
14 Classes

This chapter was written by Leo White and Jason Hickey.

Programming with objects directly is great for encapsulation, but one of the main

goals of object-oriented programming is code reuse through inheritance. For inheri-

tance, we need to introduce classes. In object-oriented programming, a class is essen-

tially a recipe for creating objects. The recipe can be changed by adding new methods

and �elds, or it can be changed by modifying existing methods.

14.1 OCaml Classes

In OCaml, class de�nitions must be de�ned as toplevel statements in a module. The

syntax for a class de�nition uses the keyword class:

open Base;;
class istack = object

val mutable v = [0; 2]

method pop =
match v with
| hd :: tl ->
v <- tl;
Some hd

| [] -> None

method push hd =
v <- hd :: v

end;;
class istack :

object

val mutable v : int list

method pop : int option

method push : int -> unit

end

The class istack : object ... end result shows that we have created a class

istackwith class type object ... end. Like module types, class types are completely

separate from regular OCaml types (e.g., int, string, and list) and, in particular,

should not be confused with object types (e.g., < get : int; .. >). The class type

describes the class itself rather than the objects that the class creates. This particular

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

238 Classes

class type speci�es that the istack class de�nes a mutable �eld v, a method pop that

returns an int option, and a method push with type int -> unit.

To produce an object, classes are instantiated with the keyword new:

let s = new istack;;
val s : istack = <obj>

s#pop;;
- : int option = Some 0

s#push 5;;
- : unit = ()

s#pop;;
- : int option = Some 5

You may have noticed that the object s has been given the type istack. But wait,

we've stressed classes are not types, so what's up with that? In fact, what we've said

is entirely true: classes and class names are not types. However, for convenience, the

de�nition of the class istack also de�nes an object type istackwith the samemethods

as the class. This type de�nition is equivalent to:

type istack = < pop: int option; push: int -> unit >;;
type istack = < pop : int option; push : int -> unit >

Note that this type represents any object with these methods: objects created using

the istack class will have this type, but objects with this type may not have been

created by the istack class.

14.2 Class Parameters and Polymorphism

A class de�nition serves as the constructor for the class. In general, a class de�nition

may have parameters that must be provided as arguments when the object is created

with new.

Let's implement a variant of the istack class that can hold any values, not just

integers. When de�ning the class, the type parameters are placed in square brackets

before the class name in the class de�nition. We also add a parameter init for the

initial contents of the stack:

class ['a] stack init = object
val mutable v : 'a list = init

method pop =
match v with
| hd :: tl ->
v <- tl;
Some hd

| [] -> None

method push hd =
v <- hd :: v

end;;
class ['a] stack :

'a list ->

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

14.3 Object Types as Interfaces 239

object

val mutable v : 'a list

method pop : 'a option

method push : 'a -> unit

end

Note that the type parameter ['a] in the de�nition uses square brackets, but for

other uses of the type they are omitted (or replaced with parentheses if there is more

than one type parameter).

The type annotation on the declaration of v is used to constrain type inference. If

we omit this annotation, the type inferred for the class will be �too polymorphic�: init

could have some type 'b list:

class ['a] stack init = object
val mutable v = init

method pop =
match v with
| hd :: tl ->
v <- tl;
Some hd

| [] -> None

method push hd =
v <- hd :: v

end;;
Lines 1-13, characters 1-6:

Error: Some type variables are unbound in this type:

class ['a] stack :

'b list ->

object

val mutable v : 'b list

method pop : 'b option

method push : 'b -> unit

end

The method pop has type 'b option where 'b is unbound

In general, we need to provide enough constraints so that the compiler will infer the

correct type. We can add type constraints to the parameters, to the �elds, and to the

methods. It is a matter of preference how many constraints to add. You can add type

constraints in all three places, but the extra text may not help clarity. A convenient

middle ground is to annotate the �elds and/or class parameters, and add constraints to

methods only if necessary.

14.3 Object Types as Interfaces

We may wish to traverse the elements on our stack. One common style for doing this

in object-oriented languages is to de�ne a class for an iterator object. An iterator

provides a generic mechanism to inspect and traverse the elements of a collection.

There are two common styles for de�ning abstract interfaces like this. In Java, an

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

240 Classes

iterator would normally be speci�ed with an interface, which speci�es a set of method

types:

// Java-style iterator, specified as an interface.
interface <T> iterator {
T Get();
boolean HasValue();
void Next();

};

In languages without interfaces, like C++, the speci�cation would normally use

abstract classes to specify the methods without implementing them (C++ uses the �=

0� de�nition to mean �not implemented�):

// Abstract class definition in C++.
template<typename T>
class Iterator {
public:
virtual ~Iterator() {}
virtual T get() const = 0;
virtual bool has_value() const = 0;
virtual void next() = 0;

};

OCaml supports both styles. In fact, OCaml is more �exible than these approaches

because an object type can be implemented by any object with the appropriate methods;

it does not have to be speci�ed by the object's class a priori. We'll leave abstract classes

for later. Let's demonstrate the technique using object types.

First, we'll de�ne an object type iterator that speci�es the methods in an iterator:

type 'a iterator = < get : 'a; has_value : bool; next : unit >;;
type 'a iterator = < get : 'a; has_value : bool; next : unit >

Next, we'll de�ne an actual iterator for lists. We can use this to iterate over the

contents of our stack:

class ['a] list_iterator init = object
val mutable current : 'a list = init

method has_value = not (List.is_empty current)

method get =
match current with
| hd :: tl -> hd
| [] -> raise (Invalid_argument "no value")

method next =
match current with
| hd :: tl -> current <- tl
| [] -> raise (Invalid_argument "no value")

end;;
class ['a] list_iterator :

'a list ->

object

val mutable current : 'a list

method get : 'a

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

14.3 Functional Iterators 241

method has_value : bool

method next : unit

end

Finally, we add a method iterator to the stack class to produce an iterator. To do

so, we construct a list_iterator that refers to the current contents of the stack:

class ['a] stack init = object
val mutable v : 'a list = init

method pop =
match v with
| hd :: tl ->
v <- tl;
Some hd

| [] -> None

method push hd =
v <- hd :: v

method iterator : 'a iterator =
new list_iterator v

end;;
class ['a] stack :

'a list ->

object

val mutable v : 'a list

method iterator : 'a iterator

method pop : 'a option

method push : 'a -> unit

end

Now we can build a new stack, push some values to it, and iterate over them:

let s = new stack [];;
val s : '_weak1 stack = <obj>

s#push 5;;
- : unit = ()

s#push 4;;
- : unit = ()

let it = s#iterator;;
val it : int iterator = <obj>

it#get;;
- : int = 4

it#next;;
- : unit = ()

it#get;;
- : int = 5

it#next;;
- : unit = ()

it#has_value;;
- : bool = false

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

242 Classes

14.3.1 Functional Iterators

In practice, most OCaml programmers avoid iterator objects in favor of functional-style

techniques. For example, the alternative stack class that follows takes a function f and

applies it to each of the elements on the stack:

class ['a] stack init = object
val mutable v : 'a list = init

method pop =
match v with
| hd :: tl ->
v <- tl;
Some hd

| [] -> None

method push hd =
v <- hd :: v

method iter f =
List.iter ~f v

end;;
class ['a] stack :

'a list ->

object

val mutable v : 'a list

method iter : ('a -> unit) -> unit

method pop : 'a option

method push : 'a -> unit

end

What about functional operations like map and fold? In general, these methods take

a function that produces a value of some other type than the elements of the set.

For example, a foldmethod for our ['a] stack class should have type ('b -> 'a

-> 'b) -> 'b -> 'b, where the 'b is polymorphic. To express a polymorphic method

type like this, we must use a type quanti�er, as shown in the following example:

class ['a] stack init = object
val mutable v : 'a list = init

method pop =
match v with
| hd :: tl ->
v <- tl;
Some hd

| [] -> None

method push hd =
v <- hd :: v

method fold : 'b. ('b -> 'a -> 'b) -> 'b -> 'b =
(fun f init -> List.fold ~f ~init v)

end;;
class ['a] stack :

'a list ->

object

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

14.5 Class Types 243

val mutable v : 'a list

method fold : ('b -> 'a -> 'b) -> 'b -> 'b
method pop : 'a option

method push : 'a -> unit

end

The type quanti�er 'b. can be read as �for all 'b.� Type quanti�ers can only be

used directly after the method name, which means that method parameters must be

expressed using a fun or function expression.

14.4 Inheritance

Inheritance uses an existing class to de�ne a new one. For example, the following class

de�nition inherits from our stack class for strings and adds a new method print that

prints all the strings on the stack:

class sstack init = object
inherit [string] stack init

method print =
List.iter ~f:Stdio.print_endline v

end;;
class sstack :

string list ->

object

val mutable v : string list

method pop : string option

method print : unit

method push : string -> unit

end

A class can override methods from classes it inherits. For example, this class creates

stacks of integers that double the integers before they are pushed onto the stack:

class double_stack init = object
inherit [int] stack init as super

method push hd =
super#push (hd * 2)

end;;
class double_stack :

int list ->

object

val mutable v : int list

method pop : int option

method push : int -> unit

end

The preceding as super statement creates a special object called super which can

be used to call superclass methods. Note that super is not a real object and can only

be used to call methods.

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

244 Classes

14.5 Class Types

To allow code in a di�erent �le or module to inherit from a class, we must expose it

and give it a class type. What is the class type?

As an example, let's wrap up our stack class in an explicit module (we'll use explicit

modules for illustration, but the process is similar when we want to de�ne a .mli �le).

In keeping with the usual style for modules, we de�ne a type 'a t to represent the type

of our stacks:

module Stack = struct
class ['a] stack init = object
...

end

type 'a t = 'a stack

let make init = new stack init
end

We have multiple choices in de�ning the module type, depending on how much of

the implementation we want to expose. At one extreme, a maximally abstract signature

would completely hide the class de�nitions:

module AbstractStack : sig
type 'a t = < pop: 'a option; push: 'a -> unit >

val make : 'a list -> 'a t
end = Stack

The abstract signature is simple because we ignore the classes. But what if we

want to include them in the signature so that other modules can inherit from the class

de�nitions? For this, we need to specify types for the classes, called class types.

Class types do not appear in mainstream object-oriented programming languages,

so you may not be familiar with them, but the concept is pretty simple. A class type

speci�es the type of each of the visible parts of the class, including both �elds and

methods. Just as with module types, you don't have to give a type for everything;

anything you omit will be hidden:

module VisibleStack : sig

type 'a t = < pop: 'a option; push: 'a -> unit >

class ['a] stack : object
val mutable v : 'a list
method pop : 'a option
method push : 'a -> unit

end

val make : 'a list -> 'a t
end = Stack

In this signature, we've chosen to make everything visible. The class type for stack

speci�es the types of the �eld v, as well as the types of each of the methods.

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

14.6 Open Recursion 245

14.6 Open Recursion

Open recursion allows an object's methods to invoke other methods on the same object.

These calls are looked up dynamically, allowing a method in one class to call a method

from another class, if both classes are inherited by the same object. This allowsmutually

recursive parts of an object to be de�ned separately.

This ability to de�ne mutually recursive methods from separate components is a

key feature of classes: achieving similar functionality with data types or modules is

much more cumbersome and verbose.

For example, consider writing recursive functions over a simple document format.

This format is represented as a tree with three di�erent types of node:

type doc =
| Heading of string
| Paragraph of text_item list
| Definition of string list_item list

and text_item =
| Raw of string
| Bold of text_item list
| Enumerate of int list_item list
| Quote of doc

and 'a list_item =
{ tag: 'a;
text: text_item list }

It is quite easy to write a function that operates by recursively traversing this data.

However, what if you need to write many similar recursive functions? How can you

factor out the common parts of these functions to avoid repetitive boilerplate?

The simplest way is to use classes and open recursion. For example, the following

class de�nes objects that fold over the document data:

class ['a] folder = object(self)
method doc acc = function
| Heading _ -> acc
| Paragraph text -> List.fold ~f:self#text_item ~init:acc text
| Definition list -> List.fold ~f:self#list_item ~init:acc list

method list_item: 'b. 'a -> 'b list_item -> 'a =
fun acc {tag; text} ->
List.fold ~f:self#text_item ~init:acc text

method text_item acc = function
| Raw _ -> acc
| Bold text -> List.fold ~f:self#text_item ~init:acc text
| Enumerate list -> List.fold ~f:self#list_item ~init:acc list
| Quote doc -> self#doc acc doc

end

The object (self) syntax binds self to the current object, allowing the doc,

list_item, and text_item methods to call each other.

By inheriting from this class, we can create functions that fold over the document

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

246 Classes

data. For example, the count_doc function counts the number of bold tags in the

document that are not within a list:

class counter = object
inherit [int] folder as super

method list_item acc li = acc

method text_item acc ti =
let acc = super#text_item acc ti in
match ti with
| Bold _ -> acc + 1
| _ -> acc

end

let count_doc = (new counter)#doc

Note how the super special object is used in text_item to call the [int] folder

class's text_item method to fold over the children of the text_item node.

14.7 Private Methods

Methods can be declared private, which means that they may be called by subclasses,

but they are not visible otherwise (similar to a protected method in C++).

For example, we may want to include methods in our folder class for handling

each of the di�erent cases in doc and text_item. However, we may not want to force

subclasses of folder to expose these methods, as they probably shouldn't be called

directly:

class ['a] folder2 = object(self)
method doc acc = function
| Heading str -> self#heading acc str
| Paragraph text -> self#paragraph acc text
| Definition list -> self#definition acc list

method list_item: 'b. 'a -> 'b list_item -> 'a =
fun acc {tag; text} ->
List.fold ~f:self#text_item ~init:acc text

method text_item acc = function
| Raw str -> self#raw acc str
| Bold text -> self#bold acc text
| Enumerate list -> self#enumerate acc list
| Quote doc -> self#quote acc doc

method private heading acc str = acc
method private paragraph acc text =
List.fold ~f:self#text_item ~init:acc text

method private definition acc list =
List.fold ~f:self#list_item ~init:acc list

method private raw acc str = acc
method private bold acc text =

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

14.8 Binary Methods 247

List.fold ~f:self#text_item ~init:acc text
method private enumerate acc list =
List.fold ~f:self#list_item ~init:acc list

method private quote acc doc = self#doc acc doc
end

let f :
< doc : int -> doc -> int;
list_item : 'a . int -> 'a list_item -> int;
text_item : int -> text_item -> int > = new folder2

The �nal statement that builds the value f shows how the instantiation of a folder2

object has a type that hides the private methods.

To be precise, the private methods are part of the class type, but not part of the object

type. This means, for example, that the object f has no method bold. However, the

private methods are available to subclasses: we can use them to simplify our counter

class:

class counter_with_private_method = object
inherit [int] folder2 as super

method list_item acc li = acc

method private bold acc txt =
let acc = super#bold acc txt in
acc + 1

end

The key property of private methods is that they are visible to subclasses, but not

anywhere else. If you want the stronger guarantee that a method is really private, not

even accessible in subclasses, you can use an explicit class type that omits the method.

In the following code, the private methods are explicitly omitted from the class type of

counter_with_sig and can't be invoked in subclasses of counter_with_sig:

class counter_with_sig : object
method doc : int -> doc -> int
method list_item : int -> 'b list_item -> int
method text_item : int -> text_item -> int

end = object
inherit [int] folder2 as super

method list_item acc li = acc

method private bold acc txt =
let acc = super#bold acc txt in
acc + 1

end

14.8 Binary Methods

A binary method is a method that takes an object of self type. One common example

is de�ning a method for equality:

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

248 Classes

class square w = object(self : 'self)
method width = w
method area = Float.of_int (self#width * self#width)
method equals (other : 'self) = other#width = self#width

end;;
class square :

int ->

object ('a)
method area : float

method equals : 'a -> bool

method width : int

end

class circle r = object(self : 'self)
method radius = r
method area = 3.14 *. (Float.of_int self#radius) **. 2.0
method equals (other : 'self) = other#radius = self#radius

end;;
class circle :

int ->

object ('a)
method area : float

method equals : 'a -> bool

method radius : int

end

Note how we can use the type annotation (self: 'self) to obtain the type of the

current object.

We can now test di�erent object instances for equality by using the equals binary

method:

(new square 5)#equals (new square 5);;
- : bool = true

(new circle 10)#equals (new circle 7);;
- : bool = false

This works, but there is a problem lurking here. The method equals takes an object

of the exact type square or circle. Because of this, we can't de�ne a common base

class shape that also includes an equality method:

type shape = < equals : shape -> bool; area : float >;;
type shape = < area : float; equals : shape -> bool >

(new square 5 :> shape);;
Line 1, characters 1-24:

Error: Type square = < area : float; equals : square -> bool; width :

int >

is not a subtype of shape = < area : float; equals : shape ->

bool >

Type shape = < area : float; equals : shape -> bool >

is not a subtype of

square = < area : float; equals : square -> bool; width :

int >

The first object type has no method width

The problem is that a square expects to be compared with a square, not an arbitrary

shape; likewise for circle. This problem is fundamental. Many languages solve it

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

14.8 Binary Methods 249

either with narrowing (with dynamic type checking), or by method overloading. Since

OCaml has neither of these, what can we do?

Since the problematic method is equality, one proposal we could consider is to just

drop it from the base type shape and use polymorphic equality instead. However, the

built-in polymorphic equality has very poor behavior when applied to objects:

Poly.(=)
(object method area = 5 end)
(object method area = 5 end);;

- : bool = false

The problemhere is that twoobjects are considered equal by the built-in polymorphic

equality if and only if they are physically equal. There are other reasons not to use the

built-in polymorphic equality, but these false negatives are a showstopper.

If wewant to de�ne equality for shapes in general, the remaining solution is to use the

same approach as we described for narrowing. That is, introduce a representation type

implemented using variants, and implement the comparison based on the representation

type:

type shape_repr =
| Square of int
| Circle of int;;

type shape_repr = Square of int | Circle of int

type shape =
< repr : shape_repr; equals : shape -> bool; area : float >;;

type shape = < area : float; equals : shape -> bool; repr :

shape_repr >

class square w = object(self)
method width = w
method area = Float.of_int (self#width * self#width)
method repr = Square self#width
method equals (other : shape) =
match (self#repr, other#repr) with
| Square x, Square x' -> Int.(=) x x'
| _ -> false

end;;
class square :

int ->

object

method area : float

method equals : shape -> bool

method repr : shape_repr

method width : int

end

The binary method equals is now implemented in terms of the concrete type

shape_repr. When using this pattern, you will not be able to hide the repr method,

but you can hide the type de�nition using the module system:

module Shapes : sig
type shape_repr
type shape =
< repr : shape_repr; equals : shape -> bool; area: float >

class square : int ->

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

250 Classes

object
method width : int
method area : float
method repr : shape_repr
method equals : shape -> bool

end
end = struct
type shape_repr =
| Square of int
| Circle of int
...

end

Note that this solution prevents us from adding new kinds of shapes without adding

new constructors to the shape_repr type, which is quite restrictive. We can �x this,

however, by using OCaml's rarely-used but still useful extensible variants.

Extensible variants let you separate the de�nition of a variant type from the de�nition

of its constructors. The resulting type is by de�nition open, in the sense that newvariants

can always be added. As a result, the compiler can't check whether pattern matching

on such a variant is exhaustive. Happily, exhaustivity is not what we need here.

Here's how we'd rewrite the above example with extensible variants.

type shape_repr = ..;;
type shape_repr = ..

type shape =
< repr : shape_repr; equals : shape -> bool; area : float >;;

type shape = < area : float; equals : shape -> bool; repr :

shape_repr >

type shape_repr += Square of int;;
type shape_repr += Square of int

class square w = object(self)
method width = w
method area = Float.of_int (self#width * self#width)
method repr = Square self#width
method equals (other : shape) =
match (self#repr, other#repr) with
| Square x, Square x' -> Int.(=) x x'
| _ -> false

end;;
class square :

int ->

object

method area : float

method equals : shape -> bool

method repr : shape_repr

method width : int

end

One oddity of the representation type approach is that the objects created by these

classes are in one-to-one correspondence with members of the representation type,

making the objects seem somewhat redundant.

But equality is an extreme instance of a binary method: it needs access to all

the information of the other object. Many other binary methods need only partial

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

14.9 Create Some Simple Shapes 251

information about the object. For instance, consider a method that compares shapes by

their sizes:

class square w = object(self)
method width = w
method area = Float.of_int (self#width * self#width)
method larger (other : shape) = Float.(self#area > other#area)

end;;
class square :

int ->

object

method area : float

method larger : shape -> bool

method width : int

end

The largermethod can be used on a square, but it can also be applied to any object

of type shape.

14.9 Virtual Classes and Methods

A virtual class is a classwhere somemethods or �elds are declared but not implemented.

This should not be confused with the word virtual as it is used in C++. A virtual

method in C++ uses dynamic dispatch, while regular, nonvirtual methods are statically

dispatched. In OCaml, all methods use dynamic dispatch, but the keyword virtual

means that the method or �eld is not implemented. A class containing virtual methods

must also be �agged virtual and cannot be directly instantiated (i.e., no object of this

class can be created).

To explore this, let's extend our shapes examples to simple, interactive graphics.

We will use the Async concurrency library and the Async_graphics1 library, which

provides an asynchronous interface to OCaml's built-in Graphics library. Concurrent

programming with Async will be explored later in Chapter 17 (Concurrent Program-

ming with Async); for now you can safely ignore the details. You just need to run

opam install async_graphics to get the library installed on your system.

We will give each shape a drawmethod that describes how to draw the shape on the

Async_graphics display:

open Core
open Async
open Async_graphics

type drawable = < draw: unit >

14.9.1 Create Some Simple Shapes

Now let's add classes for making squares and circles. We include an on_clickmethod

for adding event handlers to the shapes:

1 http://github.com/lpw25/async_graphics/

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

http://github.com/lpw25/async_graphics/
https://doi.org/10.1017/9781009129220.016

252 Classes

class square w x y = object(self)
val mutable x: int = x
method x = x

val mutable y: int = y
method y = y

val mutable width = w
method width = width

method draw = fill_rect x y width width

method private contains x' y' =
x <= x' && x' <= x + width &&
y <= y' && y' <= y + width

method on_click ?start ?stop f =
on_click ?start ?stop
(fun ev ->
if self#contains ev.mouse_x ev.mouse_y then
f ev.mouse_x ev.mouse_y)

end

The square class is pretty straightforward, and the circle class below also looks

very similar:

class circle r x y = object(self)
val mutable x: int = x
method x = x

val mutable y: int = y
method y = y

val mutable radius = r
method radius = radius

method draw = fill_circle x y radius

method private contains x' y' =
let dx = x' - x in
let dy = y' - y in
dx * dx + dy * dy <= radius * radius

method on_click ?start ?stop f =
on_click ?start ?stop
(fun ev ->
if self#contains ev.mouse_x ev.mouse_y then
f ev.mouse_x ev.mouse_y)

end

These classes have a lot in common, and it would be useful to factor out this common

functionality into a superclass. We can easily move the de�nitions of x and y into a

superclass, but what about on_click? Its de�nition depends on contains, which has

a di�erent de�nition in each class. The solution is to create a virtual class. This class

will declare a contains method but leave its de�nition to the subclasses.

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

14.9 Create Some Simple Shapes 253

Here is the more succinct de�nition, starting with a virtual shape class that imple-

ments on_click and on_mousedown:

class virtual shape x y = object(self)
method virtual private contains: int -> int -> bool

val mutable x: int = x
method x = x

val mutable y: int = y
method y = y

method on_click ?start ?stop f =
on_click ?start ?stop
(fun ev ->
if self#contains ev.mouse_x ev.mouse_y then
f ev.mouse_x ev.mouse_y)

method on_mousedown ?start ?stop f =
on_mousedown ?start ?stop
(fun ev ->
if self#contains ev.mouse_x ev.mouse_y then
f ev.mouse_x ev.mouse_y)

end

Now we can de�ne square and circle by inheriting from shape:

class square w x y = object
inherit shape x y

val mutable width = w
method width = width

method draw = fill_rect x y width width

method private contains x' y' =
x <= x' && x' <= x + width &&
y <= y' && y' <= y + width

end

class circle r x y = object
inherit shape x y

val mutable radius = r
method radius = radius

method draw = fill_circle x y radius

method private contains x' y' =
let dx = x' - x in
let dy = y' - y in
dx * dx + dy * dy <= radius * radius

end

One way to view a virtual class is that it is like a functor, where the �inputs�

are the declared�but not de�ned�virtual methods and �elds. The functor applica-

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

254 Classes

tion is implemented through inheritance, when virtual methods are given concrete

implementations.

14.10 Initializers

You can execute expressions during the instantiation of a class by placing them before

the object expression or in the initial value of a �eld:

class obj x =
let () = Stdio.printf "Creating obj %d\n" x in
object
val field = Stdio.printf "Initializing field\n"; x

end;;
class obj : int -> object val field : int end

let o = new obj 3;;
Creating obj 3

Initializing field

val o : obj = <obj>

However, these expressions are executed before the object has been created and

cannot refer to the methods of the object. If you need to use an object's methods during

instantiation, you can use an initializer. An initializer is an expression that will be

executed during instantiation but after the object has been created.

For example, suppose we wanted to extend our previous shapes module with a

growing_circle class for circles that expand when clicked. We could inherit from

circle and use the inherited on_click to add a handler for click events:

class growing_circle r x y = object(self)
inherit circle r x y

initializer
self#on_click (fun _x _y -> radius <- radius * 2)

end

14.11 Multiple Inheritance

When a class inherits from more than one superclass, it is using multiple inheritance.

Multiple inheritance extends the variety of ways that classes can be combined, and it

can be quite useful, particularly with virtual classes. However, it can be tricky to use,

particularly when the inheritance hierarchy is a graph rather than a tree, so it should

be used with care.

14.11.1 How Names Are Resolved

The main trickiness of multiple inheritance is due to naming�what happens when a

method or �eld with some name is de�ned in more than one class?

If there is one thing to remember about inheritance in OCaml, it is this: inheritance is

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

14.11 Mixins 255

like textual inclusion. If there is more than one de�nition for a name, the last de�nition

wins.

For example, consider this class, which inherits from square and de�nes a new draw

method that uses draw_rect instead of fill_rect to draw the square:

class square_outline w x y = object
inherit square w x y
method draw = draw_rect x y width width

end

Since the inherit declaration comes before the method de�nition, the new draw

method overrides the old one, and the square is drawn using draw_rect. But, what if

we had de�ned square_outline as follows?

class square_outline w x y = object
method draw = draw_rect x y w w
inherit square w x y

end

Here the inherit declaration comes after the method de�nition, so the drawmethod

from square will override the other de�nition, and the square will be drawn using

fill_rect.

To reiterate, to understand what inheritance means, replace each inherit directive

with its de�nition, and take the last de�nition of each method or �eld. Note that the

methods and �elds added by an inheritance are those listed in its class type, so private

methods that are hidden by the type will not be included.

14.11.2 Mixins

When should you use multiple inheritance? If you ask multiple people, you're likely

to get multiple (perhaps heated) answers. Some will argue that multiple inheritance is

overly complicated; others will argue that inheritance is problematic in general, and

one should use object composition instead. But regardless of who you talk to, you will

rarely hear that multiple inheritance is great and that you should use it widely.

In any case, if you're programming with objects, there's one general pattern for

multiple inheritance that is both useful and reasonably simple: the mixin pattern.

Generically, a mixin is just a virtual class that implements a feature based on another

one. If you have a class that implements methods A, and you have a mixin M that

provides methods B from A, then you can inherit from M��mixing� it in�to get

features B.

That's too abstract, so let's give some examples based on our interactive shapes. We

may wish to allow a shape to be dragged by the mouse. We can de�ne this functionality

for any object that has mutable x and y �elds and an on_mousedown method for adding

event handlers:

class virtual draggable = object(self)
method virtual on_mousedown:
?start:unit Deferred.t ->
?stop:unit Deferred.t ->

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

256 Classes

(int -> int -> unit) -> unit
val virtual mutable x: int
val virtual mutable y: int

val mutable dragging = false
method dragging = dragging

initializer
self#on_mousedown
(fun mouse_x mouse_y ->
let offset_x = x - mouse_x in
let offset_y = y - mouse_y in
let mouse_up = Ivar.create () in
let stop = Ivar.read mouse_up in
dragging <- true;
on_mouseup ~stop
(fun _ ->
Ivar.fill mouse_up ();
dragging <- false);

on_mousemove ~stop
(fun ev ->
x <- ev.mouse_x + offset_x;
y <- ev.mouse_y + offset_y))

end

This allows us to create draggable shapes using multiple inheritance:

class small_square = object
inherit square 20 40 40
inherit draggable

end

We can also use mixins to create animated shapes. Each animated shape has a list

of update functions to be called during animation. We create an animated mixin to

provide this update list and ensure that the functions in it are called at regular intervals

when the shape is animated:

class virtual animated span = object(self)
method virtual on_click:
?start:unit Deferred.t ->
?stop:unit Deferred.t ->
(int -> int -> unit) -> unit

val mutable updates: (int -> unit) list = []
val mutable step = 0
val mutable running = false

method running = running

method animate =
step <- 0;
running <- true;
let stop =
Clock.after span
>>| fun () -> running <- false

in
Clock.every ~stop (Time.Span.of_sec (1.0 /. 24.0))
(fun () ->

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

14.11 Mixins 257

step <- step + 1;
List.iter ~f:(fun f -> f step) updates

)

initializer
self#on_click (fun _x _y -> if not self#running then self#animate)

end

We use initializers to add functions to this update list. For example, this class will

produce circles that move to the right for a second when clicked:

class my_circle = object
inherit circle 20 50 50
inherit animated Time.Span.second
initializer updates <- [fun _ -> x <- x + 5]

end

These initializers can also be added using mixins:

class virtual linear x' y' = object
val virtual mutable updates: (int -> unit) list
val virtual mutable x: int
val virtual mutable y: int

initializer
let update _ =
x <- x + x';
y <- y + y'

in
updates <- update :: updates

end

let pi = (Float.atan 1.0) *. 4.0

class virtual harmonic offset x' y' = object
val virtual mutable updates: (int -> unit) list
val virtual mutable x: int
val virtual mutable y: int

initializer
let update step =
let m = Float.sin (offset +. ((Float.of_int step) *. (pi /.
64.))) in
let x' = Float.to_int (m *. Float.of_int x') in
let y' = Float.to_int (m *. Float.of_int y') in
x <- x + x';
y <- y + y'

in
updates <- update :: updates

end

Since the linear and harmonic mixins are only used for their side e�ects, they can

be inherited multiple times within the same object to produce a variety of di�erent

animations:

class my_square x y = object
inherit square 40 x y

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

258 Classes

inherit draggable
inherit animated (Time.Span.of_int_sec 5)
inherit linear 5 0
inherit harmonic 0.0 7 ~-10

end

let my_circle = object
inherit circle 30 250 250
inherit animated (Time.Span.minute)
inherit harmonic 0.0 10 0
inherit harmonic (pi /. 2.0) 0 10

end

14.11.3 Displaying the Animated Shapes

We �nish our shapes module by creating a main function to draw some shapes on the

graphical display and running that function using the Async scheduler:

let main () =
let shapes = [
(my_circle :> drawable);
(new my_square 50 350 :> drawable);
(new my_square 50 200 :> drawable);
(new growing_circle 20 70 70 :> drawable);

] in
let repaint () =
clear_graph ();
List.iter ~f:(fun s -> s#draw) shapes;
synchronize ()

in
open_graph "";
auto_synchronize false;
Clock.every (Time.Span.of_sec (1.0 /. 24.0)) repaint

let () = never_returns (Scheduler.go_main ~main ())

Our main function creates a list of shapes to be displayed and de�nes a repaint

function that actually draws them on the display. We then open a graphical display and

ask Async to run repaint at regular intervals.

Finally, build the binary by linking against the async_graphics package, which will

pull in all the other dependencies:

(executable
(name shapes)
(modules shapes)
(libraries async_graphics))

$ dune build shapes.exe

When you run the binary, a new graphical window should appear (on macOS, you

will need to install the X11 package �rst, which you will be prompted for). Try clicking

on the various widgets, and gasp in awe at the sophisticated animations that unfold as

a result.

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

14.11 Displaying the Animated Shapes 259

The graphics library described here is the one built into OCaml and is more useful

as a learning tool than anything else. There are several third-party libraries that provide

more sophisticated bindings to various graphics subsystems:

Lablgtk2 A strongly typed interface to the GTK widget library.

LablGL3 An interface between OCaml and OpenGL, a widely supported standard

for 3D rendering.

js_of_ocaml4 Compiles OCaml code to JavaScript and has bindings to WebGL. This

is the emerging standard for 3D rendering in web browsers.

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

https://doi.org/10.1017/9781009129220.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.016

