Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T10:59:08.071Z Has data issue: false hasContentIssue false

Early herding at Măgura-Boldul lui Moş Ivănuş (early sixth millennium BC, Romania): environments and seasonality from stable isotope analysis

Published online by Cambridge University Press:  25 January 2017

Marie Balasse*
Affiliation:
Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209 CNRS/Muséum national d'Histoire naturelle, France
Adrian Bălăşescu*
Affiliation:
Muzeul National de Istorie a Romaniei, Romania
Anneke Janzen*
Affiliation:
Department of Anthropology, University of California Santa Cruz, USA
Joël Ughetto-Monfrin*
Affiliation:
Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209 CNRS/Muséum national d'Histoire naturelle, France
Pavel Mirea*
Affiliation:
Musée Départemental Teleorman, Romania
Radian Andreescu*
Affiliation:
Muzeul National de Istorie a Romaniei, Romania

Abstract

Stable isotope analyses were conducted on faunal remains from the site of Măgura-Boldul lui Moş Ivănuş with the objective of characterizing the environments and seasonality of husbandry in the earliest Neolithic (Gura Baciului-Cârcea/Starčevo-Criş I) of southern Romania. Results from bone collagen analysis indicate extensive herding strategies for cattle and pigs. However, sequential analysis in tooth enamel also provides evidence for winter leaf foddering in one bovine, potentially kept by the settlement over winter. In some instances, sheep were fed a 13C-enriched resource in late winter, which may have also coincided with lactation. It could not be determined whether this contribution was from C3 or C4 plants. Although isolated, these findings may be important in evaluating how early agricultural communities dealt with environmental constraints. These results are also interpreted with reference to the models of intensive mixed farming systems recently proposed by Bogaard (2004) and Halstead (2006).

Dans le but de caractériser les environnements et la saisonnalité de l'élevage au début du Néolithique (Gura Baciului-Cârcea/Starčevo-Criş I) dans le Sud de la Roumanie, des analyses d'isotopes stables ont été effectuées sur des restes fauniques du site de Măgura-Boldul lui Moş Ivănuş. Les résultats des analyses du collagène des os montrent l'existence de stratégies d'élevage extensif pour les bovins et les porcs. Toutefois des analyses séquentielles de l'émail des dents montrent également un bovin qui était nourri de feuilles en hiver et probablement gardé près du site durant cette période. Dans certains cas, les moutons étaient nourris de ressources alimentaires enrichies de 13C à la fin de l'hiver, coïncidant peut-être avec la période de lactation. Il n'a pas été possible de déterminer si cet apport provenait de plantes C3 ou C4. Bien qu'isolées, ces découvertes pourront être importantes dans l'évaluation de la façon dont les premières communautés agricoles ont géré les contraintes environnementales. Ces résultats ont également été interprétés en se référant aux modèles de systèmes d'agriculture mixte intensive proposés récemment par Bogaard (2004) et Halstead (2006). Translation by Isabelle Gerges.

Zusammenfassung

Zusammenfassung

Anhand tierischer Überreste vom Fundplatz Măgura-Boldul lui Moş Ivănuş wurden Analysen stabiler Isotopen durchgeführt, um die Umwelt und die Saisonalität der Viehzucht im frühesten Neolithikum (Gruppe Gura Baciului-Cârcea/Starčevo-Criş I) in Südrumänien zu charakterisieren. Die Ergebnisse der Untersuchungen des Knochenkollagens zeigen umfassende Strategien der Herdenhaltung von Rind und Schwein. Jedoch gibt es aufgrund der Reihenuntersuchung von Zahnschmelz auch Hinweise auf Winterheufütterung eines Rindes, das möglicherweise während des Winters in der Siedlung gehalten wurde. In einigen Fällen wurden Schafe zum Winterende hin mit 13C-angereicherten Ressourcen gefüttert, was mit dem Zeitpunkt der Laktation übereingestimmt haben könnte. Es konnte allerdings nicht ermittelt werden, ob es sich bei den Quellen um C3- oder C4-Pflanzen gehandelt hat. Wenngleich sie derzeit isoliert sind, könnten diese Funde dennoch wichtig sein, um zu bestimmen, wie früh landwirtschaftliche Gemeinschaften bereits auf Umwelteinschränkungen reagierten. Diese Ergebnisse werden zudem unter Einbeziehung der Modelle von intensiven gemischten Landwirtschaftssystemen, die kürzlich von Bogaard (2004) und Halstead (2006) vorgestellt worden sind, interpretiert. Translation by Heiner Schwarzberg.

Type
Articles
Copyright
Copyright © European Association of Archaeologists 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggrey, E.K. 1982. Seasonal Changes in Water Content and Turnover in Cattle, Sheep and Goats Grazing Under Humid Tropical Conditions in Ghana. In: International Atomic Energy Agency ed. Use of Tritiated Water in Studies of Production and Adaptation in Ruminants. Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development. Vienna: International Atomic Energy Agency, pp. 133–42.Google Scholar
Ahmed, M.M.M., El Hadi, H.M. 1996. Water Metabolism and Dehydration in Two Types of Cattle Given Poor and Good Quality Roughages. Journal of Arid Environments, 34: 225–33.CrossRefGoogle Scholar
Ambrose, S.H. 1990. Preparation and Characterization of Bone and Tooth Collagen for Isotopic Analysis. Journal of Archaeological Science, 17: 431–51.CrossRefGoogle Scholar
Ambrose, S.H., Norr, L. 1993. Experimental Evidence for the Relationship of the Carbon Isotope Ratios of Whole Diet and Dietary Protein to those of Bone Collagen and Carbonate. In: Lambert, J.B., Grupe, G., eds. Prehistoric Human Bone. Archaeology at the Molecular Level. Berlin: Springer-Verlag, pp. 137.Google Scholar
Andreescu, R., Mirea, P. 2008. Teleorman Valley. The Beginning of Neolithic in Southern Romania. Acta Terrae Septemcastrensis, 7: 5775.Google Scholar
Andreescu, R., Mirea, P., Apope, S. 2001. Cultura Gumelniţa în Vestul Munteniei. O Civilizaţie Necunoscută: Gumelniţa. CD-ROM. Bucureşti: Institutul de Memorie Culturala.Google Scholar
Andreescu, R., Mirea, P., Apope, S. 2003. Cultura Gumelniţa în Vestul Munteniei. Aşezarea de la Vităneşti. jud. Teleorman. Cercetări Arheologice, 12: 7188.CrossRefGoogle Scholar
Balasse, M. 2002. Reconstructing Dietary and Environmental History from Enamel Isotopic Analysis: Time Resolution of Intra-Tooth Sequential Sampling. International Journal of Osteoarchaeology, 12: 155–65.CrossRefGoogle Scholar
Balasse, M., Ambrose, S.H., Smith, A.B., Price, T.D. 2002. The Seasonal Mobility Model for Prehistoric Herders in the South-Western Cape of South Africa Assessed by Isotopic Analysis of Sheep Tooth Enamel. Journal of Archaeological Science, 29: 917–32.CrossRefGoogle Scholar
Balasse, M., Boury, L., Ughetto-Monfrin, J., Tresset, A. 2012a. Stable Isotope Insights (δ18O, δ13C) into Cattle and Sheep Husbandry at Bercy (Paris, France, IVth millennium BC): Birth Seasonality and Winter Leaf Foddering. Environmental Archaeology, 17: 2944.CrossRefGoogle Scholar
Balasse, M., Obein, G., Ughetto-Monfrin, J., Mainland, I. 2012b. Investigating Seasonality and Season of Birth in Past Herds: A Reference Set of Sheep Enamel Stable Oxygen Isotope Ratios. Archaeometry, 54 (2): 349–68.CrossRefGoogle Scholar
Balasse, M., Smith, A.B., Ambrose, S.H., Leigh, S.R. 2003. Determining Sheep Birth Seasonality by Analysis of Tooth Enamel Oxygen Isotope Ratios: The Late Stone Age Site of Kasteelberg (South Africa). Journal of Archaeological Science, 3: 205–15.Google Scholar
Balasse, M., Tresset, A. 2007. Environmental Constraints on Reproductive Activity of Domestic Sheep and Cattle: What Latitude for the Herder? Anthropozoologica, 42 (2): 7188.Google Scholar
Balasse, M., Tresset, A., Ambrose, S.H. 2006. First Evidence for Seaweed Winter Foddering in the Neolithic of Scotland. Journal of Zoology, 270: 170–76.CrossRefGoogle Scholar
Bălăşescu, A., Moise, D., Radu, V. 2005a. The Palaeoeconomy of Gumelniţa Communities on the Territory of Romania. Culturã si Civilizaţie la Dunãrea de Jos, 22: 167200.Google Scholar
Bălăşescu, A., Radu, V., Moise, D. 2005b. Omul si Mediul Animal între Mileniile VII-IV î.e.n. la Dunãrea de Jos. Muzeul National de Istorie a României. Seria Cercetãri Pluridisciplinare XI. Târgoviste: Editura Cetatea de Scaun.Google Scholar
Blaise, E., Balasse, M. 2011. Seasonality and Season of Birth of Modern and Late Neolithic Sheep from South-Eastern France Using Tooth Enamel δ18O Analysis. Journal of Archaeological Science, 38: 3085–93.CrossRefGoogle Scholar
Bocherens, H., Drucker, D. 2003. Trophic Level Isotopic Enrichment of Carbon and Nitrogen in Bone Collagen: Case Studies from Recent and Ancient Terrestrial Ecosystems. International Journal of Osteoarchaeology, 13: 4653.CrossRefGoogle Scholar
Bocherens, H., Fizet, M., Mariotti, A., Lange-Badré, B., Vandermeersch, B., Borel, J.P., Bellon, G. 1991. Isotopic Biogeochemistry (13C, 15N) of Fossil Vertebrate Collagen: Implications for the Study of a Fossil Food Web Including Neandertal Man. Journal of Human Evolution, 20: 481–92.CrossRefGoogle Scholar
Bogaard, A. 2004. The Nature of Early Farming in Central and South-East Europe. Documenta Praehistorica, 31: 4958.CrossRefGoogle Scholar
Bogaard, A. 2005. ‘Garden Agriculture’ and the Nature of Early Farming in Europe and the Near East. World Archaeology, 37 (2): 177–96.CrossRefGoogle Scholar
Bökönyi, S. 1972. Aurochs (Bos primigenius Boj.) Remains from the Orjeg Peat-Bogs Between the Danube and Tizsa Rivers. Cumania, 1: 1756.Google Scholar
Bökönyi, S., Bartosiewicz, L. 1997. Tierknochenfunde. In: Hiller, S., Nikolov, V., eds. Karanovo. Die Ausgrabungen im Sudsektor 1984–1992, Band I. Salzburg: Verlag Ferdinand Berger & Söhne, pp. 385423.Google Scholar
Bolomey, A. 1976. Pe Marginea Analizei Arheoosteologice a Materialului de la Cârcea-Dolj. Studii şi Cercetări de Istorie Veche şi Arheologie, 27 (4): 465–75.Google Scholar
Bréhard, S., Balasescu, A. 2012. What's Behind the Tell Phenomenon? An Archaeozoological Approach of Eneolithic Sites in Romania. Journal of Archaeological Science, 39: 3167–83.CrossRefGoogle Scholar
Cerling, T.E., Harris, J.M. 1999. Carbon Isotope Fractionation Between Diet and Bioapatite in Ungulate Mammals and Implications for Ecological and Paleoecological Studies. Oecologia, 120: 347–63.CrossRefGoogle ScholarPubMed
Cerling, T.E., Harris, J.M., Passey, B. 2003. Diets of East African Bovidae Based on Stable Isotope Analysis. Journal of Mammalogy, 84 (2): 456–70.2.0.CO;2>CrossRefGoogle Scholar
Collins, R.P., Jones, M.B. 1985. The Influence of Climatic Factors on the Distribution of C4 Species in Europe. Vegetatio, 64: 121–29.Google Scholar
DeNiro, M.J., Epstein, S. 1978. Influence of Diet on the Distribution of Carbon Isotopes in Animals. Geochimica et Cosmochimica Acta, 42: 495506.CrossRefGoogle Scholar
Degerbøl, M., Fredskild, B. 1970. The Urus (Bos primigenius Bojanus) and the Neolithic Domesticated Cattle (Bos taurus domesticus Linné) in Denmark. Zoological and Palynological Investigations. Det Kongelige Danske Videnskabernes Selskab, Biologiske skrifter, 17 (1). København: Munksgaards Forlag. pp. 5178.Google Scholar
Drucker, D.G., Bridault, A., Hobson, K.A., Szuma, E., Bocherens, H. 2008. Can Carbon-13 in Large Herbivores Reflect the Canopy Effect in Temperate and Boreal Ecosystems? Evidence from Modern and Ancient Ungulates. Palaeogeography, Palaeoclimatology, Palaeoecology, 266: 6982.CrossRefGoogle Scholar
El Susi, G. 1996. Vânãtori, Pescari si Crescãtori de Animale în Banatul Mileniilor VI î.Ch-I d.Ch. Studiu arheozoologic. Timisoara: Editura Mirton.Google Scholar
Ehleringer, J.R., Cerling, T.E., Helliker, B.R. 1997. C4 Photosynthesis, Atmospheric CO2, and Climate. Oecologia, 112: 285–99.CrossRefGoogle ScholarPubMed
Freyer, H.D., Belacy, N. 1983. 13C/12C Records in Northern Hemisphere Trees During the Past 500 Years. Anthropogenic Impact and Climatic Superposition. Journal of Geophysical Research, 88: 6844–52.CrossRefGoogle Scholar
Fricke, H.C., O'Neil, J.R. 1996. Inter- and Intra-Tooth Variation in the Oxygen Isotope Composition of Mammalian Tooth Enamel: Some Implications for Palaeoclimatological and Palaeobiological Research. Palaeogeography, Palaeoclimatology, Palaeoecology, 126: 91100.CrossRefGoogle Scholar
Halstead, P. 1996. Pastoralism or Household Herding? Problems of Scale and Specialization in Early Greek Animal Husbandry. World Archaeology, 28 (1): 2042.CrossRefGoogle Scholar
Halstead, P. 1998. Ask the Fellow Who Lop the Hay: Leaf-Fodder in the Mountains of Northwest Greece. Rural History, 9 (2): 211–34.CrossRefGoogle Scholar
Halstead, P. 2006. Sheep in the Garden: The Integration of Crop and Livestock Husbandry in Early Farming Regimes of Greece and Southern Europe. In: Serjeantson, D., Field, D., eds. Animals in the Neolithic of Britain and Europe. Oxford: Oxbow Books, pp. 4255.Google Scholar
Halstead, P., Isaakidou, V. 2011. A Pig Fed by Hand is Worth Two in the Bush: Ethnoarchaeology of Pig Husbandry in Greece and its Archaeological Implications. In: Albarella, U., Trentacoste, A., eds. Ethnozooarchaeology: The Present and Past of Human-Animal Relationships. Oxford: Oxbow, pp. 160–74.Google Scholar
Hedges, R.E.M., Reynard, L.M. 2007. Nitrogen Isotopes and the Trophic Level of Humans in Archaeology. Journal of Archaeological Science, 34: 1240–51.CrossRefGoogle Scholar
Henton, E., Meier-Augenstein, W., Kemp, H.F. 2010. The Use of Oxygen Isotopes in Sheep Molars to Investigate Past Herding Practices at the Neolithic Settlement of Catalhöyük, Central Anatolia. Archaeometry, 52: 429–49.CrossRefGoogle Scholar
Hunt, H.V., Vander Linden, M., Liu, X., Motuzaite-Matuzeviciute, G., Colledge, S., Jones, M.K. 2008. Millets Across Eurasia: Chronology and Context of Early Records of the Genera Panicum and Setaria from Archaeological Sites in the Old World. Vegetation History and Archaeobotany, 17: S5S18.CrossRefGoogle ScholarPubMed
Hunt, H.V., Campana, M.G., Lawes, M.C., Park, Y.-J., Bower, M.A., Howe, C.J., Jones, M.K. 2011. Genetic Diversity and Phylogeography of Broomcorn Millet (Panicum miliaceum L.) Across Eurasia. Molecular Ecology, 20: 4756–71.CrossRefGoogle ScholarPubMed
Kelly, F. 1997. Early Irish Farming. Vol. IV. Dublin: Early Irish Law Series.Google Scholar
Kohn, M.J. 2010. Carbon Isotope Compositions of Terrestrial C3 Plants as Indicators of (Paleo)Ecology and (Paleo)Climate. Proceedings of the National Academy of Sciences of the United States of America, 107: 19691–95.Google ScholarPubMed
Krueger, H.W., Sullivan, C.H. 1984. Models for Carbon Isotope Fractionation Between Diet and Bone. In: Turnlund, J.R., Johnson, P.E., eds. Stable Isotopes in Nutrition. Washington, DC, USA: American Chemical Society Symposium Series 258, pp. 205–20.Google Scholar
Land, L.S., Lundelius, E.L., Valastro, S. 1980. Isotopic Ecology of Deer Bones. Palaeogeography, Palaeoclimatology, Palaeoecology, 32: 143–51.CrossRefGoogle Scholar
Lecomte, T., Le Neveu, C. 1986. Le Marais Vernier. Contribution à l'Étude et à la Gestion d'une Zone Humide. (Unpublished thèse de doctorat, Université de Rouen Haute-Normandie).Google Scholar
Longinelli, A. 1984. Oxygen Isotopes in Mammal Bone Phosphate: a New Tool for Paleohydrological and Paleoclimatological Research. Geochimica et Cosmochimica Acta, 48: 385–90.CrossRefGoogle Scholar
Lucas, A.T. 1989. Cattle in Ancient Ireland. Irish Series. Kilkenny: Boethius Press.Google Scholar
Luz, B., Kolodny, Y., Horowitz, M. 1984. Fractionation of Oxygen Isotopes Between Mammalian Bone-Phosphate and Environmental Drinking Water. Geochimica et Cosmochimica Acta, 48: 1689–93.CrossRefGoogle Scholar
Macfarlane, W.V., Dolling, C.H.S., Howard, B. 1966. Distribution and Turnover of Water in Merino Sheep Selected for High Wool Production. Australian Journal of Agricultural Research, 17 (4): 491502.CrossRefGoogle Scholar
Mainland, I., Halstead, P. 2005. The Diet and Management of Domestic Sheep and Goats at Neolithic Makriyalos. In: Davies, J., Fabis, M., Mainland, I., Richards, M., Thomas, R., eds. Diet and Health in Past Animal Populations. Proceedings of the 9th ICAZ Conference, Durham, 2002. Oxford: Oxbow Books, pp. 104–12.Google Scholar
Manhart, H. 1998. Die Vorgeschichtliche Tierwelt von Koprivec und Durankulak und Anderen Prähistorischen Fundplatzen in Bulgarien Aufgrung von Knochenfunden aus Archäologischen Ausgrabungen. Documenta Naturae, 116: 1353.Google Scholar
Mirea, P. 2005. Consideraţii Asupra Locuirii Starčevo-Criş din Sud-Vestul Munteniei. Cultură şi Civilizaţie la Dunărea de Jos, 22: 3752.Google Scholar
Mirea, P. 2011. Between Everyday and Ritual Use — ‘Small Altars' or ‘Cult Tables’ from Măgura ‘Buduiasca’,Teleorman County (I): The Early Neolithic Finds. Buletinul Muzeului Judetean Teleorman. Seria Arheologie, 3: 4158.Google Scholar
Mirea, P. in press. Epoca Neolitică pe Valea Teleormanului. Cercetările de la Măgura. Bucureşti: Renaissance.Google Scholar
Pardo, L.H., Nadelhoffer, K.J. 2010. Using Nitrogen Isotope Ratios to Assess Terrestrial Ecosystems at Regional and Global Scales. In: West, J.B., Bowen, G.J., Dawson, T.E., Tu, K.P., eds. Isoscapes. Understanding Movements, Pattern, and Process on Earth Through Stable Isotope Mapping. New York: Springer, pp. 221–49.Google Scholar
Passey, B.H., Cerling, T.E. 2002. Tooth Enamel Mineralization in Ungulates: Implications for Recovering a Primary Isotopic Time-Series. Geochimica et Cosmochimica Acta, 66: 3225–34.CrossRefGoogle Scholar
Pyankov, V.I., Ziegler, H., Akhani, H., Deigele, C., Lüttge, U. 2010. European Plants with C4 Photosynthesis: Geographical and Taxonomic Distribution and Relations to Climate Parameters. Botanical Journal of the Linnean Society, 163: 283304.CrossRefGoogle Scholar
Rasmussen, P. 1989. Leaf-Foddering of Livestock in the Neolithic: Archaeobotanical Evidence from Weier, Switzerland. Journal of Danish Archaeology, 8: 5171.CrossRefGoogle Scholar
Rasmussen, P. 1990. Leaf Foddering in the Earliest Neolithic Agriculture. Evidence from Switzerland and Danemark. Acta Archaeologica, 60: 7186.Google Scholar
Reinhardt, C., Reinhardt, A., Reinhardt, V. 1986. Social Behaviour and Reproductive Performance in Semi-Wild Scottish Highland Cattle. Applied Animal Behaviour Science, 15: 125–36.CrossRefGoogle Scholar
Rozanski, K., Araguas-Araguas, L., Gonfiantini, R. 1993. Isotopic Patterns in Modern Global Precipitation. In: Stwart, P.K., Lohmann, K.C., McKenzie, J., Savin, S., eds. Climate Change in Continental Isotope Records. Washington: American Geophysical Union, pp. 136.Google Scholar
Schoeninger, M.J., DeNiro, M.J. 1984. Nitrogen and Carbon Isotopic Composition of Bone Collagen from Marine and Terrestrial Animals. Geochimica et Cosmochimica Acta, 48: 625–39.CrossRefGoogle Scholar
Sharp, Z.D., Cerling, T.E. 1998. Fossil Isotope Records of Seasonal Climate and Ecology; Straight from the Horse's Mouth. Geology, 26: 219–22.2.3.CO;2>CrossRefGoogle Scholar
Smedley, M.P., Dawson, T.E., Comstock, J.P., Donovan, L.A., Sherrill, D.E., Cook, C.S., Ehleringer, J.R. 1991. Seasonal Carbon Isotope Discrimination in a Grassland Community. Oecologia, 85: 314–20.CrossRefGoogle Scholar
Towers, J., Jay, M., Mainland, I., Nehlich, O., Montgomery, J. 2011. A Calf for All Seasons? The Potential of Stable Isotope Analysis to Investigate Prehistoric Husbandry Practices. Journal of Archaeological Science, 38: 1858–68.CrossRefGoogle Scholar
Ursulescu, N., Petrescu-Dîmboviţa, M., Monah, D. 2001. Neo-Eneoliticul. In: Petrescu-Dîmboviţa, M., Vulpe, A., eds. Istoria Românilor (I). Moştenirea Timpurilor Îndepărtate. Bucureşti: Ed. Enciclopedică, pp. 111209.Google Scholar
van der Merwe, N.J., Medina, E. 1991. The Canopy Effect, Carbon Isotope Ratios and Foodwebs in Amazonia. Journal of Archaeological Science, 18: 249–59.CrossRefGoogle Scholar
von den Driesch, A. 1976. A Guide to the Measurement of Animal Bones from Archaeological Sites. Peabody Museum Bulletin. 1. Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.Google Scholar
Vogel, J.C., Fuls, A., Ellis, R.P. 1978. The Geographical Distribution of Kranz Grasses in South Africa. South African Journal of Science, 74: 209–15.Google Scholar
Walker, A., Bogaard, A. 2011. Preliminary Archaeobotanical Results from Teleor 003/Măgura ‘Buduiasca’. In: Mills, S., Mirea, P., eds. The Lower Danube in Prehistory: Landscape Changes and Human-Environment Interactions. Proceedings of the International Cconference, Alexandria, 3–5 November 2010. Bucharest: Renaissance, pp. 151–59.Google Scholar
Weinreb, M.M., Sharav, Y. 1964. Tooth Development in Sheep. American Journal of Veterinary Research, 25 (107): 891908.Google ScholarPubMed
Zazzo, A., Balasse, M., Passey, B.H., Moloney, A.P., Monahan, F.J., Schmidt, O. 2010. The Isotope Record of Short- and Long-Term Dietary Changes in Sheep Tooth Enamel: Implications for Quantitative Reconstruction of Paleodiets. Geochimica et Cosmochimica Acta, 74: 3571–86.CrossRefGoogle Scholar