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Abstract. We show that there is a unique norm-preserving extension for norm-
attaining 2-homogeneous polynomials on the predual d∗(w, 1) of a complex Lorentz
sequence space d(w, 1) to d∗(w, 1), but there is no unique norm-preserving extension
from P(nd∗(w, 1)) to P(nd∗(w, 1)) for n ≥ 3.
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1. Introduction. A bounded linear functional on a Banach space E has clearly
a norm preserving extension to its bidual E∗∗ by the Hahn-Banach theorem. In
particular, when the Banach space E is an M-ideal in E∗∗, the extension is unique.

Aron and Berner [2] first studied “Hahn-Banach type theorems” for spaces
of polynomials on Banach spaces in 1978. They proved that every continuous n-
homogeneous polynomial P on a Banach space E can be extended to a continuous
n-homogeneous polynomial P̂ to its bidual E∗∗. In 1989 Davie and Gamelin [4] showed
that the Aron-Berner extension P̂ is a norm-preserving extension of P. These facts lead
us to the following question. What classes of continuous n-homogeneous polynomials
on a Banach space E can have a unique norm-preserving extension to its bidual
E∗∗, when the Banach space E is an M-ideal in E∗∗ ? For example, c0 and the predual
d∗(w, 1) of a Lorentz sequence space d(w, 1) is an M-ideal in its bidual l∞ and d∗(w, 1),
respectively [5].

Aron, Boyd and Choi [3] proved that every norm-attaining 2-homogeneous
polynomial on complex c0 has a unique norm-preserving extension to l∞. They also
showed that for n ≥ 3 there exists a norm-attaining n-homogeneous polynomial on
c0 whose norm-preserving extension to l∞ is not unique. However, it is still an open
problem whether every continuous 2-homogeneous polynomial on complex c0 has a
unique norm-preserving extension. For real c0 they showed that there exists a norm-
attaining n-homogeneous polynomial on c0 whose norm-preserving extension is not
unique.

Since d∗(w, 1) contains a subspace isomorphic to c0, we became interested in the
same problems on d∗(w, 1) as studied on c0 in [3]. Both cases show the same results
about the uniqueness of norm-preserving extension, but there is a different property
between those polynomials. The main results of this article are the following.

(1) In the real case, for n ≥ 2 we construct an n-homogeneous polynomial on
d∗(w, 1) with two distinct norm-preserving extensions to its bidual d∗(w, 1).
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(2) In the complex case, every norm-attaining 2-homogeneous polynomial on
d∗(w, 1) is finite, but this is not true for n-homogeneous polynomials, n ≥ 3. Further-
more, we show that every norm-attaining 2-homogeneous polynomial on d∗(w, 1) has
a unique norm-preserving extension to d∗(w, 1), but for n ≥ 3 there exists a norm-
attaining n-homogeneous polynomial whose norm-preserving extension is not unique.

(3) It was proved in [3] that if an n-homogeneous polynomial P on l∞ satisfies
‖P‖ = ‖P|c0‖, then it is w∗-continuous on bounded sets at 0. Differently from that, for
w ∈ l2 \ l1 there is an n-homogeneous polynomial P on d∗(w, 1) with ‖P‖ = ‖P|d∗(w,1)‖,
but P is not w∗-continuous on bounded sets at 0.

2. Main results. Let w = (wi)∞i=1 be a decreasing sequence of positive numbers
such that w ∈ c0 \ l1, which is called an admissible sequence. Given a sequence x = (xi)
of scalars, let [x] = ([x]i)∞i=1 be the rearrangement of (|xi|)∞i=1 so that [x]i ≥ [x]i+1 for
all i ∈ �. The Lorentz sequence space d(w, 1) is defined to be the Banach space of all
sequences of scalars x = (x1, x2, . . .) for which ‖x‖ = ∑∞

n=1[x]nwn < ∞. Recall that its
dual space

d∗(w, 1) =
{

(xi)∞i=1;

(∑k
i=1[x]i∑k
i=1 wi

)∞

k=1

∈ l∞

}
has the norm defined by

‖x‖ = supk

∑k
i=1[x]i∑k
i=1 wi

, x = (xk)∞k=1 ∈ d∗(w, 1),

and its predual space

d∗(w, 1) =
{

(xi)∞i=1;

(∑k
i=1[x]i∑k
i=1 wi

)∞

k=1

∈ c0

}
has the norm induced by d∗(w, 1). Let BE be the closed unit ball of a Banach space E.

We can easily verify that x = (xi)∞i=1 ∈ Bd∗(w,1) if and only if given a positive integer n∑
i∈I

|xi| ≤
n∑

i=1

wi

for any finite subset I = {i1, . . . , in} of �.
Since d∗(w, 1) is an M-ideal in d∗(w, 1), it is clear that each f ∈ (d∗(w, 1))∗ has a

unique norm preserving extension f̃ ∈ (d∗(w, 1))∗. We now consider the problem of a
unique norm-preserving extension for n-homogeneous polynomials on d∗(w, 1) with
n ≥ 2.

In the real case, for n ≥ 2 there exists a norm-attaining n-homogeneous polynomial
on d∗(w, 1) with two different norm-preserving extensions to d∗(w, 1). To construct
such polynomials let us first define a bounded linear operator T : d∗(w, 1) −→ l∞ by
T((xi)∞i=1) = (yk)∞k=1, where

yk =
∑k

i=1 xi∑k
i=1 wi

(k ∈ �).

Clearly T(d∗(w, 1)) ⊂ c0, T(w) = (1, 1, 1, . . .) ∈ �∞ and ‖T‖ = ‖T(w)‖ = 1. Let φ

be a Banach limit functional on l∞, and define φ̃ = φ ◦ T ∈ (d∗(w, 1))∗. Since
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φ(x) = limi xi for a convergent sequence x = (xi) ∈ c, we have that ‖φ̃‖ = 1, φ̃(w) = 1,
and φ̃|d∗(w,1) = 0.

Now consider the n-homogeneous polynomial P(x) = x1
n on d∗(w, 1) with norm

one. Then P1(x) = x1
n and P2(x) = x1

n − x1
n−2φ̃

2
(x) are two distinct norm-preserving

extensions of P to its bidual d∗(w, 1).
In the complex case, for n ≥ 3 there also exists a norm-attaining n-homogeneous

polynomial on d∗(w, 1) with two distinct norm-preserving extensions to d∗(w, 1). For
this we need the following lemma.

LEMMA 1. Suppose that 0 < t < 1, |α| ≤ 1, |β| ≤ 1, and |α| + |β| ≤ 1 + t. For a
positive integer n ≥ 3,

|tα − β|n + (1 + t2)|α + tβ|n−1 ≤ (1 + t2)
n
.

Proof. For 0 < t < 1, |α| ≤ 1, |β| ≤ 1, and |α| + |β| ≤ 1 + t, it is easily checked
that |tα − β| ≤ 1 + t2, |α|2 + |β|2 ≤ (1 + t2), and

|tα − β|2 + |α + tβ|2 ≤ (1 + t2)(|α|2 + |β|2) ≤ (1 + t2)2.

Since (a + b)p ≥ ap + bp for a > 0, b > 0 and p ≥ 1,

|tα − β|n + (1 + t2)|α + tβ|n−1 ≤ (1 + t2)(|tα − β|n−1 + |α + tβ|n−1)

≤ (1 + t2)(|tα − β|2 + |α + tβ|2)
n−1

2 ≤ (1 + t2)n.

�
Let an n-homogeneous polynomial P on complex d∗(w, 1) be defined by

P(x) = (w2x1 − x2)n.

Clearly ‖P‖ = (1 + w2
2)n and P attains its norm. Consider the following two n-

homogeneous polynomials P1 and P2 on complex d∗(w, 1) defined by

P1(x) = (w2x1 − x2)n

and

P2(x) = (w2x1 − x2)n + (
1 + w2

2

)
(x1 + w2x2)n−1φ̃(x).

Clearly P1|d∗(w,1) = P, and P2|d∗(w,1) = P because φ̃|d∗(w,1) = 0. It follows from Lemma 1
and the fact ‖φ̃‖= 1 that ‖P2‖≤ (1 + w2

2)n = P2(w) ≤‖P2‖. Hence ‖P1‖ = ‖P‖ = ‖P2‖.
Note that P1(w) = 0, which implies that P1 and P2 are distinct norm preserving
extensions of P to d∗(w, 1). Therefore, for n ≥ 3 there exists a norm-attaining n-
homogeneous polynomial on complex d∗(w, 1) with two distinct norm-preserving
extensions to d∗(w, 1).

We recall that a 2-homogeneous polynomial P on d∗(w, 1) is called finite if there
exists a positive integer n such that

P(x) =
n∑

i=1

(
i∑

j=1

aijxixj

)
,

for all x = (xi)∞i=1 ∈ d∗(w, 1). We note that the closed unit ball of d∗(w, 1) has no
extreme points, like c0. See Lemma 2 of [1].
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THEOREM 2. A 2-homogeneous polynomial P on complex d∗(w, 1) attains its norm
if and only if it is finite.

Proof. If P is a finite 2-homogeneous polynomial on d∗(w, 1), it can be regarded
as a polynomial defined on an n-dimensional subspace of d∗(w, 1) for some n ∈ � and
hence P attains its norm.

Conversely, suppose a 2-homogeneous polynomial P attains its norm at x0 =
(λi)∞i=1 ∈ Bd∗(w,1). Without loss of generality we may assume that ‖P‖ = 1 = P(x0). By
change of variable and rearrangement of indices, we may assume that x0 = (λi)∞i=1
satisfies λi ≥ λi+1, λi ≥ 0 for all i ∈ �. Obviously

‖x0‖ = sup
k

∑k
i=1 λi∑k
i=1 wi

= 1.

Since

limk→∞

∑k
i=1 λi∑k
i=1 wi

= 0,

we can choose the largest positive integer n such that

n∑
i=1

λi =
n∑

i=1

wi and
k∑

i=1

λi <

k∑
i=1

wi for all k ≥ n + 1.

Let

a = 1 − sup

{ ∑k
i=1 λi∑k
i=1 wi

; k ≥ n + 1

}
> 0.

Clearly λn > λn+1. Choose δ > 0 such that λn > λn+1 + δ and let

b = min{a, δ} > 0.

Let y = (0, . . . , 0, yn+1, yn+2, . . .) ∈ Bd∗(w,1) and λ with |λ| ≤ b be given. Then we
have

x0 + λy = (λ1, . . . , λn, λn+1 + λyn+1, λn+2 + λyn+2, . . .)

and

λ1 ≥ λ2 ≥ · · · ≥ λn > λn+1 + δ ≥ λi + |λ‖yi| ≥ |λi + λyi|
for all i ≥ n + 1.

Let �0 = � \ {1, 2, . . . , n}. Given k ≥ n + 1 and a finite subset J of �0 with |J| =
k − n, we have

n∑
i=1

λi +
∑
i∈J

|λi + λyi| ≤
n∑

i=1

λi +
∑
i∈J

λi + a
k−n∑
i=1

wi

≤
n∑

i=1

λi +
∑
i∈J

λi +
(

1 −
∑k

i=1 λi∑k
i=1 wi

)
k∑

i=1

wi

=
k∑

i=1

wi +
(∑

i∈J

λi −
k∑

i=n+1

λi

)
≤

k∑
i=1

wi,
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which implies that

x0 + λy ∈ Bd∗(w,1).

Hence we obtain

|P(x0 ± λy)| = |1 ± 2λP̆(x0, y) + λ2P(y)| ≤ |P(x0)| = 1,

where P̆ is the unique symmetric bilinear form associated with P. It follows from a
phase manipulation that

P(y) = 0, P̆(x0, y) = 0.

Taking y0 = (0, . . . , 0, λn+1, λn+2, . . .) we clearly have

P(y0) = 0, P̆(x0, y0) = 0,

which implies that

P(λ1, λ2, . . . , λn, 0, . . .) = P(x0 − y0) = P(x0) + P(y0) − 2P̆(x0, y0) = P(x0) = 1.

Define

z1 = (λ1, λ2, . . . , λn)

z2 = (λ1, λ2 − nλ2, . . . , λn)
...

zn = (λ1, λ2, . . . , λn − nλn).

Repeating the argument given above we see that P̆(z̃1, y) = 0, where z̃j = (zj, 0, 0, . . .),
j = 1, . . . , n. Since

(x1, x2, . . . , xn) = 1
n

(
x1

λ1
+ x2

λ2
+ · · · + xn

λn

)
z1 + 1

n

n∑
j=2

(
x1

λ1
− xj

λj

)
zj,

we have

P(x1, x2, . . . , xn, yn+1, yn+2, . . .) = P(x1, x2, . . . , xn, 0, . . .) + 2
n

n∑
j=2

(
x1

λ1
− xj

λj

)
P̆(z̃j, y).

Applying the same computation as in Proposition 2 in [3] we have P̆(z̃j, y) = 0, for all
j, 2 ≤ j ≤ n and hence P depends only on finitely many variables x1, x2, . . . , xn. �

REMARK 3. Sevilla and Payá [6] proved that every norm-attaining n-homogeneous
polynomial P on complex d∗(w, 1) satisfies P(ek) = 0, for sufficiently large k ∈ �, where
{ek}∞k=1 is the standard unit vector basis of d∗(w, 1). Theorem 2 is stronger than this for
2-homogeneous polynomials.

REMARK 4. For n ≥ 3, there exists a norm attaining n-homogeneous polynomial
P on d∗(w, 1) that is not finite. Let

P(x) = (w2x1 − x2)n + (
1 + w2

2

)
(x1 + w2x2)n−1

∞∑
j=3

xj

2 j
.
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Clearly P is not finite. By Lemma 1 we have

|P(x)| ≤ |w2x1 − x2|n + (
1 + w2

2

)|x1 + w2x2|n−1 ≤ (
1 + w2

2

)n
.

Since |P(x0)| = (1 + w2
2)n for x0 = (w2,−1, 0, 0, . . .) ∈ Bd∗(w,1), P attains its norm.

THEOREM 5. Every 2-homogeneous norm-attaining polynomial on complex d∗(w, 1)
has a unique norm-preserving extension to d∗(w, 1).

Proof. Suppose that P is a norm-attaining 2-homogeneous polynomial on d∗(w, 1)
that attains its norm at x0 = (λi)∞i=1 ∈ Bd∗(w,1) and suppose that Q is its norm-preserving
extension to d∗(w, 1). Let n be the largest positive integer such that

n∑
i=1

λi =
n∑

i=1

wi and
k∑

i=1

λi <

k∑
i=1

wi for all k ≥ n + 1.

As in the proof of Theorem 2, we may assume that P depends only on the first n variables
x1, . . . , xn and also that ‖P‖ = 1 = P(z0) for some z0 = (λ1, λ2, . . . , λn, 0, 0, . . .) with
λ1 ≥ λ2 ≥ . . . ≥ λn > 0. Let

a = min

{
λn, 1 −

∑n
i=1 λi∑n+1
i=1 wi

}
> 0.

Let y = (0, . . . , 0, yn+1, yn+2, . . .) ∈ Bd∗(w,1) and let λ with |λ| ≤ a be given. Then
we have

z0 + λy = (λ1, λ2, . . . , λn, λyn+1, λyn+2, . . .)

and

λ1 ≥ λ2 · · · ≥ λn ≥ a ≥ |λyi|,
for all i ≥ n + 1. Let �0 = � \ {1, 2, . . . , n}. Given k ≥ n + 1 and a finite subset J of
�0 with |J| = k − n, we have

n∑
i=1

λi +
∑
i∈J

|λyi| ≤
n∑

i=1

λi + a
k−n∑
i=1

wi

≤
n∑

i=1

λi +
(

1 −
∑n

i=1 λi∑k
i=1 wi

)
k∑

i=1

wi

=
k∑

i=1

wi,

which implies that

z0 + λy ∈ Bd∗(w,1).

Let Q̆ be the unique symmetric bilinear form associated with Q. Since

|Q(z0 ± λy)| = |1 ± 2λQ̆(z0, y) + λ2Q(y)| ≤ |Q(z0)| = 1,
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we can see that Q(y) = 0, Q̆(z0, y) = 0, for all y = (0, . . . , 0, yn+1, . . .) ∈ Bd∗(w,1). As in
the proof of Theorem 2, we conclude again that Q depends only on the first n variables.
If Q1 and Q2 are norm-preserving extensions of P to d∗(w, 1), then

Q1(x1, . . . , xn, xn+1, . . .) = P(x1, . . . , xn, 0, . . .) = Q2(x1, . . . , xn, xn+1, . . .),

for all x = (xn)∞n=1 ∈ d∗(w, 1). Hence P has a unique norm-preserving extension to
d∗(w, 1). �

We can see that n-homogeneous polynomials on d∗(w, 1) have the same properties
concerning the uniqueness of norm-preserving extensions as those on c0. However,
they don’t always share the same properties as polynomials on c0. For instance, every
continuous polynomial on c0 is weakly continuous on bounded sets and Proposition
4 in [3] shows that every n-homogeneous polynomial P on l∞ with ‖P‖ = ‖P|c0‖
is w∗-continuous on bounded sets at 0. In Example 7 we can find a continuous 2-
homogeneous polynomial P on d∗(w, 1) such that ‖P‖ = ‖P|d∗(w,1)‖, but P is not
w∗-continuous on bounded sets at 0 and P|d∗(w,1) is not weakly continuous on bounded
sets at 0.

LEMMA 6. Let (xi) and (yi) be decreasing sequences of nonnegative real numbers.
If

∑n
i=1 yi ≤ ∑n

i=1 xi for every positive integer n, then
∑n

i=1 y2
i ≤ ∑n

i=1 x2
i for every

positive integer n.

Proof. We are going to prove the result by induction. It is clear for n = 1. Suppose
that it is true for the positive integer n = k − 1. If yk ≤ xk, clearly

∑k
i=1 y2

i ≤ ∑k
i=1 x2

i
by the induction hypothesis; hence we might as well assume xk < yk. Let J = { j : xj <

yj, 1 < j ≤ k}. If the cardinality of the set J is l, then we write J = { j1 < j2 < · · · <

jl = k}. Put αi = xi − yi ≥ 0 for i /∈ J, 1 ≤ i < k, and βj = yj − xj > 0 for j ∈ J. Since∑n
i=1 yi ≤ ∑n

i=1 xi for every positive integer 1 ≤ n ≤ k, we have

βj1 ≤ α1 + · · · + αj1−1,

βj1 + βj2 ≤ (
α1 + · · · + αj1−1

) + (
αj1+1 + · · · + αj2−1

)
,

...∑
j∈J

βj ≤
k−1∑

i=1,i/∈J

αi.

Therefore,

k∑
i=1

x2
i =

[ j1−1∑
i=1

(yi + αi)2 + (
yj1 − βj1

)2

]
+

[ j2−1∑
i=j1+1

(yi + αi)2 + (
yj2 − βj2

)2

]

+ · · · +
[

k−1∑
i=jl−1+1

(yi + αi)2 + (yk − βk)2

]

≥
k∑

i=1

y2
i + 2

{( j1−1∑
i=1

αi

)
− βj1

}
yj1 + 2

{( j2−1∑
i=j1+1

αi

)
− βj2

}
yj2

+ · · · + 2

{(
k−1∑

i=jl−1+1

αi

)
− βk

}
yk
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≥
k∑

i=1

y2
i + 2

{( j2−1∑
i=1,i �=j1

αi

)
− (βj1 + βj2 )

}
yj2 + · · · + 2

{(
k−1∑

i=jl−1+1

αi

)
− βk

}
yk

...

≥
k∑

i=1

y2
i + 2

{(
k−1∑

i=1,i/∈J

αi

)
−

( ∑
j∈J

βj

)}
yk ≥

k∑
i=1

y2
i ,

where the inequalities follow from the above inequalities and the fact that the sequence
(yi) is decreasing. �

EXAMPLE 7. Let w = (wi)∞i=1 ∈ l2 \ l1 and define the 2-homogeneous polynomial P
on d∗(w, 1) by

P(x) =
∞∑

i=1

xi
2, x = (xi)∞i=1 ∈ d∗(w, 1).

It follows from Lemma 6 that ‖P‖ = ∑∞
i=1 w2

i = ‖P|d∗(w,1)‖. However, the sequence
(ei)∞i=1 converges weak-star (weakly) to 0 in d∗(w, 1) (d∗(w, 1)), and P(ei) = 1 for all i.
Therefore, P is not w∗-continuous on bounded sets at 0, and P|d∗(w,1) is not weakly
continuous on bounded sets at 0.

Let in = (i1, . . . , in) ∈ �n. We denote by Bin the closed unit ball of the n-dimensional
subspace of d∗(w, 1) spanned by {ei1 , . . . , ein}. By the Krein-Milman theorem, Bin is the
(closed) convex hull of its extreme points, that is, Bin = co(ext(Bin )). It is worthwhile to
characterize its extreme points.

PROPOSITION 8. Given in = (i1, . . . , in) ∈ �n, the extreme points (xi) of Bin are the
points with coordinates |xij | = wσ (j), 1 ≤ j ≤ n, for some permutation σ on {1, 2, . . . , n}
and xi = 0, otherwise.

Proof. We might as well assume in = (1, . . . , n). An easy computation shows
that the points with coordinates |xi| = wσ (i), 1 ≤ i ≤ n for some permutation σ on
{1, 2, . . . , n} and xi = 0 otherwise, are extreme points of Bin .

We shall prove that the other points x in Bin are not extreme points. Without loss of
generality we may assume that x = (xi) is rearranged so that |x1| ≥ |x2| ≥ · · · ≥ |xn|.
Let k be the smallest positive integer i with |xi| �= wi. If k = n, then |xn−1| = wn−1 > wn >

|xn|. Choose δ > 0 so that |xn| + δ < wn. Set u and v to be the points in Bin such that

u = (x1, . . . , xn−1, sgn(xn)(|xn| + δ))

and

v = (x1, . . . , xn−1, sgn(xn)(|xn| − δ)).

Then x = 1/2(u + v), and hence x is not an extreme points.
Suppose that 1 < k < n. Let p = max{l : |xl| = |xk|, k ≤ l ≤ n}. If p = k, then

|xk−1| = wk−1 > wk > |xk| > |xk+1|. Let q = max{l : |xl| = |xk+1|, k + 1 ≤ l ≤ n}. If
q < n, choose δ > 0 so that wk > |xk| + δ, |xk| − δ > |xk+1| + δ, |xq| − δ > |xq+1| and

|xk| + |xk+1| + · · · + |xk+j| + δ < wk + wk+1 + · · · + wk+j,
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for all j, 1 ≤ j ≤ q − k − 1. We note that

|xk| + |xk+1| + · · · + |xk+j| < wk + wk+1 + · · · + wk+j,

for all j, 1 ≤ j ≤ q − k − 1. In the case where q = n, the condition |xq| − δ > |xq+1| is
omitted for the choice of δ. Set u = (ui) and v = (vi) to be the points in Bin such that

uk = sgn(xk)(|xk| − δ), vk = sgn(xk)(|xk| + δ),

uk+1 = sgn(xk+1)(|xk+1| + δ), vk+1 = sgn(xk+1)(|xk+1| − δ)

and ui = xi = vi for i �= k, k + 1. Then x = (u + v)/2, and hence x is not an extreme
point.

If k < p < n, choose δ > 0 so that wk > |xk| + δ, |xp| − δ > |xp+1| and

|xk| + |xk+1| + · · · + |xk+j| + δ < wk + wk+1 + · · · + wk+j,

for all j, 1 ≤ j ≤ p − k − 1. In the case where p = n, the condition |xp| − δ > |xp+1| is
omitted for the choice of δ. Set u = (ui) and v = (vi) to be the points in Bin such that

uk = sgn(xk)(|xk| + δ), vk = sgn(xk)(|xk| − δ),

up = sgn(xp)(|xp| − δ), vp = sgn(xp)(|xp| + δ)

and ui = xi = vi for i �= k, p. Then x = (u + v)/2, and hence x is not an extreme point.
By a similar argument to the above the same conclusion can be drawn for the case

remaining where k = 1. �
The proof of Lemma 6 also follows from Proposition 8. Given a positive integer

n, let in = (1, . . . , n) and (w1, . . . , wn) = (x1, . . . , xn). Then y = (y1, . . . , yn) ∈ Bin , and
it is a convex combination of extreme points of Bin . For simplicity, suppose that
y = λe1 + (1 − λ)e2, where 0 ≤ λ ≤ 1 and ek = (wσk(j))n

j=1, for some permutation σk on
{1, 2, . . . , n}, k = 1, 2. Then

∑n
i=1 y2

i = aλ2 + bλ + c for some real numbers a > 0, b
and c. Since it is always positive on the interval 0 ≤ λ ≤ 1 and a > 0, its maximum on
0 ≤ λ ≤ 1 occurs at λ = 0 or 1. Therefore,

∑n
i=1 y2

i ≤ ∑n
i=1 w2

i .
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