STRONG AND QUASISTRONG DISCONJUGACY

BY
DAVID LONDON AND BINYAMIN SCHWARZ

$$
\begin{aligned}
& \text { ABSTRACT. A complex linear homogeneous differential equation } \\
& \text { of the } n \text {th order is called strong disconjugate in a domain } G \text { if, for } \\
& \text { every } n \text { points } z_{1}, \ldots, z_{n} \text { in } G \text { and for every set of positive integers, } \\
& k_{1}, \ldots, k_{l}, k_{1}+\ldots+k_{l}=n \text {, the only solution } y(z) \text { of the equation } \\
& \text { which satisfies } \\
& \begin{array}{r}
y\left(z_{1}\right)=\cdots=y\left(z_{k_{1}}\right)=y^{\left(k_{1}\right)}\left(z_{k_{1}+1}\right)=\cdots=y^{\left(k_{1}\right)}\left(z_{k_{1}+k_{2}}\right)=\cdots \\
=y^{\left(k_{1}+\cdots+k_{l-1}\right)}\left(z_{n}\right)=0
\end{array}
\end{aligned}
$$

is the trivial one $y(z) \equiv 0$. The equation $y^{(n)}(z)=0$ is strong disconjugate in the whole plane and for every other set of conditions of the form $y^{\left(m_{k}\right)}\left(z_{k}\right)=0, k=1, \ldots, n, m_{1} \leq m_{2} \leq \cdots \leq m_{n}$, there exist, in any given domain, points z_{1}, \ldots, z_{n} and nontrivial polynomials of degree smaller than n, which satisfy these conditions. An analogous results holds also for real disconjugate differential equations.

1. Introduction. Let the functions $a_{0}(z), \ldots, a_{n-1}(z)$ be regular in a simply connected domain G. The differential equation

$$
\begin{equation*}
L_{n} y=y^{(n)}(z)+a_{n-1}(z) y^{(n-1)}(z)+\cdots+a_{0}(z) y(z)=0 \tag{1}
\end{equation*}
$$

is called disconjugate in G if no (nontrivial) solution has more than $n-1$ zeros in G. (The zeros are counted by their multiplicities.) In [4] a more restrictive notion was introduced. Equation (1) was called strong disconjugate in G if, for every choice of n (not necessarily distinct) points z_{1}, \ldots, z_{n} in G and every set of positive integers k_{1}, \ldots, k_{l} such that $k_{1}+\cdots+k_{l}=n$, the only solution of (1) which satisfies

$$
\begin{align*}
y\left(z_{1}\right) & =\cdots=y\left(z_{k_{1}}\right)=y^{\left(k_{1}\right)}\left(z_{k_{1}+1}\right)=\cdots=y^{\left(k_{1}\right)}\left(z_{k_{1}+k_{2}}\right) \\
& =\cdots=y^{\left(k_{1}+\cdots+k_{1-1}\right)}\left(z_{k_{1}+\cdots+k_{1-1}+1}\right)=\cdots=y^{\left(k_{1}+\cdots+k_{1-1}\right)}\left(z_{n}\right)=0, \tag{2}
\end{align*}
$$

is the trivial one $y(z) \equiv 0$. (If a point z^{*} appears m times as the argument of the same derivative of order $k_{1}+\cdots+k_{p}$, then this point z^{*} is a zero of $y^{\left(k_{1}+\cdots+k_{p}\right)}(z)$ of at least multiplicity m.) Strong disconjugacy implies disconjugacy $\left(k_{1}=n\right)$, but in general disconjugacy does not imply strong disconjugacy. For example, the equation $y^{\prime \prime}(z)+y(z)=0$ is disconjugate in $|z|<\pi / 2$ but is strong disconjugate only in $|z|<\pi / 4$. Sufficient conditions for strong disconjugacy were given in $[3,4,7,8]$.

[^0]We write (2) in the form

$$
\begin{equation*}
y^{\left(m_{k}\right)}\left(z_{k}\right)=0, \quad k=1, \ldots, n \tag{3}
\end{equation*}
$$

where the (ordered) n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ is given by

$$
\begin{gather*}
0=m_{1}=\cdots=m_{k_{1}}, \quad k_{1}=m_{k_{1}+1}=\cdots=m_{k_{1}+k_{2}}, \cdots, \\
k_{1}+\cdots k_{l-1}=m_{k_{1}+\cdots+k_{l-1}+1}=\cdots=m_{n}\left(k_{i}>0, i=1, \ldots, l, \sum_{i=1}^{l} k_{i}=n\right) \tag{4}
\end{gather*}
$$

A n-tuple (m_{1}, \ldots, m_{n}) of nonnegative integers, satisfying (4), will be called admissible. There are 2^{n-1} admissible n-tuples. Every other n-tuple of nonnegative integers, satisfying

$$
\begin{equation*}
0 \leq m_{1} \leq m_{2} \leq \cdots \leq m_{n} \tag{5}
\end{equation*}
$$

will be called nonadmissible.
The definition of strong disconjugacy is natural because of the following reasons: (a) the equation $y^{(n)}(z)=0$ is strong disconjugate in the whole plane; (b) for any given nonadmissible n-tuple (m_{1}, \ldots, m_{n}) and any given domain G, there exist points z_{1}, \ldots, z_{n} in G and a nontrivial solution $y(z)$ of $y^{(n)}(z)=0$ such that (3) holds. Part (a) was proved in [4], but part (b) was only stated there. In Section 2 we prove both parts (Theorem 1). In terms of polynomial interpolation, part (a) means that for any given admissible n-tuple (m_{1}, \ldots, m_{n}) and arbitrary (not necessarily distinct) points z_{1}, \ldots, z_{n} and values b_{1}, \ldots, b_{n}, there exists a unique polynomial $y(z)$ of degree at most $n-1$ satisfying

$$
y^{\left(m_{k}\right)}\left(z_{k}\right)=b_{k}, \quad k=1, \ldots, n .
$$

Part (b) means that for any given nonadmissible n-tuple this assertion is wrong.
In Section 3 we obtain an analogue of Theorem 1 for general real disconjugate equations (Theorem 2).
2. The equation $\boldsymbol{y}^{(n)}(z)=0$. Admissible and nonadmissible n-tuples $\left(m_{1}, \ldots, m_{n}\right)$ were defined in the introduction. We denote the set of all polynomials of degree not larger than k by P_{k}.

Theorem 1. (a) The equation $y^{(n)}(z)=0$ is strong disconjugate in the whole plane. That means, let $\left(m_{1}, \ldots, m_{n}\right)$ be admissible and let z_{1}, \ldots, z_{n} be an arbitrary set of (not necessarily distinct) points in the plane. If $y(z) \in P_{n-1}$ and

$$
\begin{equation*}
y^{\left(m_{k}\right)}\left(z_{k}\right)=0, \quad k=1, \ldots, n \tag{3}
\end{equation*}
$$

then $y(z) \equiv 0$.
(b) Let the n -tuple $\left(m_{1}, \ldots, m_{n}\right)$ be nonadmissible and let G be any given domain. Then there exists points z_{1}, \ldots, z_{n} in G and a polynomial $y(z) \in P_{n-1}$, $y(z) \not \equiv 0$, such that (3) holds.

Proof. To prove part (a), let $y(z) \in P_{n-1}$ and assume that (2) holds (i.e. (3) holds for an admissible n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ and for a given set of, not necessarily distinct, points z_{1}, \ldots, z_{n}). To prove that $y(z) \equiv 0$, we use induction on n. As $k_{1}=n$ implies $y(z) \equiv 0$, we may assume that $k_{1}<n$. We then use the $n-k_{1}$ last equations of (2) with respect to $y^{\left(k_{1}\right)}(z) \in P_{n-k_{1}-1}$ and we note that the corresponding $\left(n-k_{1}\right)$-tuple is also admissible. It thus follows by the induction hypothesis that $y^{\left(k_{1}\right)}(z) \equiv 0$. Hence, $y(z) \in P_{k_{1}-1}$. Using now the k_{1} first equations of (2), $y\left(z_{1}\right)=\cdots=y\left(z_{k_{1}}\right)=0$, it follows that $y(z) \equiv 0$ and thus we proved part (a).

We remark now that for admissible n-tuples $\left(m_{1}, \ldots, m_{n}\right)$ the definition (4) implies

$$
\begin{equation*}
m_{k} \leq k-1, \quad k=1, \ldots, n . \tag{6}
\end{equation*}
$$

For the proof of part (b) we use again induction on n. It is easily seen that (b) holds for $n=1$ (and $n=2$). (At the end of this section we bring a list of all n-tuples for $n=1,2$ and 3.) We thus assume that (b) holds for all $r, r<n$, and prove it now for n. We partition the (infinite) set of non-admissible n-tuples (m_{1}, \ldots, m_{n}) into three subsets A, B and C.
(m_{1}, \ldots, m_{n}) belongs to set A if $m_{n} \geq n$. (Such a n-tuple is nonadmissible as (6) does not hold for $k=n$.) We may now choose arbitrary points z_{1}, \ldots, z_{n-1} in G, and there will always exist $y(z) \in P_{n-1}, y(z) \not \equiv 0$, which satisfies the first $n-1$ equations of (3) for the chosen points z_{1}, \ldots, z_{n-1}. As $m_{n} \geqslant n, y^{\left(m_{n}\right)}(z) \equiv$ 0 , and we thus proved part (b) for the set A (which contains an infinite number of nonadmissible n-tuples.)

For the remaining nonadmissible n-tuples we have

$$
0 \leq m_{1} \leq m_{2} \leq \cdots \leq m_{n} \leq n-1
$$

(As the total number of n-tuples satisfying (5^{\prime}) is $\binom{2 n-1}{n}$, we remain with $\binom{2 n-1}{n}-2^{n-1}$ nonadmissible n-tuples satisfying (5^{\prime}).)

The set B consists of all n-tuples (m_{1}, \ldots, m_{n}), satisfying (5^{\prime}), for which each value $k-1, k=1, \ldots, n$, appears at most $n-k$ times in the n-tuple. We choose $n-1$ points $z_{1}^{*}, \ldots, z_{n-1}^{*}$ in our given domain G, so that also their convex hull belongs to G. Let $y^{*}(z)=\prod_{i=1}^{n-1}\left(z-z_{i}^{*}\right)$. It follows by the GaussLucas theorem [5] that the $n-k$ zeros of $\left(y^{*}\right)^{(k-1)}$ lie also in $G, k=$ $1, \ldots, n-1$. In case B we thus choose the points z_{l}, appearing in equation (3) as arguments of $y^{(k-1)}\left(z_{l}\right)=0$, from the set of the $n-k$ zeros of $\left(y^{*}\right)^{(k-1)}$. So $y(z)=y^{*}(z)$ and the just chosen points z_{1}, \ldots, z_{n} satisfy (3), and we thus proved part (b) for the set B. (As we have already proved part (a), this shows that all n-tuples of this set are nonadmissible.)

There remains thus the set C of all nonadmissible n-tuples, satisfying (5^{\prime}),
for which at least one value $r-1, r=1, \ldots, n$, appears at least $n-r+1$ times in $\left(m_{1}, \ldots, m_{n}\right)$. Let us assume that $r-1$ is the largest of these values. (This assumption serves only to define the subsets C_{s} uniquely.) By (5^{\prime}) the first number m_{k} in the n-tuple (m_{1}, \ldots, m_{n}) which equals $r-1$ must be m_{r-s}, with $0 \leq s \leq r-1$, since otherwise there are not enough $m_{k}^{\prime} s$ left which equal $r-1$. We partition the set C into subsets C_{s} according to these values s.

If $s=0$, then

$$
\begin{equation*}
m_{r}=m_{r+1}=\cdots=m_{n}=r-1 . \tag{7}
\end{equation*}
$$

The case $r=1$ cannot occur, as then (7) would yield the admissible n-tuple $(0, \ldots, 0)$. Hence $2 \leq r \leq n$. But then the complementary ($r-1$)-tuple (m_{1}, \ldots, m_{r-1}) is nonadmissible. Indeed, if it were admissible, (7) would imply that the given n-tuple is also admissible. By our induction hypothesis, there exist points z_{1}, \ldots, z_{r-1} in G and a polynomial $y(z) \in P_{r-2}, y(z) \not \equiv 0$, such that

$$
\begin{equation*}
y^{\left(m_{k}\right)}\left(z_{k}\right)=0, \quad k=1, \ldots, r-1 . \tag{8}
\end{equation*}
$$

As $y^{(r-1)}(z) \equiv 0$, it follows by (7) and (8) that this $y(z)$ satisfies (3) (for arbitrary z_{r}, \ldots, z_{n}) and we thus proved part (b) for the subset C_{0}.

Assume now that $1 \leq s \leq r-1$ (hence $r \geq 2$). As $m_{r-s}=r-1$, it follows that the ($r-s$)-tuple (m_{1}, \ldots, m_{r-s}) is nonadmissible (as (6) does not hold for its last element). By the induction hypothesis, there exist points z_{1}, \ldots, z_{r-s} in G and a polynomial $y(z) \in P_{r-s-1}, y(z) \neq 0$, such that

$$
y^{\left(m_{k}\right)}\left(z_{k}\right)=0, \quad k=1, \ldots, r-s
$$

As $y^{\left(m_{k}\right)}(z) \equiv 0$ for $k=r-s+1, \ldots, n$, we proved part (b) also for all subsets $C_{s}, 1 \leq s \leq r-1$. This completes the proof of Theorem 1.

We add here the list of n-tuples for $n=1,2$ and 3 . We include only the n-tuples satisfying (5^{\prime}), so the infinite subset A is missing.

$$
\begin{aligned}
& n=1:(0) \text { adm. } \\
& n=2:(0,0) \text { adm., }(0,1) \text { adm., }(1,1) C_{1} . \\
& n=3:(0,0,0) \text { adm., }(0,0,1) B,(0,0,2) \text { adm., }(0,1,1) \text { adm., }(0,1,2) \text { adm., } \\
&(0,2,2) C_{1},(1,1,1) C_{1},(1,1,2) C_{0},(1,2,2) C_{1},(2,2,2) C_{2} .
\end{aligned}
$$

We remark that the assertion (b) of the theorem remains correct if the domain G in the plane is replaced by an interval I of the real line and the complex polynomial $y(z) \in P_{n-1}$ by a real polynomial.
3. Real disconjugate equations. Let now $a_{0}(x), \ldots, a_{n-1}(x)$ be real continuous functions in a compact interval I of the real line. We assume that the differential equation

$$
\begin{equation*}
L_{n} y=y^{(n)}(x)+a_{n-1}(x) y^{(n-1)}(x)+\cdots+a_{0}(x) y(x)=0 \tag{9}
\end{equation*}
$$

is disconjugate in I. Disconjugacy of (9) in I is equivalent to the existence of
positive functions $v_{k}(x), k=1, \ldots, n$, such that $v_{k} \in C^{n-k+1}$ in I and such that the given operator $L_{n} y$ has the factorization

$$
\begin{equation*}
L_{n} y=v_{1} \cdots v_{n} D \frac{1}{v_{n}} D \cdots D \frac{1}{v_{2}} D \frac{1}{v_{1}} y, \quad\left(D y=\frac{d y}{d x}\right) \tag{10}
\end{equation*}
$$

[6], [1, pp. 91-94].
Given such a factorization of $L_{n} y$, we define the k th quasiderivative [2] $L_{k} y$ by the differential operators

$$
L_{k} y=v_{1} \cdots v_{k} D \frac{1}{v_{k}} D \cdots D \frac{1}{v_{1}} y, \quad k=1, \ldots, n-1 .
$$

We also set

$$
L_{0} y=y
$$

Finally, for solutions $y(x)$ of the equation $L_{n} y=0$, we set

$$
L_{k} y=0, \quad k \geqslant n,
$$

i.e. for such functions y the operator $L_{k} y, k \geqslant n$, is the null operator.

Using these definitions and conventions, we define: the disconjugate equation $L_{n} y=0$ is called quasistrong disconjugate in I if, for every choice of n (not necessarily distinct) points x_{1}, \ldots, x_{n} in I and for every admissible n-tuple (m_{1}, \ldots, m_{n}), the only solution of $L_{n} y=0$ which satisfies

$$
\begin{equation*}
L_{m_{k}} y\left(x_{k}\right)=0, \quad k=1, \ldots, n, \tag{11}
\end{equation*}
$$

is the trivial one $y(x) \equiv 0$.
Theorem 2. Let the differential equation (9) be disconjugate in the compact interval I and let (10) be a factorization of L_{n}.
(a) The equation (9) is quasistrong disconjugate in I. That means, let (m_{1}, \ldots, m_{n}) be admissible and let x_{1}, \ldots, x_{n} be arbitrary points in I. If $y(x)$ is a solution of (9) satisfying (11) then $y(x) \equiv 0$.
(b) Let the n-tuple $\left(m_{1}, \ldots, m_{n}\right)$ be nonadmissible and let J be any given subinterval of I. Then there exist points x_{1}, \ldots, x_{n} in J and a nontrivial solution $y(x)$ of (9) such that (11) holds.

As the proof of Theorem 2 is similar to the proof of Theorem 1, we omit it.

References

1. W. A. Coppel, "Disconjugacy", Lecture Notes in Mathematics 220, Springer Berlin, 1971.
2. U. Elias, The extremal solutions of the equation $L y+p(x) y=0$, II J. Math. Anal. Appl. 55 (1976), 253-265.
3. M. Lavie, On disconjugacy and interpolation in the complex domain J. Math. Anal. Appl. 32 (1970), 246-263.
4. D. London and B. Schwarz, Disconjugacy of complex differential systems and equations, Trans. Am. Math. Soc. 135 (1969), 487-505.
5. M. Marden, "Geometry of Polynomials", 2nd ed., Amer. Math. Soc. Providence R.I., 1966.
6. G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Am. Math. Soc. 24 (1922), 312-324.
7. B. Schwarz, Norm conditions for disconjugacy of complex differential systems, J. Math. Anal. Appl., 28 (1969), 553-568.
8. L. Wejntrob, Distribution of zeros of a solution for a nondisconjugate differential equation, J. Math. Anal. Appl. 55 (1976), 453-465.

Department of Mathematics

Technion, I.I.T., Haifa, Israel.

[^0]: Received by the editors August 14, 1980 and, in revised form, April 22, 1981.
 1980 AMS Subject Classification Number 34C10.

