EXTENSIONS OF POLYNOMIALS ON PREDUALS OF LORENTZ SEQUENCE SPACES

YUN SUNG CHOI, KWANG HEE HAN and HYUN GWI SONG

Department of Mathematics, Pohang University of Science and Technology, Pohang, 790-784, Korea e-mail: mathchoi@postech.ac.kr, hankh@postech.ac.kr, hyuns@postech.ac.kr

(Received 24 November, 2004; accepted 11 April, 2005)

Abstract. We show that there is a unique norm-preserving extension for normattaining 2-homogeneous polynomials on the predual $d_*(w, 1)$ of a complex Lorentz sequence space d(w, 1) to $d^*(w, 1)$, but there is no unique norm-preserving extension from $\mathcal{P}(^n d_*(w, 1))$ to $\mathcal{P}(^n d^*(w, 1))$ for $n \ge 3$.

2000 Mathematics Subject Classification. 46G25, 46A22.

1. Introduction. A bounded linear functional on a Banach space E has clearly a norm preserving extension to its bidual E^{**} by the Hahn-Banach theorem. In particular, when the Banach space E is an M-ideal in E^{**} , the extension is unique.

Aron and Berner [2] first studied "Hahn-Banach type theorems" for spaces of polynomials on Banach spaces in 1978. They proved that every continuous *n*homogeneous polynomial \hat{P} on a Banach space E can be extended to a continuous *n*-homogeneous polynomial \hat{P} to its bidual E^{**} . In 1989 Davie and Gamelin [4] showed that the Aron-Berner extension \hat{P} is a norm-preserving extension of P. These facts lead us to the following question. What classes of continuous *n*-homogeneous polynomials on a Banach space E can have a unique norm-preserving extension to its bidual E^{**} , when the Banach space E is an M-ideal in E^{**} ? For example, c_0 and the predual $d_*(w, 1)$ of a Lorentz sequence space d(w, 1) is an M-ideal in its bidual l_{∞} and $d^*(w, 1)$, respectively [5].

Aron, Boyd and Choi [3] proved that every norm-attaining 2-homogeneous polynomial on complex c_0 has a unique norm-preserving extension to l_{∞} . They also showed that for $n \ge 3$ there exists a norm-attaining *n*-homogeneous polynomial on c_0 whose norm-preserving extension to l_{∞} is not unique. However, it is still an open problem whether every continuous 2-homogeneous polynomial on complex c_0 has a unique norm-preserving extension. For real c_0 they showed that there exists a norm-attaining *n*-homogeneous polynomial on complex of the exists a norm-attaining *n*-homogeneous polynomial on c_0 whose norm-preserving extension is not unique.

Since $d_*(w, 1)$ contains a subspace isomorphic to c_0 , we became interested in the same problems on $d_*(w, 1)$ as studied on c_0 in [3]. Both cases show the same results about the uniqueness of norm-preserving extension, but there is a different property between those polynomials. The main results of this article are the following.

(1) In the real case, for $n \ge 2$ we construct an *n*-homogeneous polynomial on $d_*(w, 1)$ with two distinct norm-preserving extensions to its bidual $d^*(w, 1)$.

This research is supported in part by KOSEF Interdisciplinary Research Program Grant 1999-2-102-003-5 of Korea.

(2) In the complex case, every norm-attaining 2-homogeneous polynomial on $d_*(w, 1)$ is finite, but this is not true for *n*-homogeneous polynomials, $n \ge 3$. Furthermore, we show that every norm-attaining 2-homogeneous polynomial on $d_*(w, 1)$ has a unique norm-preserving extension to $d^*(w, 1)$, but for $n \ge 3$ there exists a norm-attaining *n*-homogeneous polynomial whose norm-preserving extension is not unique.

(3) It was proved in [3] that if an *n*-homogeneous polynomial P on l_{∞} satisfies $||P|| = ||P|_{c_0}||$, then it is *w*^{*}-continuous on bounded sets at 0. Differently from that, for $w \in l_2 \setminus l_1$ there is an *n*-homogeneous polynomial P on $d^*(w, 1)$ with $||P|| = ||P|_{d_*(w,1)}||$, but P is not *w*^{*}-continuous on bounded sets at 0.

2. Main results. Let $w = (w_i)_{i=1}^{\infty}$ be a decreasing sequence of positive numbers such that $w \in c_0 \setminus l_1$, which is called an *admissible* sequence. Given a sequence $x = (x_i)$ of scalars, let $[x] = ([x]_i)_{i=1}^{\infty}$ be the rearrangement of $(|x_i|)_{i=1}^{\infty}$ so that $[x]_i \ge [x]_{i+1}$ for all $i \in \mathbb{N}$. The Lorentz sequence space d(w, 1) is defined to be the Banach space of all sequences of scalars $x = (x_1, x_2, \ldots)$ for which $||x|| = \sum_{n=1}^{\infty} [x]_n w_n < \infty$. Recall that its dual space

$$d^{*}(w, 1) = \left\{ (x_{i})_{i=1}^{\infty}; \quad \left(\frac{\sum_{i=1}^{k} [x]_{i}}{\sum_{i=1}^{k} w_{i}} \right)_{k=1}^{\infty} \in l_{\infty} \right\}$$

has the norm defined by

$$\|x\| = \sup_k \frac{\sum_{i=1}^k [x]_i}{\sum_{i=1}^k w_i}, \quad x = (x_k)_{k=1}^\infty \in d^*(w, 1),$$

and its predual space

$$d_*(w, 1) = \left\{ (x_i)_{i=1}^{\infty}; \quad \left(\frac{\sum_{i=1}^k [x]_i}{\sum_{i=1}^k w_i} \right)_{k=1}^{\infty} \in c_0 \right\}$$

has the norm induced by $d^*(w, 1)$. Let B_E be the closed unit ball of a Banach space E. We can easily verify that $x = (x_i)_{i=1}^{\infty} \in B_{d^*(w,1)}$ if and only if given a positive integer n

$$\sum_{i\in I} |x_i| \le \sum_{i=1}^n w_i$$

for any finite subset $I = \{i_1, \ldots, i_n\}$ of \mathbb{N} .

Since $d_*(w, 1)$ is an *M*-ideal in $d^*(w, 1)$, it is clear that each $f \in (d_*(w, 1))^*$ has a unique norm preserving extension $\tilde{f} \in (d^*(w, 1))^*$. We now consider the problem of a unique norm-preserving extension for *n*-homogeneous polynomials on $d_*(w, 1)$ with $n \ge 2$.

In the real case, for $n \ge 2$ there exists a norm-attaining *n*-homogeneous polynomial on $d_*(w, 1)$ with two different norm-preserving extensions to $d^*(w, 1)$. To construct such polynomials let us first define a bounded linear operator $T : d^*(w, 1) \longrightarrow l_{\infty}$ by $T((x_i)_{i=1}^{\infty}) = (y_k)_{k=1}^{\infty}$, where

$$y_k = \frac{\sum_{i=1}^k x_i}{\sum_{i=1}^k w_i} \quad (k \in \mathbb{N}).$$

Clearly $T(d_*(w, 1)) \subset c_0$, $T(w) = (1, 1, 1, ...) \in \ell_\infty$ and ||T|| = ||T(w)|| = 1. Let ϕ be a Banach limit functional on l_∞ , and define $\phi = \phi \circ T \in (d^*(w, 1))^*$. Since

 $\phi(x) = \lim_{i \to \infty} x_i$ for a convergent sequence $x = (x_i) \in c$, we have that $\|\widetilde{\phi}\| = 1$, $\widetilde{\phi}(w) = 1$, and $\widetilde{\phi}|_{d_*(w,1)} = 0$.

Now consider the *n*-homogeneous polynomial $P(x) = x_1^n$ on $d_*(w, 1)$ with norm one. Then $P_1(x) = x_1^n$ and $P_2(x) = x_1^n - x_1^{n-2}\tilde{\phi}^2(x)$ are two distinct norm-preserving extensions of *P* to its bidual $d^*(w, 1)$.

In the complex case, for $n \ge 3$ there also exists a norm-attaining *n*-homogeneous polynomial on $d_*(w, 1)$ with two distinct norm-preserving extensions to $d^*(w, 1)$. For this we need the following lemma.

LEMMA 1. Suppose that 0 < t < 1, $|\alpha| \le 1$, $|\beta| \le 1$, and $|\alpha| + |\beta| \le 1 + t$. For a positive integer $n \ge 3$,

$$|t\alpha - \beta|^n + (1 + t^2)|\alpha + t\beta|^{n-1} \le (1 + t^2)^n.$$

Proof. For 0 < t < 1, $|\alpha| \le 1$, $|\beta| \le 1$, and $|\alpha| + |\beta| \le 1 + t$, it is easily checked that $|t\alpha - \beta| \le 1 + t^2$, $|\alpha|^2 + |\beta|^2 \le (1 + t^2)$, and

$$|t\alpha - \beta|^2 + |\alpha + t\beta|^2 \le (1 + t^2)(|\alpha|^2 + |\beta|^2) \le (1 + t^2)^2.$$

Since $(a + b)^p \ge a^p + b^p$ for a > 0, b > 0 and $p \ge 1$,

$$\begin{aligned} |t\alpha - \beta|^n + (1+t^2)|\alpha + t\beta|^{n-1} &\leq (1+t^2)(|t\alpha - \beta|^{n-1} + |\alpha + t\beta|^{n-1}) \\ &\leq (1+t^2)(|t\alpha - \beta|^2 + |\alpha + t\beta|^2)^{\frac{n-1}{2}} \leq (1+t^2)^n. \end{aligned}$$

Let an *n*-homogeneous polynomial *P* on complex $d_*(w, 1)$ be defined by

$$P(x) = (w_2 x_1 - x_2)^n.$$

Clearly $||P|| = (1 + w_2^2)^n$ and P attains its norm. Consider the following two *n*-homogeneous polynomials P_1 and P_2 on complex $d^*(w, 1)$ defined by

$$P_1(x) = (w_2 x_1 - x_2)^n$$

and

$$P_2(x) = (w_2 x_1 - x_2)^n + (1 + w_2^2)(x_1 + w_2 x_2)^{n-1}\widetilde{\phi}(x).$$

Clearly $P_1|_{d_*(w,1)} = P$, and $P_2|_{d_*(w,1)} = P$ because $\tilde{\phi}|_{d_*(w,1)} = 0$. It follows from Lemma 1 and the fact $\|\tilde{\phi}\| = 1$ that $\|P_2\| \le (1 + w_2^{-2})^n = P_2(w) \le \|P_2\|$. Hence $\|P_1\| = \|P\| = \|P_2\|$. Note that $P_1(w) = 0$, which implies that P_1 and P_2 are distinct norm preserving extensions of P to $d^*(w, 1)$. Therefore, for $n \ge 3$ there exists a norm-attaining *n*homogeneous polynomial on complex $d_*(w, 1)$ with two distinct norm-preserving extensions to $d^*(w, 1)$.

We recall that a 2-homogeneous polynomial P on $d_*(w, 1)$ is called *finite* if there exists a positive integer n such that

$$P(x) = \sum_{i=1}^{n} \left(\sum_{j=1}^{i} a_{ij} x_i x_j \right),$$

for all $x = (x_i)_{i=1}^{\infty} \in d_*(w, 1)$. We note that the closed unit ball of $d_*(w, 1)$ has no extreme points, like c_0 . See Lemma 2 of [1].

THEOREM 2. A 2-homogeneous polynomial P on complex $d_*(w, 1)$ attains its norm if and only if it is finite.

Proof. If *P* is a finite 2-homogeneous polynomial on $d_*(w, 1)$, it can be regarded as a polynomial defined on an *n*-dimensional subspace of $d_*(w, 1)$ for some $n \in \mathbb{N}$ and hence *P* attains its norm.

Conversely, suppose a 2-homogeneous polynomial P attains its norm at $x_0 = (\lambda_i)_{i=1}^{\infty} \in B_{d_*(w,1)}$. Without loss of generality we may assume that $||P|| = 1 = P(x_0)$. By change of variable and rearrangement of indices, we may assume that $x_0 = (\lambda_i)_{i=1}^{\infty}$ satisfies $\lambda_i \ge \lambda_{i+1}, \lambda_i \ge 0$ for all $i \in \mathbb{N}$. Obviously

$$||x_0|| = \sup_k \frac{\sum_{i=1}^k \lambda_i}{\sum_{i=1}^k w_i} = 1.$$

Since

$$\lim_{k\to\infty}\frac{\sum_{i=1}^k\lambda_i}{\sum_{i=1}^kw_i}=0,$$

we can choose the largest positive integer n such that

$$\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} w_i \quad \text{and} \quad \sum_{i=1}^{k} \lambda_i < \sum_{i=1}^{k} w_i \text{ for all } k \ge n+1.$$

Let

$$a = 1 - \sup\left\{\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{k} w_i}; \ k \ge n+1\right\} > 0.$$

Clearly $\lambda_n > \lambda_{n+1}$. Choose $\delta > 0$ such that $\lambda_n > \lambda_{n+1} + \delta$ and let

$$b = \min\{a, \delta\} > 0.$$

Let $y = (0, ..., 0, y_{n+1}, y_{n+2}, ...) \in B_{d_*(w,1)}$ and λ with $|\lambda| \le b$ be given. Then we have

$$x_0 + \lambda y = (\lambda_1, \ldots, \lambda_n, \lambda_{n+1} + \lambda y_{n+1}, \lambda_{n+2} + \lambda y_{n+2}, \ldots)$$

and

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > \lambda_{n+1} + \delta \ge \lambda_i + |\lambda||y_i| \ge |\lambda_i + \lambda y_i|$$

for all $i \ge n + 1$.

Let $\mathbb{N}_0 = \mathbb{N} \setminus \{1, 2, ..., n\}$. Given $k \ge n + 1$ and a finite subset J of \mathbb{N}_0 with |J| = k - n, we have

$$\sum_{i=1}^{n} \lambda_i + \sum_{i \in J} |\lambda_i + \lambda y_i| \le \sum_{i=1}^{n} \lambda_i + \sum_{i \in J} \lambda_i + a \sum_{i=1}^{k-n} w_i$$
$$\le \sum_{i=1}^{n} \lambda_i + \sum_{i \in J} \lambda_i + \left(1 - \frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{k} w_i}\right) \sum_{i=1}^{k} w_i$$
$$= \sum_{i=1}^{k} w_i + \left(\sum_{i \in J} \lambda_i - \sum_{i=n+1}^{k} \lambda_i\right) \le \sum_{i=1}^{k} w_i,$$

which implies that

$$x_0 + \lambda y \in B_{d_*(w,1)}$$

Hence we obtain

$$|P(x_0 \pm \lambda y)| = |1 \pm 2\lambda \tilde{P}(x_0, y) + \lambda^2 P(y)| \le |P(x_0)| = 1,$$

where \check{P} is the unique symmetric bilinear form associated with *P*. It follows from a phase manipulation that

$$P(y) = 0, \quad P(x_0, y) = 0.$$

Taking $y_0 = (0, \ldots, 0, \lambda_{n+1}, \lambda_{n+2}, \ldots)$ we clearly have

$$P(y_0) = 0, \quad \dot{P}(x_0, y_0) = 0,$$

which implies that

$$P(\lambda_1, \lambda_2, \dots, \lambda_n, 0, \dots) = P(x_0 - y_0) = P(x_0) + P(y_0) - 2P(x_0, y_0) = P(x_0) = 1.$$

Define

$$z_1 = (\lambda_1, \lambda_2, \dots, \lambda_n)$$

$$z_2 = (\lambda_1, \lambda_2 - n\lambda_2, \dots, \lambda_n)$$

$$\vdots$$

$$z_n = (\lambda_1, \lambda_2, \dots, \lambda_n - n\lambda_n).$$

Repeating the argument given above we see that $\check{P}(\tilde{z}_1, y) = 0$, where $\tilde{z}_j = (z_j, 0, 0, ...)$, j = 1, ..., n. Since

$$(x_1, x_2, \ldots, x_n) = \frac{1}{n} \left(\frac{x_1}{\lambda_1} + \frac{x_2}{\lambda_2} + \cdots + \frac{x_n}{\lambda_n} \right) z_1 + \frac{1}{n} \sum_{j=2}^n \left(\frac{x_1}{\lambda_1} - \frac{x_j}{\lambda_j} \right) z_j,$$

we have

$$P(x_1, x_2, \dots, x_n, y_{n+1}, y_{n+2}, \dots) = P(x_1, x_2, \dots, x_n, 0, \dots) + \frac{2}{n} \sum_{j=2}^n \left(\frac{x_1}{\lambda_1} - \frac{x_j}{\lambda_j} \right) \check{P}(\tilde{z}_j, y).$$

Applying the same computation as in Proposition 2 in [3] we have $\check{P}(\tilde{z}_j, y) = 0$, for all $j, 2 \le j \le n$ and hence *P* depends only on finitely many variables x_1, x_2, \ldots, x_n .

REMARK 3. Sevilla and Payá [6] proved that every norm-attaining *n*-homogeneous polynomial *P* on complex $d_*(w, 1)$ satisfies $P(e_k) = 0$, for sufficiently large $k \in \mathbb{N}$, where $\{e_k\}_{k=1}^{\infty}$ is the standard unit vector basis of $d_*(w, 1)$. Theorem 2 is stronger than this for 2-homogeneous polynomials.

REMARK 4. For $n \ge 3$, there exists a norm attaining *n*-homogeneous polynomial P on $d_*(w, 1)$ that is not finite. Let

$$P(x) = (w_2 x_1 - x_2)^n + (1 + w_2^2)(x_1 + w_2 x_2)^{n-1} \sum_{j=3}^{\infty} \frac{x_j}{2^j}.$$

Clearly P is not finite. By Lemma 1 we have

$$|P(x)| \le |w_2 x_1 - x_2|^n + (1 + w_2^2)|x_1 + w_2 x_2|^{n-1} \le (1 + w_2^2)^n.$$

Since $|P(x_0)| = (1 + w_2^2)^n$ for $x_0 = (w_2, -1, 0, 0, \ldots) \in B_{d_*(w, 1)}$, P attains its norm.

THEOREM 5. Every 2-homogeneous norm-attaining polynomial on complex $d_*(w, 1)$ has a unique norm-preserving extension to $d^*(w, 1)$.

Proof. Suppose that *P* is a norm-attaining 2-homogeneous polynomial on $d_*(w, 1)$ that attains its norm at $x_0 = (\lambda_i)_{i=1}^{\infty} \in B_{d_*(w,1)}$ and suppose that *Q* is its norm-preserving extension to $d^*(w, 1)$. Let *n* be the largest positive integer such that

$$\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} w_i \text{ and } \sum_{i=1}^{k} \lambda_i < \sum_{i=1}^{k} w_i \text{ for all } k \ge n+1.$$

As in the proof of Theorem 2, we may assume that *P* depends only on the first *n* variables x_1, \ldots, x_n and also that $||P|| = 1 = P(z_0)$ for some $z_0 = (\lambda_1, \lambda_2, \ldots, \lambda_n, 0, 0, \ldots)$ with $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n > 0$. Let

$$a = \min\left\{\lambda_n, 1 - \frac{\sum_{i=1}^n \lambda_i}{\sum_{i=1}^{n+1} w_i}\right\} > 0.$$

Let $y = (0, ..., 0, y_{n+1}, y_{n+2}, ...) \in B_{d^*(w,1)}$ and let λ with $|\lambda| \leq a$ be given. Then we have

$$z_0 + \lambda y = (\lambda_1, \lambda_2, \dots, \lambda_n, \lambda y_{n+1}, \lambda y_{n+2}, \dots)$$

and

$$\lambda_1 \geq \lambda_2 \cdots \geq \lambda_n \geq a \geq |\lambda y_i|,$$

for all $i \ge n + 1$. Let $\mathbb{N}_0 = \mathbb{N} \setminus \{1, 2, \dots, n\}$. Given $k \ge n + 1$ and a finite subset *J* of \mathbb{N}_0 with |J| = k - n, we have

$$\sum_{i=1}^{n} \lambda_i + \sum_{i \in J} |\lambda y_i| \le \sum_{i=1}^{n} \lambda_i + a \sum_{i=1}^{k-n} w_i$$
$$\le \sum_{i=1}^{n} \lambda_i + \left(1 - \frac{\sum_{i=1}^{n} \lambda_i}{\sum_{i=1}^{k} w_i}\right) \sum_{i=1}^{k} w_i$$
$$= \sum_{i=1}^{k} w_i,$$

which implies that

$$z_0 + \lambda y \in B_{d^*(w,1)}.$$

Let \check{Q} be the unique symmetric bilinear form associated with Q. Since

$$|Q(z_0 \pm \lambda y)| = |1 \pm 2\lambda \check{Q}(z_0, y) + \lambda^2 Q(y)| \le |Q(z_0)| = 1,$$

400

we can see that Q(y) = 0, $\check{Q}(z_0, y) = 0$, for all $y = (0, ..., 0, y_{n+1}, ...) \in B_{d^*(w,1)}$. As in the proof of Theorem 2, we conclude again that Q depends only on the first n variables. If Q_1 and Q_2 are norm-preserving extensions of P to $d^*(w, 1)$, then

$$Q_1(x_1,\ldots,x_n,x_{n+1},\ldots) = P(x_1,\ldots,x_n,0,\ldots) = Q_2(x_1,\ldots,x_n,x_{n+1},\ldots),$$

for all $x = (x_n)_{n=1}^{\infty} \in d^*(w, 1)$. Hence *P* has a unique norm-preserving extension to $d^*(w, 1)$.

We can see that *n*-homogeneous polynomials on $d_*(w, 1)$ have the same properties concerning the uniqueness of norm-preserving extensions as those on c_0 . However, they don't always share the same properties as polynomials on c_0 . For instance, every continuous polynomial on c_0 is weakly continuous on bounded sets and Proposition 4 in [3] shows that every *n*-homogeneous polynomial *P* on l_{∞} with $||P|| = ||P|_{c_0}||$ is *w*^{*}-continuous on bounded sets at 0. In Example 7 we can find a continuous 2homogeneous polynomial *P* on $d^*(w, 1)$ such that $||P|| = ||P|_{d_*(w,1)}||$, but *P* is not *w*^{*}-continuous on bounded sets at 0 and $P|_{d_*(w,1)}$ is not weakly continuous on bounded sets at 0.

LEMMA 6. Let (x_i) and (y_i) be decreasing sequences of nonnegative real numbers. If $\sum_{i=1}^{n} y_i \leq \sum_{i=1}^{n} x_i$ for every positive integer n, then $\sum_{i=1}^{n} y_i^2 \leq \sum_{i=1}^{n} x_i^2$ for every positive integer n.

Proof. We are going to prove the result by induction. It is clear for n = 1. Suppose that it is true for the positive integer n = k - 1. If $y_k \le x_k$, clearly $\sum_{i=1}^k y_i^2 \le \sum_{i=1}^k x_i^2$ by the induction hypothesis; hence we might as well assume $x_k < y_k$. Let $J = \{j : x_j < y_j, 1 < j \le k\}$. If the cardinality of the set J is l, then we write $J = \{j_1 < j_2 < \cdots < j_l = k\}$. Put $\alpha_i = x_i - y_i \ge 0$ for $i \notin J$, $1 \le i < k$, and $\beta_j = y_j - x_j > 0$ for $j \in J$. Since $\sum_{i=1}^n y_i \le \sum_{i=1}^n x_i$ for every positive integer $1 \le n \le k$, we have

$$\begin{split} \beta_{j_1} &\leq \alpha_1 + \dots + \alpha_{j_1-1}, \\ \beta_{j_1} + \beta_{j_2} &\leq \left(\alpha_1 + \dots + \alpha_{j_1-1}\right) + \left(\alpha_{j_1+1} + \dots + \alpha_{j_2-1}\right), \\ \vdots \\ \sum_{j \in J} \beta_j &\leq \sum_{i=1, i \notin J}^{k-1} \alpha_i. \end{split}$$

Therefore,

$$\sum_{i=1}^{k} x_i^2 = \left[\sum_{i=1}^{j_1-1} (y_i + \alpha_i)^2 + (y_{j_1} - \beta_{j_1})^2\right] + \left[\sum_{i=j_1+1}^{j_2-1} (y_i + \alpha_i)^2 + (y_{j_2} - \beta_{j_2})^2\right] \\ + \dots + \left[\sum_{i=j_{l-1}+1}^{k-1} (y_i + \alpha_i)^2 + (y_k - \beta_k)^2\right] \\ \ge \sum_{i=1}^{k} y_i^2 + 2\left\{\left(\sum_{i=1}^{j_1-1} \alpha_i\right) - \beta_{j_1}\right\} y_{j_1} + 2\left\{\left(\sum_{i=j_1+1}^{j_2-1} \alpha_i\right) - \beta_{j_2}\right\} y_{j_2} \\ + \dots + 2\left\{\left(\sum_{i=j_{l-1}+1}^{k-1} \alpha_i\right) - \beta_k\right\} y_k$$

$$\geq \sum_{i=1}^{k} y_{i}^{2} + 2 \left\{ \left(\sum_{i=1, i \neq j_{1}}^{j_{2}-1} \alpha_{i} \right) - (\beta_{j_{1}} + \beta_{j_{2}}) \right\} y_{j_{2}} + \dots + 2 \left\{ \left(\sum_{i=j_{l-1}+1}^{k-1} \alpha_{i} \right) - \beta_{k} \right\} y_{k}$$

$$\geq \sum_{i=1}^{k} y_{i}^{2} + 2 \left\{ \left(\sum_{i=1, i \notin J}^{k-1} \alpha_{i} \right) - \left(\sum_{j \in J} \beta_{j} \right) \right\} y_{k} \geq \sum_{i=1}^{k} y_{i}^{2},$$

where the inequalities follow from the above inequalities and the fact that the sequence (y_i) is decreasing.

EXAMPLE 7. Let $w = (w_i)_{i=1}^{\infty} \in l_2 \setminus l_1$ and define the 2-homogeneous polynomial P on $d^*(w, 1)$ by

$$P(x) = \sum_{i=1}^{\infty} x_i^2, \quad x = (x_i)_{i=1}^{\infty} \in d^*(w, 1).$$

It follows from Lemma 6 that $||P|| = \sum_{i=1}^{\infty} w_i^2 = ||P|_{d_*(w,1)}||$. However, the sequence $(e_i)_{i=1}^{\infty}$ converges weak-star (weakly) to 0 in $d^*(w, 1)$ ($d_*(w, 1)$), and $P(e_i) = 1$ for all *i*. Therefore, *P* is not *w*^{*}-continuous on bounded sets at 0, and $P|_{d_*(w,1)}$ is not weakly continuous on bounded sets at 0.

Let $\mathbf{i}^n = (i_1, \ldots, i_n) \in \mathbb{N}^n$. We denote by $B_{\mathbf{i}^n}$ the closed unit ball of the *n*-dimensional subspace of $d^*(w, 1)$ spanned by $\{e_{i_1}, \ldots, e_{i_n}\}$. By the Krein-Milman theorem, $B_{\mathbf{i}^n}$ is the (closed) convex hull of its extreme points, that is, $B_{\mathbf{i}^n} = co(ext(B_{\mathbf{i}^n}))$. It is worthwhile to characterize its extreme points.

PROPOSITION 8. Given $\mathbf{i}^n = (i_1, \ldots, i_n) \in \mathbb{N}^n$, the extreme points (x_i) of $B_{\mathbf{i}^n}$ are the points with coordinates $|x_{i_j}| = w_{\sigma(j)}, 1 \le j \le n$, for some permutation σ on $\{1, 2, \ldots, n\}$ and $x_i = 0$, otherwise.

Proof. We might as well assume $\mathbf{i}^n = (1, ..., n)$. An easy computation shows that the points with coordinates $|x_i| = w_{\sigma(i)}, 1 \le i \le n$ for some permutation σ on $\{1, 2, ..., n\}$ and $x_i = 0$ otherwise, are extreme points of $B_{\mathbf{i}^n}$.

We shall prove that the other points x in B_{i^n} are not extreme points. Without loss of generality we may assume that $x = (x_i)$ is rearranged so that $|x_1| \ge |x_2| \ge \cdots \ge |x_n|$. Let k be the smallest positive integer i with $|x_i| \ne w_i$. If k = n, then $|x_{n-1}| = w_{n-1} > w_n > |x_n|$. Choose $\delta > 0$ so that $|x_n| + \delta < w_n$. Set u and v to be the points in B_{i^n} such that

$$u = (x_1, \ldots, x_{n-1}, sgn(x_n)(|x_n| + \delta))$$

and

$$v = (x_1, \ldots, x_{n-1}, sgn(x_n)(|x_n| - \delta)).$$

Then x = 1/2(u + v), and hence x is not an extreme points.

Suppose that 1 < k < n. Let $p = \max\{l : |x_l| = |x_k|, k \le l \le n\}$. If p = k, then $|x_{k-1}| = w_{k-1} > w_k > |x_k| > |x_{k+1}|$. Let $q = \max\{l : |x_l| = |x_{k+1}|, k+1 \le l \le n\}$. If q < n, choose $\delta > 0$ so that $w_k > |x_k| + \delta$, $|x_k| - \delta > |x_{k+1}| + \delta$, $|x_q| - \delta > |x_{q+1}|$ and

$$|x_k| + |x_{k+1}| + \dots + |x_{k+j}| + \delta < w_k + w_{k+1} + \dots + w_{k+j},$$

for all $j, 1 \le j \le q - k - 1$. We note that

$$|x_k| + |x_{k+1}| + \dots + |x_{k+j}| < w_k + w_{k+1} + \dots + w_{k+j}$$

for all $j, 1 \le j \le q - k - 1$. In the case where q = n, the condition $|x_q| - \delta > |x_{q+1}|$ is omitted for the choice of δ . Set $u = (u_i)$ and $v = (v_i)$ to be the points in $B_{\mathbf{i}^n}$ such that

$$u_k = sgn(x_k)(|x_k| - \delta), \quad v_k = sgn(x_k)(|x_k| + \delta),$$

$$u_{k+1} = sgn(x_{k+1})(|x_{k+1}| + \delta), \quad v_{k+1} = sgn(x_{k+1})(|x_{k+1}| - \delta)$$

and $u_i = x_i = v_i$ for $i \neq k$, k + 1. Then x = (u + v)/2, and hence x is not an extreme point.

If $k , choose <math>\delta > 0$ so that $w_k > |x_k| + \delta$, $|x_p| - \delta > |x_{p+1}|$ and

$$|x_k| + |x_{k+1}| + \dots + |x_{k+j}| + \delta < w_k + w_{k+1} + \dots + w_{k+j},$$

for all $j, 1 \le j \le p - k - 1$. In the case where p = n, the condition $|x_p| - \delta > |x_{p+1}|$ is omitted for the choice of δ . Set $u = (u_i)$ and $v = (v_i)$ to be the points in $B_{\mathbf{i}^n}$ such that

$$u_k = sgn(x_k)(|x_k| + \delta), \quad v_k = sgn(x_k)(|x_k| - \delta),$$

$$u_p = sgn(x_p)(|x_p| - \delta), \quad v_p = sgn(x_p)(|x_p| + \delta)$$

and $u_i = x_i = v_i$ for $i \neq k, p$. Then x = (u + v)/2, and hence x is not an extreme point.

By a similar argument to the above the same conclusion can be drawn for the case remaining where k = 1.

The proof of Lemma 6 also follows from Proposition 8. Given a positive integer n, let $\mathbf{i}^n = (1, \ldots, n)$ and $(w_1, \ldots, w_n) = (x_1, \ldots, x_n)$. Then $y = (y_1, \ldots, y_n) \in B_{\mathbf{i}^n}$, and it is a convex combination of extreme points of $B_{\mathbf{i}^n}$. For simplicity, suppose that $y = \lambda e_1 + (1 - \lambda)e_2$, where $0 \le \lambda \le 1$ and $e_k = (w_{\sigma_k(j)})_{j=1}^n$, for some permutation σ_k on $\{1, 2, \ldots, n\}, k = 1, 2$. Then $\sum_{i=1}^n y_i^2 = a\lambda^2 + b\lambda + c$ for some real numbers a > 0, b and c. Since it is always positive on the interval $0 \le \lambda \le 1$ and a > 0, its maximum on $0 \le \lambda \le 1$ occurs at $\lambda = 0$ or 1. Therefore, $\sum_{i=1}^n y_i^2 \le \sum_{i=1}^n w_i^2$.

REFERENCES

1. M. D. Acosta, F. J. Aguirre and R. Payá, There is no bilinear Bishop-Phelps theorem, *Israel J. Math.* **93** (1996), 221–227.

2. R. M. Aron and P. Berner, A Hahn-Banach extension theorem for analytic mappings, *Bull. Math. Soc. France* **106** (1978), 3–24.

3. R. M. Aron, C. Boyd and Y. S. Choi, Unique Hahn-Banach theorems for spaces of homogeneous polynomials, *J. Austral. Math. Soc.* 70 (2001), 387–400.

4. A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, *Proc. Amer. Math. Soc.* **106** (1989), 351–356.

5. P. Harmand, D. Werner and W. Werner, *M-ideals in Banach spaces and Banach algebras*, Lecture Notes in Mathematics No. 1547 (Springer-Verlag, 1993).

6. M. J. Sevilla and R. Payá, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, *Studia Math.* 127 (1998), 99–112.