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Abstract

In recent years, there has been growing interest in developing robots and autonomous systems that can interact with
human in a more natural and intuitive way. One of the key challenges in achieving this goal is to enable these sys-
tems to manipulate objects and tools in a manner that is similar to that of humans. In this paper, we propose a novel
approach for learning human-style manipulation skills by using adversarial motion priors, which we name HMAMP.
The approach leverages adversarial networks to model the complex dynamics of tool and object manipulation and
the aim of the manipulation task. The discriminator is trained using a combination of real-world data and simulation
data executed by the agent, which is designed to train a policy that generates realistic motion trajectories that match
the statistical properties of human motion. We evaluated HMAMP on one challenging manipulation task: hammer-
ing, and the results indicate that HMAMP is capable of learning human-style manipulation skills that outperform
current baseline methods. Additionally, we demonstrate that HMAMP has potential for real-world applications by
performing real robot arm hammering tasks. In general, HMAMP represents a significant step towards developing
robots and autonomous systems that can interact with humans in a more natural and intuitive way, by learning to
manipulate tools and objects in a manner similar to how humans do.

1. Introduction

Manipulating tools with robot arms is a long-standing area of study in the field of robot intelligence.
To effectively manipulate an object with a tool and achieve a specific goal, robots must develop a com-
prehensive understanding of the environment based on sensor data and then perform intricate physical
interactions with targets. Several prior efforts have focused on data-driven methods that aim at learning
reliable tool representations for manipulation tasks. In particular, the application of end-to-end deep
neural networks has gained popularity for acquiring such representations [1-3]. These methods allow
for the generation of latent tool object representations through end-to-end neural networks and exten-
sive datasets, eliminating the need for manually crafting stage pipelines and defining object features.
However, these black-box methods often lack interpretability and compactness, and they may not fully
account for subsequent manipulation processes, as they do not consider actions beyond the successful
tool grasp.

Some works try to use keypoints to define the tool and environment in order to mathematically for-
mulate the manipulation task. In the works of Qin ez al. [4] and Manuelli et al. [5], they express the tool
and the task in keypoints and devise optimization algorithms to manipulate actions. By acquiring tool
keypoints through supervised or reinforcement learning and defining task keypoints in the environment,
these approaches formulate Quadratic Programming problems to generate robot movement trajectories
within the task context. Another recent study by Turpin et al. [6] also adopts keypoints to represent tool
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Figure 1. Difference of hammering between humans and robots. When humans hammer the nail, they
swing the hammer in the opposite direction of striking in order to stock energy, while robots only focus
on the achievement of task and ignore this important action.

objects. However, they employ reinforcement learning to predict tool affordances using a complexly
designed reward function.

Nevertheless, previous studies focus on achieving task completion in complex manipulation scenar-
ios as they often overlook whether the manipulation trajectory of robot is similar to that of human being.
For instance, when faced with intricate tasks, such as hammering a nail shown in Figure 1, these meth-
ods typically provide a straightforward policy. After grasping a hammer, they position it directly on
the nail and strike down until contact occurs. However, human hammering involves a distinct action:
the buildup of kinetic energy by swinging the hammer in the opposite direction before striking above
the nail’s position. This natural human-style approach stores energy in the hammer during the swing
and releases it upon impact with the nail. Such nuanced behavior is challenging to learn using conven-
tional optimization methods because encoding the swing action with constraints in an objective equation
proves difficult. The works in refs. [7-9] use various sensors to capture the effects that human conduct
on the tool and on the oriented objects to generalize the use of tool from human to robot, these methods
provide a preview by learning the human movement on the physical effects; however, the inputs that they
use depends on tactile data, it is expensive to gain in the normal life and will limit the propagation of
the method.

Recent advances have seen a surge in deep reinforcement learning algorithms for manipulation tasks
[10-12] with easy data gain, highlighting their potential for teaching robots tool-based tasks. In imitation
learning, there has been progress, with supervised training using human-teleoperated demonstrations
[13] or hand-manipulated trajectories [10]. The research in ref. [12] introduces a robot tool manipu-
lation strategy using human manipulation videos. They create a simulation environment aligned with
the guidance video and calculate robot states with guided policy samples and trajectory optimization.
Although effective, this approach involves solving optimization problems for each aligned environment,
which consumes considerable time and computing resources.

In order to teach a robot to learn human manipulation skills in a more natural and intuitive way,
we combine adversarial motion priors (AMP) within a reinforcement learning problem. AMP [14] is
a cutting-edge approach first appearing in computer graphics, it uses an adversarial network to learn
a “style” with a reference motion dataset. The reward function involves a style reward that encourages
the agent to replicate similar trajectories to those in the dataset and a task reward that assesses whether
the agent achieves the task while mimicking the motion style. We also adapt style and task rewards to
teach a robot arm human-like tool manipulation skills using demonstration video clips. Our approach
involves competitive training between a policy network and an adversarial network. The policy network
is trained using both task-specific and adversarial rewards to generate a policy that accomplishes the
task with human style. The adversarial network acts as a discriminator, determining the origin of state
transitions and providing a reward that effectively motivates the training of an agent. Due to the use of
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AMP in guiding the robot to learn human-like manipulation skills, we name the method HMAMP. The
contribution of our work is that:

« We introduce an implementation of task-oriented reinforcement learning combined with style in
manipulation domain and evaluate its performance on the task hammering.

o We provide an idea where the training data is easily acquired to learn a robot tool manipulating
policy in human style.

« We construct an environment of tool manipulation in simulation and verify that the HMAMP is
also useful in the real world.

2. Related work
2.1. Manipulation of tools

Tools use has been a fundamental issue in cognitive science studies that seeks to comprehend the nature
of intelligence [15—17]. To enable robots to perform complex tasks that require the use of tools, many
advanced studies have focused on recognizing affordance-specific features on tool objects [18,19], which
describes the potential physical interaction between object and manipulator and associates the regional
part to planned sequential actions. These approaches have been successful in equipping robots with
the capability to understand how objects may serve different purposes. In addition to recognizing the
features of tool objects, learning, and planning are essential components in the manipulation of tools, as
demonstrated in various studies [4,6,20]. Researchers have also explored methods of incorporating real-
time feedback and environmental factors to improve the accuracy and precision of tool grasping [21,22].
Some studies aim to identify suitable tools for a certain task, they learn an embedding knowledge by
DNN model between grasping tool, desired action, and target goal [23,24].

2.2. Learning from human videos

Plenty of recent research has explored utilizing human videos to improve the efficiency of RL in robots.
Some works use data from the egocentric view to enable robots learning human skills [25,26]. However
because of the variety of data source and the slight difference of view, it becomes difficult to use the
pre-trained representation in a specific manipulation task. In order to mend the domain gap, another type
of work utilizes the in-domain human demonstration, where the sequence of human pose is recorded by
motion capture [27] or by a view from the third person [28]. Data of this kind have a narrower disparity
between the human and robot domains, which makes it possible to construct efficient reward function for
training imitation learning algorithms. Instead of extracting and re-targeting the whole human pose from
the video, we focus on the motion of parts of important joints and the motion of the tool, which allows
a flexible transfer from human morphology to robot morphology. By cooperating with the task-oriented
approach with an AMP, we enable our system to learn the movement of robot arm using unstructured
motion data.

2.3. Generative adversarial imitation learning

Generative adversarial imitation learning (GAIL) [29] is inspired by the idea developed for generative
adversarial networks (GAN) [30]. It aims to train generators that learn policies matching the trajec-
tory distribution of the dataset, meanwhile, the discriminators serve as the reward functions to judge
whether the generated behaviors look like the demonstrations. By using a small number of demonstration
data from experts, GAIL learns both the unknown environment’s policy and reward function. Although
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these methods have demonstrated success in low-dimensional domains [29], their performance in high-
dimensional tasks is not outstanding. Recently, Peng et al. [14] have introduced AMP, which integrates
task goals with generative adversarial imitation learning. This allows simulated agents to perform high-
level tasks by learning to imitate behaviors from extensive motion dataset. Escontrela et al. [31] also
apply this adversarial technique with a limited number of reference motion clips to learn locomotion
skills for legged robots. In manipulation areas, we apply this technique to guide robots to interpret and
perform behavior shown by demonstration and we show that the agents have more flexibility to perform
more natural and feasible behaviors.

3. Learning tool manipulation policy

We model the problem of learning human-like tool-manipulating skills as a Markov Decision Process.
The goal of the reinforcement learning is to find the parameter 6 that optimize policy m, in which

the expected discounted return is maximal J(6) =E,, [Z,T;Ol y’r,]. We then propose the mathematical

abstraction of tool manipulation task and introduce the design of reward function.

3.1. Tool keypoint definition

For each manipulation task with tool, we make the assumption that the tool objects interact with the
environment containing one or more target objects. Inspired by ref. [4], in the framework of HMAMP, we
define some keypoints in each task manually, which consists of a set of keypoints on the tool K, and a set
of keypoints in the environment K,. Specifically, we consider K, = [xg, X, xm], where x, characterizes
the grasping position on the tools and function point, x; characterizes the functional part that make
contact with the target object and x,, represents an auxiliary point that aides to determine the direction
of tool. Environment keypoints are represented as K, = [x.], where x, denotes the position where the
target interacts with the tool. The keypoints of tools and environment are mostly used to determine the
goal reward which needs to be optimized in a reinforcement learning problem.

3.2. Rewards design

As mentioned in ref. [14], the total reward r, is determined as a goal reward r?, which is specific to the
task, helps to describe the completion of task and a style reward r; that evaluates whether the behaviors
produced by the agent is similar to the behaviors produced via the distribution of reference motion set.
The more similar the behaviors are, the higher value the style reward is. The proportion between style
reward and goal reward is adjusted manually before training.

r=arf + B'r; @8

3.2.1. Goal reward about task

The goal reward is related to the task and must be designed specifically. For the tool manipulation tasks
where there is a contact with environment, we design the goal reward r¢ composed by two terms at one
instance f.

=t + o

| IF Gy xoN /F F < F?
r{ B { 1 F > F¢ @

#'=1—tanh( |x; —x.[)

The first term # stimulates task completion, which is defined with the contact force detected on the
target object that is exerted by the tool, the force is captured by force sensor in the simulation. The
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detected force is encouraged to converge towards the force F,; that we desire. This reward has values
only when contact occurs and after the detection of contact force, the policy terminates. The second
term r¢ is defined between tool function point x; and environment target point x, to guide to exploit a
policy that minimizes the distance between tool and target. The utilization of tanh function aims to bind
the reward to [0, 1]. These terms are weighted with manually specified coefficients ' and w?, however,
the magnitude of second term is much lower than the first.

3.2.2. Style reward with motion prior
As the idea mentioned in ref. [14], we define a discriminator D, as a neural network with parameter ¢,
the discriminator is trained to distinguish whether a transition (s, s") is a fake one produced by an agent
or a true one sampled from a real motion distribution d**.

We update the objective of discriminator as:

argmin = Ega [(D,,,(s, s) — 1)2]
¢

B | (Do (s:8) +1)'] 3)

ng
+7EdM<s,s'> [IVsDy (s, 8)1I]

The former two terms serve to motivate the discriminator to differentiate between the input state
derived from a policy and the input state derived from the reference motion data. They are proposed
in LSGAN [32] to solve the challenge of vanishing gradients caused by the standard GAN objective
function where a sigmoid cross-entropy loss function is usually used. LSGAN prefer to optimize x>
divergence between the reference distribution and the policy distribution, which may alleviate the mode
collapse problem and lead to stable performance during the training process [33]. The last term in (3)
is a gradient penalty term to penalize nonzero gradients on samples, which may avoid oscillations and
improve training stability. The w* in the formula is a coefficient adjusted manually.

The style reward is then defined by:

7} = max [0, 1 —yU(Dy(s,5") — 1)2] @

with the additional offset and scale, the style reward is bounded between [0, 1].

The training process of policy and discriminator is shown in Figure 2. The agent steps to interact
with environment and produces a state transition (s, '), the observation in the environment is used to
calculate the goal reward r¢. The discriminator takes the state transition from a simulated environment
and from a reference motion clips to calculate the style reward r;. In the end, the combined reward is
used to optimize competitively the policy and the discriminator. The training details are demonstrated
in Algorithm 1.

4. Training
4.1. Data preprocess
The raw data used for HMAMP consist of video clips capturing manipulation skills from a third-person
perspective. This type of data offers several advantages: it minimizes the domain gap between simulation
and reality, and it is relatively easy to acquire, making it a practical choice for training purposes. In this
work, we create the dataset which records human skill: hammering. The duration of the human motion
in each video clips is less than one second, and we collect five pieces of video clips that perform the
hammering movement by two persons. Then, we use the most popular keypoint detection algorithm
BlazePose [34] to detect human joint including Hip, Elbow, Wrist, Hand, and we use a CV algorithm to
extract time-series of tool keypoints by manually signing them on the tool.

To retarget human motion to robot motion, it is necessary to construct an effective transfer function
that maps the human world space to the robot world space. Numerous studies [35-37] have explored
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Figure 2. Framework of HMAMP. With human manipulation video clips, we extract the keypoints of
human arm and manipulation tools. Then we do keypoints alignment between robot arm in simula-
tion and real-world human motion clips. The AMP Discriminator is to discriminate whether an action
sequence is a real human expert motion or generated by the policy network. The AMP reward and task
reward for manipulation task is added to be the total reward for RL training.

motion retargeting between these two domains, and any established retargeting method can be applied
in this process. In our work, we adopt a simple and straightforward approach: direct mapping. While
there are significant differences in topology between the human arm and the robot arm, they share cor-
responding joints, such as the human elbow, wrist, and hand, which align with certain robot joints and
the end-effector. By mapping key human joints to their robotic counterparts, we achieve a rough but
effective transfer of motion from the human domain to the robot domain.

4.2. Model details

The policy that we used in HMAMP is PPO, the hidden parameters of policy network are of size [512,
256, 128] with exponential linear unit activation layers. The policy outputs the distribution from which
the target joint positions are sampled with the representation of mean and standard deviation. Then,
the target joint positions are fed to our customized PD controllers to compute the motor torques. The
policy is trained on an observation o, derived from the state, which contains environment information
such as hammer position and nail position and robot information such as joint angles, joint veloci-
ties, end-effector orientation, and previous actions. The discriminator is an MLP with hidden layers of
size [1024, 512] and exponential linear unit activation layers. It takes the orientation of robot joints
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Algorithm 1. HMAMP: Learning Human-like Manipulation Skills by Adversarial Motion
Prior

1: Input: Task-specific environment £, Dataset of human reference motions M

2: Initialize AMP discriminator D

3: [Initialize policy

4: Initialize reply buffer B

5: for each training episode do

6

7

8

Reset environment £ to initial state
for trajectoryi=1,...,mdo
collect trajectory t; with 7w: 7; < {(s,, a;, ¢ ),T;Ol, s}

9: for time stepr=0,...,T — 1 do
10: d, <~ D¢(s,, s))
11: calculate r} by Eq. (4).
12: calculate r, by Eq. (1).
13: record r, in T;.
14: end for
15: store 7; in B5.
16: end for
17: for update step=1,...,ndo
18: b™ <« sample batch of K transitions from M.
19: b™ < sample batch of K transitions from 5.
20: update D according to Eq. (3) using b and b~
21: end for
22: update 7 using data from trajectories {7;}7.,
23: end for
£ = .
! g
- b~ %
J6—{ W A -./’"’“;r f';'l |
- {4 T e
Gripper +— ) B | A/ A\ NS MY j——Wrist
. el ] P
| i—— Hand

g . I [1|1/ \
E [ 1 -
I R R R

Human Hip Elbow  Wrist Hand

Figure 3. Direct mapping between human and robot arm. Some joints and the gripper of a Kinova
Gen3 are mapped to act as human hip, elbow, wrist, and hand.

and the orientation of tools as input. The value of all manually determined parameters is: «® = 0.6,
B=04,y"=0250 =10, 0’ =1, 0% =1, F/ =100.

4.3. Simulation
The robot that we choose to train the policy is Kinova Gen3 with the gripper 285, the correspondence
joint mapping result between Gen3 and human is shown in Figure 3.

We selected Isaac Gym [38] as our simulation platform due to its ability to accelerate the RL training
process using GPU resources. The policy was trained in parallel across 2048 agents, utilizing a single
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Figure 4. Training curves of HMAMP. Left figure shows the evolution of reach reward and knock force
reward, while right figure indicates the discriminator loss and gradient in the training process. The two
figures show the confrontation and balance between style reward and goal reward. In the early stage
goal reward has a strong guiding effect while in the late stage amp discriminator converges quickly,
giving the trajectory of robot a human style.

NVIDIA RTX 3090 GPU. The entire training process required 11 h of wall-clock time and spanned
60,000 training epochs. Each RL episode lasted a maximum of 152 steps, corresponding to 3 s of sim-
ulated time, and terminated early if the termination criteria were met. The policy operated at a control
frequency of 50 Hz during the simulation.

4.4. Termination

An episode terminates and the next one starts when the robot satisfy the termination criteria. It contains
task finish signal when the hammer knocks the nail and the collision signal when a force is detected
between robot components or between the robot and the table or the hammer and the table.

4.5. Domain randomization and training process

In order to improve the robustness of HMAMP policy and facilitate the transfer of learned policy from
simulation to the real world, we apply domain randomization in the training process. In detail, we ran-
domize the coefficient of friction applied to hammer and nail to [0.5, 1.25] and the joint-level PD gains to
[0.9, 1.1]. In addition, the same observation noise as in ref. [12] is added during the training phase, where
the Cartesian position observation noise is +0.01 m and joint position observation noise is +0.02 rad.

From Figure 4, the training curve shows the confrontation and balance between style reward and goal
reward. The early stage goal reward has a strong guiding effect, while in the late stage, amp discriminator
quickly converges, giving the movements of robot a human style.

5. Experiment

In this section, we present the experimental setup and results to demonstrate the effectiveness of
HMAMP in learning task-oriented, human-like manipulation skills. To evaluate the performance of our
method, we conducted a series of comparative experiments against two baseline approaches: a direct
path-planning control policy and a reinforcement learning (RL) approach without AMP. The experi-
mental results were recorded and analyzed quantitatively to highlight the contributions of HMAMP. The
evaluation focused on three key aspects: the quality of the learned manipulation skills, task completion
efficiency, and the similarity of the robot’s movements to human behavior.
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5.1. Comparative experiment in simulation

5.1.1. Task definition

The chosen manipulation task for the experiments involves knocking a nail with a hammer. The exper-
iments are conducted on the Isaac Gym simulation platform, using the model of a 7-dof Kinova Gen3
Arm with 2f-85 gripper to complete the task. At the start of the task, the hammer is securely grasped
by the robotic arm, which begins in its initial home position, with the gripper oriented perpendicular to
the platform (see Figure 6). The nail is placed arbitrarily on the manipulation platform. The objective
of the task is to successfully hammer the nail while replicating a human style of movement.

5.1.2. Baseline methods
We compare HMAMP against the following baseline methods:

« Direct Path-Planning Control Policy (DPPCP): This baseline approach determines manipulation
actions using predefined path-planning strategies. In this method, proportional-derivative (PD)
control is employed to generate a planned trajectory guiding the hammer from its initial position
to the nail.

« Reinforcement Learning without AMP (RL-noAMP): This baseline approach uses a standard
reinforcement learning method for the agent to acquire manipulation skills. The configuration of
this approach is identical to that of HMAMP, except that the AMP component is removed. The
training process follows the same procedure as in HMAMP.

5.1.3. Evaluation metrics
To quantitatively evaluate the performance of each approach, we define the following criteria:

« Knock Impulse: A measure of the knock effect received by the nail. It is calculated by the
formula : = f F,.i(t) dt. Large Impulse means the nail receives large force at one instance.

« Energy Efficiency: The energy used by the arm is E=)_, , [ w(¢) - w,(¢) dt, where n is the
joint number of the arm. The energy efficiency can be represented as the ratio of knock impulse
received by the nail and the energy cost by the arm: n =I/E

« Vertical Force Ratio: The vertical force ratio reflects how efficiently the force is applied in the
vertical direction, which is critical for tasks involving hammering. Higher ratios indicate more
effective and efficient nail hammering: Vertical Force Ratio = Dricalmit

mel, nail
« Frechet Distance: The quantitative analysis of motion similarity between human and robot arm
manipulation [39]. The smaller the Frechet distance between two trajectories is, the more similar
their shapes are.

5.1.4. Results in simulation

We implemented the two baseline control strategies, DPPCP and RL-noAMP, as described in
Section 5.1.2, within the simulation environment. Comparative experiments were conducted to eval-
uate their performance against our proposed method. Each method was tested across 10 trials, and the
average values for each evaluation criterion were calculated to ensure stable and reliable performance
measurements.

Table I presents a comprehensive comparison of the various approaches, highlighting key perfor-
mance metrics. The HMAMP consistently outperforms both DPPCP and RL-noAMP in all evaluated
aspects. Notably, it has an overwhelming advantage in the impulse received by the nail, which is the
most critical task of hammering nails. From the table, we can also obtain that the HMAMP is more
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Table I. Comparison results of HMAMP with baselines.

Method HMAMP DPPCP RL-noAMP
Knock impulse 4238 kg m/s 2351 kg m/s 2507 kg m/s
Energy efficiency 1.56 s/m 1.34 s/m 1.26 s/m
Vertical force ratio 0.99 0.99 0.91
Frechet distance 0.29 0.88 1.36

o human

e amp

RL w/o amp
-‘ PDcontrol
2.2

2.0 1 e

. g J M
i el Tt
I 16 T % [
1.4 1 y
12 7
1.0 1
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0.10
2. 0.05
[’75'/ 0.00
-0.05 0.7 0.8

Figure 5. Movement trajectory of the end of the robotic arm in Cartesian space. The end-of-arm motion
trajectory obtained by HMAMP is the most similar to the human expert trajectory.

efficient in hammering, since both the energy efficiency and vertical force ratio excel the other meth-
ods. In addition, HMAMP has the closest Frechet Distance to human manipulation trajectories, which
reflects the effectiveness of our method in learning human motion styles. We can experience this more
intuitively from Figure 5.

The experimental results clearly demonstrate the effectiveness of the proposed HMAMP framework
in learning task-oriented, human-like manipulation skills through the use of AMP. The integration
of AMP significantly improves task completion efficiency, knock impulse, and energy efficiency,
resulting in superior performance compared to both the direct path-planning approach and traditional
reinforcement learning (RL) methods.

5.2. Real robot arm experiment

We employed the same arm and the same task as the simulation for real-world experiments. The envi-
ronment setup closely resembled real-world scenarios to ensure the applicability of our approach in
practical scenarios.

Our proposed approach, which incorporates AMP into reinforcement learning (RL), was integrated
into the control system of the robotic arm. The parameters and settings were optimized based on the
training results obtained in the simulation environment. The robotic arm was tasked with performing
the manipulation task using the learned skills.

Figure 6 showcases the manipulation effect of HMAMP on the real robot arm. The sequence of images
illustrates the robotic arm successfully completing the manipulation task with precision and human-like
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Figure 6. Experiment in simulation and real world. The first row shows human knocking motion clips
that we used as motion priors. The second row shows the policy HMAMP in simulation, the hammer can
successfully complete the task with the manipulation trajectory that we desired. The third row shows the
HMAMP implemented in real world on Kinova Gen3, and the fourth row is the details about hammering
a nail in real world.

motion. The trajectory followed by the arm demonstrates smoothness, accuracy, energy efficiency, and
human manipulation skills, confirming the benefits of incorporating AMPs.

6. Conclusion

In this paper, we presented a novel approach named HMAMP to enable robotic arms to perform tool
manipulation with human-like skills. Our method integrates AMP with deep reinforcement learning
to capture complex manipulation dynamics. By leveraging both real-world motion data and synthetic
motion data generated through simulation, we demonstrated the ability of our approach to surpass
existing techniques in learning human-style manipulation behaviors. The evaluation of the challenging
hammering task highlighted the effectiveness of our method and its potential for real-world applications.
This research bridges the gap between robotic and human capabilities, paving the way for more intuitive
and natural human-robot interactions. The proposed framework serves as a foundation for future research
aimed at developing robots with advanced manipulation skills, envisioning a future where machines
seamlessly mimic human manipulation.

Supplementary material. The supplementary material for this article can be found at http://dx.doi.org/10.1017/
50263574725001444.
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