞ J (z, n, x, s) exists finitely. Furthermore,
limz→0 J (z, x, s) = supτ E(x,s){e−rτ f (Xτ , S0

τ )}.
(b) Fix s > 0. Then âs approaches the optimal stopping boundary a∗

s as n → ∞ and z → 0.

Proof. (a) Choose the terminal value function as Q(sk) = f (sk, sk). We see at once that
this choice satisfies the conditions of Lemma 4.2 under Assumption 4.1. Moreover, with
this choice, the value J (z, n, x, s) constitutes an increasing sequence in n. To see this,
fix N ∈ N and let {V Nk }Nk=0 be a sequence with respect to the number of steps N . Then
V NN = Q(sN−1) = f (sN−1, sN−1). On the other hand, with the number of steps being N + 1
we obtain V N+1

N+1 = Q(sN) = f (sN , sN), leading to

V N+1
N = sup

τ
E(sN−1,sN ){e−rτ f (Xτ , sN) 1{τ<γsN } +e−rγsN Q(sN) 1{τ≥γsN }}

≥ f (sN−1, sN )

≥ f (sN−1, sN−1)

= V NN .

Consequently, V N+1
k ≥ V Nk for all k ≤ N , so that especially V N+1

0 = J (z,N + 1, x, s) ≥
J (z,N, x, s) = V N0 .

Moreover, utilizing expression (4.2) and applying the assumed s-Hölder continuity, we can
make the following estimation for an arbitrary n ∈ N:

J (z, n, x, s) ≤ sup
τ

E(x,s){e−rτ f (Xτ , S0
τ + z) 1{τ<γsn } +e−rγsnQ(sn) 1{τ≥γsn }}

≤ sup
τ

E(x,s){e−rτ f (Xτ , S0
τ + z)} + E(x,s){e−rγsnQ(sn)}

≤ sup
τ

{E(x,s){e−rτ f (Xτ , S0
τ )} + E(x,s){e−rτMzα}} + E(x,s){e−rγsnQ(sn)}

≤ sup
τ

E(x,s){e−rτ f (Xτ , S0
τ )} +Mzα + E(x,s){e−rγsnQ(sn)}

< ∞.

The finiteness follows from Lemma 3.2. Since J (z, n, x, s) is a bounded increasing sequence,
it converges as n → ∞. Since limn→∞ E(x,s){e−rγsnQ(sn)} = 0, we obtain

J (z, x, s) = lim
n→∞ J (z, n, x, s) ≤ sup

τ
E(x,s){e−rτ f (Xτ , S0

τ )} +Mzα. (4.3)

On the other hand, utilizing again expression (4.2) we also obtain the inequality

J (z, x, s) = sup
τ

E(x,s)

{
e−rτ f

(
Xτ , s + z

∞∑
k=1

1{γsk<τ }
)}

≥ sup
τ

E(x,s){e−rτ f (Xτ , S0
τ − z)}

≥ sup
τ

E(x,s){e−rτ f (Xτ , S0
τ )} −Mzα.
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Combining this with (4.3) we see that

sup
τ

E(x,s){e−rτ f (Xτ , S0
τ )} −Mzα ≤ J (z, x, s) ≤ sup

τ
E(x,s){e−rτ f (Xτ , S0

τ )} +Mzα, (4.4)

so that by letting z → 0 we obtain J (z, x, s) → supτ E(x,s){e−rτ f (Xτ , S0
τ )}.

(b) The value function V of the original problem (2.1) can be written as (cf. Theorem 3.2)

V (x, s) = sup
τ

E(x,s){e−rτ f (Xτ , s) 1{τ<γs } +e−rγs sup
ξ

E(s,s){e−rξ f (Xξ , S0
ξ )} 1{τ≥γs }},

(4.5)
where τ and ξ are admissible stopping times, and the supremum is attained with τa∗

s
= inf{t ≥

0 | Xt ≤ a∗
s }, where a∗

s ∈ (0, x̃s) is the unique stopping boundary from Theorem 3.2.
On the other hand, the discretized problem can be written as

lim
z→0

J (z, x, s) = lim
z→0

sup
τ

E(x,s){e−rτ f (Xτ , s) 1{τ<γs } +e−rγs V1 1{τ≥γs }}
= sup

τ
E(x,s){e−rτ f (Xτ , s) 1{τ<γs } +e−rγs 1{τ≥γs } lim

z→0
V1},

where the supremum is attained with τâs , where âs ∈ (0, x̃s) is the unique stopping boundary.
Now J (z, s−, s) = V1 and according to part (a) limz→0 J (z, s−, s) = supτ E(s,s){e−rτ
f (Xτ , S

0
τ )}. Hence, we obtain the equality

lim
z→0

J (z, x, s) = sup
τ

E(x,s){e−rτ f (Xτ , s) 1{τ<γs }

+ e−rγs sup
ξ

E(s,s){e−rξ f (Xξ , S0
ξ )} 1{τ≥γs }},

which coincides with (4.5). It follows that we have âs = a∗
s .

Theorem 4.1 demonstrates that the developed algorithm indeed converges to the proposed
limit. However, it does not characterize the speed of convergence to the limit as the discretization
step becomes smaller. This subject is addressed in the following result.

Corollary 4.1. Let Assumption 4.1 hold. Then the rate of convergence limz→0 J (z, x, s) =
V (x, s) is of order O(zα).

Proof. From (4.4) we see straightforwardly that J (z, x, s) = V (x, s)+ O(zα).

Unfortunately, Corollary 4.1 characterizes the convergence of the algorithm only in terms of
the denseness of the applied discretization and not in terms of the number of steps. In order to
characterize that, we would have to be able to estimate the difference |V (x, s)− J (z, n, x, s)|,
which is a highly process-dependent quantity.

4.3. A useful extension

Let us present a discretization associated to the generalization introduced in Subsection 3.3.
The proofs are analogous to those in Subsection 4.2, and are thus omitted.

Theorem 4.2. Let Assumption 3.1 hold. In addition, assume that

(a) f (x, s) is s-Hölder continuous;

(b) Q(s) ≥ f (s, s) is such that limt→∞ E(x,s){e−rtQ(S0
t )} = 0.

Then limz→∞ limn→∞ J (z, n, x, s) = V (x, s), where J is defined through (4.1).
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Proposition 4.1. Let the assumptions of Theorem 4.2 hold. In addition, assume that, for all
s > 0 and Q, there exists a unique stopping region S

Q
s such that τ ∗

Q = {t ≥ 0 | Xt ∈ S
Q
s }

provides the value for the auxiliary problem (3.1). Then

(a) limz→∞ limn→∞ J (z, n, x, s) = V (x, s);

(b) limz→0 limn→∞ τ̂Ŝs
= τ ∗

s , where τ̂Ŝs
= inf{t ≥ 0 | Xt ∈ Ŝs} and Ŝs is the stopping

region for the discretized problem with a state s, and τ ∗
s is the optimal stopping time for

the problem (2.1) with a state s.

Theorem 4.2 illustrates that, under the stated assumptions, the discretization approaches the
value irrespective of whether the value is attained with a finite stopping time or not. In addition,
if we know that, for all admissible Q(s), the value of the auxiliary problem is attained with
an admissible stopping time then the stopping region ‘approaches’ the stopping region of the
initial problem as well. All in all, the generalization in Subsection 3.3 ensures that the proof of
the existence of a solution to problem (2.1) reduces to the proof of the existence of a solution
to the linear problem (3.1). Furthermore, the results above guarantee that these solutions can
be attained numerically.

5. Explicit illustration: perpetual lookback with floating strike

In order to illustrate the algorithm developed in our paper, we now consider the valuation and
optimal exercise of a perpetual lookback option with a floating strike. In this case the exercise
payoff reads as f (x, s) = (s − kx), where k ∈ R+ is a known exogenously given constant.
Therefore, our objective is to analyze and solve the stopping problem (cf. [9], [10], [19], [20],
and [24])

V (x, s) = sup
τ

E(x,s){e−rτ (Sτ − kXτ )}. (5.1)

It is clear that, by letting k ↓ 0, the problem becomes the valuation of a perpetual Russian
option (cf. [27]). As our general findings indicate, in this case we have the following result.

Proposition 5.1. Assume that
∫ ∞

0 E(x,s){e−rtSt } dt < ∞, that there is a single state x̃s ∈ R+
so that k(rx − μ(x)) � rs for x � x̃s , and that limx↓0 μ(x) ≥ 0. Then the value function of
problem (5.1) reads as

Va∗(x, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(s − ka∗
s )ψ

′(a∗
s )+ kψ(a∗

s )

BL′(a∗
s )

ϕ(x)

+ (ka
∗
s − s)ϕ′(a∗

s )− kϕ(a∗
s )

BL′(a∗
s )

ψ(x) if x ∈ (a∗
s , s),

s − kx if x ∈ (0, a∗
s ],

where a∗
s can be seen either as the limit boundary stated in Theorem 4.1 or, alternatively, as

the solution of the ordinary differential equation

a′
s = ϕ̂′(as)σ 2(as)

2ϕ̂(as)(r(kas − s)− kμ(as))
,

subject to the maximality principle. The optimal stopping time is τ ∗ = inf{t ≥ 0 | Xt ≤ a∗
St

}.
5.1. Geometric Brownian motion example

Assume now that Xt evolves according to a geometric Brownian motion characterized by
the stochastic differential equation dXt = μXt dt +σXt dWt , where μ ∈ (−∞, r) and σ > 0.
In this case, the decreasing and increasing fundamental solutions read as ϕ(x) = xγ1 and
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ψ(x) = xγ2 , where

γi = 1

σ 2

(
1

2
σ 2 − μ+ (−1)i

√(
1

2
σ 2 − μ

)2

+ 2σ 2r

)
(5.2)

are the solutions of the characteristic equation 1
2σ

2γ (γ − 1)+ μγ − r = 0 for i = 1, 2. Note
that γ1 < 0 and, since μ < r , we have γ2 > 1. Under this setting, problem (5.1) can be solved
explicitly (see [19] and [24]):

Proposition 5.2. WhenXt is a geometric Brownian motion, the value of the perpetual lookback
(5.1) is

V ∗(x, s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x/β

γ2 − γ1

{
(γ2 − kβ(γ2 − 1))

(
x

βs

)γ1−1

−(γ1 − kβ(γ1 − 1))

(
x

βs

)γ2−1}
if βs < x ≤ s,

s − kx if 0 < x ≤ βs,

and the optimal stopping time is given by τ ∗ = inf{t ≥ 0 | Xt ≤ βSt }, where β is the unique
solution to the equation

βγ2−γ1 = (γ2 − 1)(γ1 − kβ(γ1 − 1))

(γ1 − 1)(γ2 − kβ(γ2 − 1))
.

The comparison between the exact and an approximate result are summarized in Table 1.
We see from the results in this table that â is decreasing while V̂ is increasing in n (as the proof
of Theorem 4.1 indicates), and that the computing time is linear. Another positive feature is
that the algorithm simultaneously produces approximations for the optimal boundary a∗

s for
other ss as well along the discretized supremum process.

In Table 2 we see that while the original approximation for a∗
10 was very good, other estimates

for a∗
15, . . . , a

∗
50 are also quite good, every single one being under half a percent away from the

exact value.

Table 1: The values for the model are (σ, μ, r, k) = (0.2, 0.05, 0.08, 1), (x, s) = (7, 10), and, for the
approximation, we chose Q(s) = f (s, s) ≡ 0, z = 0.1. The exact values are V (7, 10) = 4.03 and

a∗
10 = 5.34.

n V ∗ − V̂ â − a∗ Time (s)

100 0.89 1.0 0.2
1 000 0.27 0.21 3

10 000 0.049 0.036 29
100 000 0.0020 0.0014 288

Table 2: A comparison of the exact values a∗
s with the approximate values.

s a∗ â − a∗ (â − a∗)/a∗ (%)

15 8.0 0.0099 0.12
20 10.7 0.021 0.19
25 13.4 0.034 0.25
30 16.0 0.048 0.30
40 21.3 0.084 0.39
50 26.7 0.13 0.47
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5.2. Mean reverting diffusion

To illustrate our findings in a somewhat more complicated setting, let dXt = μXt(θ −
Xt) dt + σXt dWt , where μ, θ, σ > 0 are exogenously given constants. The fundamental
solutions are now ψ(x) = xγ2M(γ2, 1 + γ2 − γ1, 2μθx/σ 2) and ϕ(x) = xγ1U(γ1, 1 + γ1 −
γ2, 2μθx/σ 2), whereM : R

+ → R+ and U : R+ → R+ denote the confluent hypergeometric
functions of the first and second kind, respectively (cf. [1, p. 504]), and γi, i = 1, 2, are as
in (5.2). These functions are very difficult to handle analytically and, therefore, we numerically
analyze the solution to (5.1) under the following parameter specifications: μ = 0.05, θ = 0.1,
σ = 0.15, r = 0.08, and k = 1.

Let us apply the algorithm. From Table 3 we see that choosing the highest possible state for
Xt to be sn = 75 or sn = 200 has only a minor impact on the solution. Thus, the choice sn = 75
is adequate for the estimation when s ≤ 10. Moreover, since the f (x, s) is now s-Lipschitz
continuous with Lipschitz constant 1, we see from Corollary 4.1 that we can quite surely say that
|J (x, s)−V (x, s)| < z for s ≤ 10, where J is our approximate function and V the (unknown)
optimal value function. In Table 4 we see the effect of changing the grid parameter z. The
impact of increased volatility on the optimal boundary and the value are illustrated in Figure 2.

Table 3: The grid z = 0.1 is fixed, and the differences |J (0.1, n1, 9.9, 10) − J (0.1, n2, 9.9, 10)| are
calculated, where ni is such that the highest state for Xt is sni .

Differences |J (0.1, n1, 9.9, 10)− J (0.1, n2, 9.9, 10)|
sn

50 75 100 200

50 — 4.3 × 10−5 4.3 × 10−5 4.3 × 10−5

75 — 6.6 × 10−9 6.6 × 10−9

100 — 5.2 × 10−13

Time (s) 50 118 234 598

Table 4: The initial point (x, s) = (2, 3) and the highest state sn = 75 is fixed. We compare how the
solution changes as we change z (in each case n is chosen such that sn = 75).

z J (2, 3) â3 â7 â10 Time (s)

0.1 1.000 889 1.977 71 4.576 40 6.441 45 95
0.01 1.000 233 1.988 58 4.586 51 6.450 46 958
0.005 1.000 209 1.989 17 4.587 07 6.450 96 1875
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1

3 4 5 6 7 8 9 10
s

J(s –z, s)

σ = 0.15
σ = 0.25
σ = 0.35

6

5

4

3

2

1

3 4 5 6 7 8 9 10
s

âs

σ = 0.15
σ = 0.25
σ = 0.35

Figure 2: The stopping boundaries âs and the values J (s − z, s) are calculated for s ∈ (3, 10) and
σ = 0.15, 0.25, 0.35. We have chosen z = 0.01 and sn to be 75 (with σ = 0.15), 100 (with σ = 0.25),

and 150 (with σ = 0.35).
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6. Explicit illustration: π -option

In order to utilize our findings on the generalized case introduced in Subsections 3.3 and
4.3, we will now consider the valuation and optimal exercise of a π -option introduced in [14].
In this case the exercise payoff reads as f (x, s) = xκsη − K , where κ, η,K ≥ 0 are known
exogenously given constants. That is, we plan to analyze and solve the stopping problem

V (x, s) = sup
τ

E(x,s){e−rτ (Xκτ Sητ −K)}. (6.1)

LetQ(s) ≥ f (s, s) be a continuous function, and assume that limt→∞ E(x,s){e−rtQ(St )} =
0. Consider the auxiliary problem

VQ(x, s) = sup
τ

Ex{e−rτ (Xκτ Sητ −K) 1{τ<γs } +e−rγsQ(s) 1{τ≥γs }}. (6.2)

Applying our tools, we obtain the following result (cf. Section 4 of [14]).

Proposition 6.1. Assume that
∫ ∞

0 Ex{e−rtf (St , St )} dt < ∞ and that, for each s > 0, there
exists x̃s ∈ (0, s] such that (A − r)f (x, s) � 0 for all x � x̃s . Then, for each s > 0, the value
for (6.1) is finite and the optimal stopping time is τSs

= inf{t ≥ 0 | Xt ∈ Ss}, where Ss is
s-dependent and is either ∅ or of the form [u∗

s , y
∗
s ], where 0 < u∗

s ≤ y∗
s < s are uniquely

determined.

Proof. Let us apply Proposition 3.1 and Corollary 3.1, and let us show that, for each s > 0
andQ(s), the stopping region S

Q
s of the auxiliary problem (6.2) is of the claimed form. Denote

by CQs the continuation region at a fixed state s > 0. Clearly, f (0, s) < 0 for all s > 0, which
implies that the region near the boundary 0 belongs to the continuation region. It follows from
Corollary 4 of [21] (see also Theorem 2 of [6]) that (0,min{u∗

s , s}) belongs to a continuation
region, where u∗

s = argmaxx∈R+{f (x, s)/ψ(x)}. Moreover, under our assumptions, u∗
s is

unique (cf. Lemma 3.6 of [3]). If u∗
s > s then (0, s) ⊂ CQ and S

Q
s = ∅. Assume now that

s is such that u∗
s < s. We know by Dynkin’s formula that u∗

s > x̃s . Now, proceeding as in
the proof of Lemma 3.1, we see that there exists a unique y∗

s ∈ [u∗
s , s) maximizing v(y, x, s)

(see (3.3)) for all x ∈ (y∗
s , s). Moreover, either the derivative v′

y(y
∗
s , x, s) = 0 and y∗

s ≥ u∗
s

or v′
y(y

∗
s , x, s) < 0 and y∗

s = u∗
s . In the former case S

Q
s = [u∗

s , y
∗
s ] and in the latter case

S
Q
s = ∅. The optimality of the stopping time τ

S
Q
s

for the auxiliary problem follows after
noting that the resulting value is an r-excessive majorant of the exercise payoff. The results
now follow from Proposition 3.1 and Corollary 3.1.

The stopping region Ss and its dependence on s can be characterized more closely under
more restricting assumptions. However, since our purpose is not to provide an exhaustive
treatment of this subject, we will not go deeper into the analysis of the π -option.

6.1. Numerical example

By Theorem 4.2, our discretization works for the π -option. In our numerical illustration we
have chosen κ = 0.9, η = 1, K = 9, and Q(s) = f (s, s). Although the numerics indicate
that the algorithm also converges for η > 1, we were not able to prove the convergence in
Theorem 4.1 without Hölder continuity.

6.1.1. Geometric Brownian motion. Let the setting be as in Subsection 5.1. In [14] the valuation
of the π -option was solved under the geometric Brownian motion, which gives us a baseline
for our numerical approximations.
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Table 5: The value of π -option for geometric Brownian motion. The values for the model are (σ, μ, r) =
(0.2, 0.03, 0.1), (x, s) = (10, 13), and z = 0.25. The exact values are: V (10, 13) = 115.4 and y∗

13 =
7.076.

n V ∗ − V̂ ŷ − y∗
13 Time (s)

400 7.50 0.6 0.7
4 000 2.5 0.18 4.7

40 000 0.70 0.050 47
400 000 0.07 0.0053 467

Table 6: The value of the π -option in the case of a mean reverting diffusion. The values for the model
are (σ, γ, μ, r) = (0.2, 0.1, 0.03, 0.08) and (x, s) = (11, 13). The highest state sn = 75 is fixed. We
compare how the solution changes as we change z (in each case n is chosen such that sn = 75). Now

u∗
13 = 1.40.

z V̂ (11, 13) ŷ13 ŷ15 ŷ20 Time (s)

0.1 105.470 9.985 4 11.857 7 16.584 7 38
0.01 105.342 10.018 4 11.891 9 16.621 2 300
0.00 5 105.335 10.020 2 11.893 8 16.623 3 600
0.0025 105.332 10.021 1 11.894 7 16.624 3 1200

From Table 5 we see that in about 50 seconds we were able to attain results that are within
a 1% error margin. Note that u∗

13 := argmax{f (x, 13)/ψ(x)} = 1.29 is independent of Q(s),
z, and n, and is always exact.

6.1.2. Mean reverting diffusion. Let the setting be as in Subsection 5.2. Now there is no known
exact solution. As was the case earlier (Subsection 5.2), it has only a minor impact on the
solution whether we choose the highest possible state for Xt to be sn = 70 or sn = 200.
Therefore, the choice sn = 75 is adequate for our estimation. The results are summarized in
Table 6.
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