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STRONG AND QUASISTRONG DISCONJUGACY 

B Y 

D A V I D L O N D O N A N D B I N Y A M I N S C H W A R Z 

ABSTRACT. A complex linear homogeneous differential equation 
of the nth order is called strong disconjugate in a domain G if, for 
every n points zx,..., zn in G and for every set of positive integers, 
kl9..., fcj, k1 + . . . + kx = n, the only solution y(z) of the equation 
which satisfies 

y ( Z l ) = --• = y ( z k i ) = y< k i> (z k l + i ) = • • • = y * * ^ = • • • 

= y^+---+ki-i\zn) = 0 

is the trivial one y(z) = 0. The equation y(n)(z) = 0 is strong discon
jugate in the whole plane and for every other set of conditions of 
the form y(m^(zk) = 0, k = 1 , . . . , n, mx < m2 ̂  • • • ̂  mn, there exist, 
in any given domain, points z l 5 . . . , zn and nontrivial polynomials of 
degree smaller than n, which satisfy these conditions. An analogous 
results holds also for real disconjugate differential equations. 

1. Introduction. Let the functions a0(z),..., a^^iz) be regular in a simply 
connected domain G. The differential equation 

(1) Lny = yM(z) + an_1(z)y(n"1)(z) + • • • 4- a0(z)y (z) = 0 

is called disconjugate in G if no (nontrivial) solution has more than n — 1 zeros 
in G. (The zeros are counted by their multiplicities.) In [4] a more restrictive 
notion was introduced. Equation (1) was called strong disconjugate in G if, for 
every choice of n (not necessarily distinct) points z 1 ? . . . , zn in G and every set 
of positive integers fc1?..., kt such that kx + • • • + kt = n, the only solution of (1) 
which satisfies 

y(zi) = • • • = y(zkl) = y(ki)(zfcl+1) = • • • = y(k>\zki+k2) 
= ••• = y (k>+- ' • + f c " ) ( z f c l + . . . + t l _ 1 + i ) = • • • = y ( k ' + ' ' " ^ - ' ( z » ) = o , 

is the trivial one y(z) = 0. (If a point z* appears m times as the argument of the 
same derivative of order kt + - - - + kp, then this point z* is a zero of 
y (k i+ ,+kp)(z) of at least multiplicity m.) Strong disconjugacy implies disconjug-
acy (kx = n), but in general disconjugacy does not imply strong disconjugacy. 
For example, the equation y"(z) + y(z) = 0 is disconjugate in |Z |<TT/2 but is 
strong disconjugate only in |z|<7r/4. Sufficient conditions for strong disconjug
acy were given in [3, 4, 7, 8]. 
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We write (2) in the form 

(3) y ( ^ (z k ) = 0, k = l , . . . , n , 

where the (ordered) n-tuple ( m l 5 . . . , mn) is given by 

0 = mx = • • • = mkl, fcx = mkl+1 = • • • = mkl+k2, 

(4) / « \ 
fei + • • • fci-i = mk l + . . .+kl_1+i = * • • = mn I fej > 0, i = 1 , . . . , I, 2, fc» = n I 

A n-tuple (m b . . . , mn) of nonnegative integers, satisfying (4), will be called 
admissible. There are 2 n _ 1 admissible rc-tuples. Every other n-tuple of non-
negative integers, satisfying 

(5) 0 < mx < m2 ^ • • • ^ mn, 

will be called nonadmissible. 
The definition of strong disconjugacy is natural because of the following 

reasons: (a) the equation y(n)(z) = 0 is strong disconjugate in the whole plane; 
(b) for any given nonadmissible n-tuple ( m l 5 . . . , mn) and any given domain G, 
there exist points zx, . . . , zn in G and a nontrivial solution y(z) of y(n)(z) = 0 
such that (3) holds. Part (a) was proved in [4], but part (b) was only stated 
there. In Section 2 we prove both parts (Theorem 1). In terms of polynomial 
interpolation, part (a) means that for any given admissible n -tuple 
( m l 5 . . . , mn) and arbitrary (not necessarily distinct) points z 1 ? . . . , zn and 
values bl9..., bn, there exists a unique polynomial y(z) of degree at most n — 1 
satisfying 

(30 y ( ^ ( z k ) = bk, k = l , . . . , n . 

Part (b) means that for any given nonadmissible n -tuple this assertion is wrong. 
In Section 3 we obtain an analogue of Theorem 1 for general real disconju

gate equations (Theorem 2). 

2. The equation y ( n )(z) = 0. Admissible and nonadmissible n-tuples 
( m 1 ? . . . , mn) were defined in the introduction. We denote the set of all 
polynomials of degree not larger than k by Pk. 

THEOREM 1. (a) The equation y(n)(z) = 0 is strong disconjugate in the whole 
plane. That means, let ( m 1 ? . . . , mn) be admissible and let z 1 ? . . . , zn be an 
arbitrary set of (not necessarily distinct) points in the plane. If y(z)ePn_1 and 

(3) y ( ^ ( z k ) = 0, k = l , . . . , n , 

then y(z) = 0. 
(b) Let the n-tuple ( m l 5 . . . , mn) be nonadmissible and let G be any given 

domain. Then there exists points zl9..., zn in G and a polynomial y(z)eP n _ l 5 

y ( z ) # 0 , such that (3) holds. 
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Proof. To prove part (a), let y(z)e? r i_ 1 and assume that (2) holds (i.e. (3) 
holds for an admissible n -tuple ( m 1 ? . . . , ran) and for a given set of, not 
necessarily distinct, points z 1 ? . . . , zn). To prove that y(z) = 0, we use induction 
on n. As k1 = n implies y(z) = 0, we may assume that k1<n. We then use the 
n-kx last equations of (2) with respect to y (k i )(z)ePn_k i_1 and we note that 
the corresponding (n —k1)-tuple is also admissible. It thus follows by the 
induction hypothesis that y(kl)(z) = 0. Hence, y(z)ePk i_1 . Using now the kx 

first equations of (2), y(zx) = - • * = y(zki) = 0, it follows that y(z) = 0 and thus 
we proved part (a). 

We remark now that for admissible n-tuples (ml9..., mn) the definition 
(4) implies 

(6) mk^k — 1, k = 1 , . . . , n. 

For the proof of part (b) we use again induction on n. It is easily seen that (b) 
holds for n = 1 (and n = 2). (At the end of this section we bring a list of all 
M-tuples for n = 1, 2 and 3.) We thus assume that (b) holds for all r, r < n, and 
prove it now for n. We partition the (infinite) set of non-admissible n -tuples 
( m 1 ? . . . , mn) into three subsets A, B and C. 

( m b . . . , mn) belongs to set A if mn > n. (Such a n-tuple is nonadmissible as 
(6) does not hold for fc = n.) We may now choose arbitrary points z 1 ? . . . , zn_x 

in G, and there will always exist y ( z ) 6 ? n _ b y ( z ) ^ 0 , which satisfies the first 
n — 1 equations of (3) for the chosen points z 1 ? . . . , zn_i. As mn ^ n, y(m"}(z) = 
0, and we thus proved part (b) for the set A (which contains an infinite number 
of nonadmissible n-tuples.) 

For the remaining nonadmissible M-tuples we have 

(5') 0 < m 1 < m 2 < - • - < m n < n - l . 

(As the total number of n-tuples satisfying (50 is I ), we remain with 
(2n — l\ _-. 
I I - 2 nonadmissible rc-tuples satisfying (5;).) 

The set B consists of all rc-tuples ( m l 9 . . . , mn), satisfying (5'), for which each 
value fc —1, fc = l , . . . , n , appears at most n-k times in the rc-tuple. We 
choose n — 1 points z f , . . . , z*_x in our given domain G, so that also their 
convex hull belongs to G. Let y*(z) = Ilr=i (z-z*). It follows by the Gauss-
Lucas theorem [5] that the n-k zeros of (y*) (k-1) lie also in G, fc = 
1 , . . . , n -1. In case B we thus choose the points zb appearing in equation (3) 
as arguments of y(k-1)(z!) = 0, from the set of the n-k zeros of (y*)(k_1). So 
y(z) = y*(z) and the just chosen points zu ..., zn satisfy (3), and we thus 
proved part (b) for the set B. (As we have already proved part (a), this shows 
that all n-tuples of this set are nonadmissible.) 

There remains thus the set C of all nonadmissible M-tuples, satisfying (5'), 
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for which at least one value r - l , r = l , . . . , n , appears at least n - r + 1 times in 
( m b . . . , m n ) . Let us assume that r - 1 is the largest of these values. (This 
assumption serves only to define the subsets Cs uniquely.) By (50 the first 
number mk in the n-tuple ( m 1 ? . . . , mn) which equals r - 1 must be mr_s, with 
0 < s < r - l , since otherwise there are not enough mis left which equal r - 1 . 
We partition the set C into subsets Cs according to these values s. 

If s = 0, then 

(7) mr = m r+1 = • • • = mn = r - 1 . 

The case r = l cannot occur, as then (7) would yield the admissible n-tuple 
( 0 , . . . , 0). Hence 2 < r < rc. But then the complementary ( r - l)-tuple 
( m 1 ? . . . , mr_i) is nonadmissible. Indeed, if it were admissible, (7) would imply 
that the given n-tuple is also admissible. By our induction hypothesis, there 
exist points z 1 ? . . . , zr_! in G and a polynomial y (z) G Pr_2, y (z) ^ 0, such that 

(8) y<-k)(Zfc) = o, fc = l , . . . , r - l . 

As y ( r -1)(z) = 0, it follows by (7) and (8) that this y(z) satisfies (3) (for arbitrary 
z r , . . . , zn) and we thus proved part (b) for the subset C0. 

Assume now that l < s < r — 1 (hence r ^ 2 ) . As mr_s = r—1, it follows that 
the (r-s)- tuple ( m l 5 . . . , mr_s) is nonadmissible (as (6) does not hold for its 
last element). By the induction hypothesis, there exist points zu . . . , zr_s in G 
and a polynomial y ( z ) eP r _ s _ b y ( z ) # 0 , such that 

(80 y(^>(zk) = 0, fc = l , . . . , r - s . 

As y(mk)(z) = 0 for k = r — s + 1 , . . . , n, we proved part (b) also for all subsets 
Cs, l < s < r - l . This completes the proof of Theorem 1. 

We add here the list of n -tuples for n = 1, 2 and 3. We include only the 
n-tuples satisfying (5'), so the infinite subset A is missing. 

n = 1: (0) adm. 
n = 2: (0, 0) adm., (0, 1) adm., (1, 1) Ca. 
n = 3: (0, 0, 0) adm., (0, 0, 1) B, (0, 0, 2) adm., (0, 1, 1) adm., (0, 1, 2) adm., 

(0, 2, 2) d , (1, 1, 1) C l5 (1, 1, 2) C0, (1, 2, 2) Q , (2, 2, 2) C2. 

We remark that the assertion (b) of the theorem remains correct if the 
domain G in the plane is replaced by an interval I of the real line and the 
complex polynomial y(z)ePn^l by a real polynomial. 

3. Real disconjugate equations. Let now a 0 ( x ) , . . . , On-iM be real continu
ous functions in a compact interval I of the real line. We assume that the 
differential equation 

(9) Lny = yM(x) + an_1(x)y (^1)(x) + • • • + a0(x)y (x) = 0, 

is disconjugate in I. Disconjugacy of (9) in I is equivalent to the existence of 
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positive functions vk(x), k = 1 , . . . , rc, such that vk e C n _ k + 1 in I and such that 
the given operator Lny has the factorization 

(10) Lny = Vl • • • vn D-D • • • D-D- y, ( o y = ^ Y 
vn v2 v1 \ dx! 

[6], [1, pp. 91-94]. 
Given such a factorization of Lny, we define the fcth quasiderivative [2] Lky 

by the differential operators 

1 1 
Lky = v1- -vkD—D-> D — y, fc = l , . . . , n - l . 

We also set 

i-oy = y. 

Finally, for solutions y(x) of the equation Lny = 0 , we set 

Lky = 0, k^n, 

i.e. for such functions y the operator Lky, fc s? rc, is the null operator. 
Using these definitions and conventions, we define: the disconjugate equa

tion Lny = 0 is called quasistrong disconjugate in I if, for every choice of n (not 
necessarily distinct) points xl9..., xn in I and for every admissible rc-tuple 
( m 1 ? . . . , mn), the only solution of Lny = 0 which satisfies 

(11) Lmky(xk) = 0, k = l , . . . , r c , 

is the trivial one y(x) = 0. 

THEOREM 2. Let the differential equation (9) be disconjugate in the compact 
interval I and let (10) be a factorization of Ln. 

(a) The equation (9) is quasistrong disconjugate in I. That means, let 
( m l 5 . . . , mn) be admissible and let x l 5 . . . , xn be arbitrary points in I. If y(x) is a 
solution of (9) satisfying (11) then y(x) = 0. 

(b) Let the n-tuple ( m 1 ? . . . , mn) be nonadmissible and let J be any given 
subinterval of I. Then there exist points xl9..., xn in J and a nontrivial solution 
y(x) of (9) such that (11) holds. 

As the proof of Theorem 2 is similar to the proof of Theorem 1, we omit it. 
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