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Lubrication dynamics of a settling plate
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If a flat, horizontal, plate settles onto a flat surface, it is known that the gap h decreases
with time t as a power law: h ∼ t−1/2. We consider what happens if the plate is not
initially horizontal, and/or the centre of mass is not symmetrically positioned: does one
edge contact the surface in finite time, or does the plate approach the horizontal without
making contact? The dynamics of this system is analysed and shown to be remarkably
complex. We find that, depending upon the initial position of the plate and the position of
the centre of force, the plate might either make contact in finite time or settle progressively
without ever making contact. Our results show an excellent agreement between analytical
exact solutions, asymptotic solutions and numerical studies of the lubrication equations.
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1. Introduction

We discuss a foundational problem in lubrication theory. We consider the motion of a
body with a flat lower surface settling onto a flat horizontal surface, impeded by a thin
layer of viscous fluid. For simplicity, we consider the two-dimensional case, where the
gap h at time t depends only upon one Cartesian coordinate of the plane (x, say), and is
independent of y. It is also assumed that the plate is sufficiently wide that fluid motion
in the y-direction can be neglected. If the plate is initially horizontal, and the weight acts
through the centre, then it can be shown that the plate remains horizontal as it settles, with
h ∼ t−1/2, in accordance with the classic lubrication result that smooth solid objects take
an infinite amount of time to make contact (Brenner 1961).

If the force is applied off-centre, and/or the plate is not initially horizontal, then the
system is much harder to analyse. There are three coupled degrees of freedom: the gap
Z between the left-hand edge of the plate and the surface, the angle of the plate θ , and
the horizontal displacement X of the left-hand edge (both θ and Z must be assumed to
be small, in order for the lubrication theory approximations to be valid). The geometry of
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Figure 1. The plate has width L and its centre of mass is displaced from the left-hand edge by sL. A coordinate
x measures distance from the left-hand edge, and all variables are assumed to be independent of the other
Cartesian coordinate in the plane, y. At a time t, the angle of the plate is θ(t), the gap at the left-hand edge is
Z(t) and the horizontal displacement of the left-hand edge is X(t). Sketch is not to scale.

the system is illustrated in figure 1. We remark that this corresponds to considering the
dynamics of a pivoted slider bearing (Michell 1950), which is an archetypal application of
lubrication theory, in the case where the horizontal forcing is removed.

The equations of motion are the Reynolds equations of lubrication theory (Reynolds
1886), reviewed in Michell (1950) and Szeri (1998). The plate may, or may not, contact the
surface in a finite time. There are precedents for anticipating either of these possibilities.
Recent work has shown that finite-time contact is possible when the solid object is in the
form of a wedge (Cawthorn & Balmforth 2010). On the other hand, Argentina, Skotheim
& Mahadevan (2007), who considered lubricated settling of a flexible body, showed that
their system does not make contact in finite time in the case where the sinking body is
rigid. We find that our system exhibits both types of solution, those which the edge of the
plate makes contact in finite time, and those where the gap decreases as a power law. In
the case where the edge contacts in finite time, the contact point may slide, or the body
may pivot about the initial line of contact. We find that both of these possibilities can be
realised.

The motion of the plate is determined by three generalised forces: the vertical force Fz,
the horizontal force Fx and the torque (clockwise, about the left-hand edge) G. Section 2
derives the equations of motion, by determining the resistance matrix that relates the force
vector (Fx,Fz,G) to the velocity vector (Ẋ, Ż, θ̇ ). A similar expression for the resistance
matrix was obtained in Cawthorn & Balmforth (2010) for the problem of a tilted wedge that
rotates and translates horizontally as it settles vertically. Section 3 considers the reduction
of the equations of motion to dimensionless form.

Sections 4, 5 and 6 discuss the solutions to these equations of motion. In § 4 we
show that the Reynolds lubrication equations are exactly solvable, in terms of integrals
of elementary functions, but that the general form of the solution is too complicated to
be informative. This leads us to concentrate on understanding the qualitative form of the
solutions, and their asymptotic approximations. We find that two qualitatively different
types of solutions exist. Section 5 considers solutions for which θ/Z approaches a constant,
using the dimensionless form of the equations of motion. Section 6 discusses solutions
where the plate contacts the surface on one edge in finite time. In this section we find it
more convenient to use the original dimensional form of the equations. Section 7 details
some numerical experiments, comparing our solutions with numerical integration of the
Reynolds equations. Section 8 summarises our conclusions. While microscopic effects
(Hu & Granick 1998), which become relevant when the gap its reduced to nanometre
scale, may be significant in some lubrication processes (see, e.g., Israelachvili et al. 2010),
our analysis is based upon classical and macroscopic lubrication theory (Oron, Davis &
Bankoff 1997).
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Lubrication dynamics of a settling plate

2. Equations of motion

A flat plate of width L, immersed in a viscous fluid of viscosity μ and constant density ρ,
settles onto a flat horizontal surface. We consider the two-dimensional case, where the gap
h between both surfaces depends only upon one Cartesian coordinate of the plane (x, say),
and is independent of y. It is also assumed that the plate is sufficiently wide that fluid
motion in the y-direction can be neglected.

Consider the horizontal component of the two solid surface velocities to be v1(t) (lower
surface) and v2(t) (upper). We assume that the separation between both surfaces h(x, t)
is sufficiently small that lubrication theory applies. In particular, if the typical separation
length is h̄, we assume that h̄ � L. Defining a dimensionless parameter ε = h̄/L � 1, we
then have that the inclination angle θ ∼ O(ε) � 1. We also assume that the fluid velocities
in the gap are sufficiently small that the Reynolds number, Re, is extremely small. Under
these conditions, we have, locally, Poiseuille flow in a gap with a slowly varying width,
which is the assumption underlying the formulation of lubrication theory. The assumption
that the Reynolds number is small may be validated by computing the flow rate, finding
that Re approaches zero as the gap decreases.

In lubrication theory, both the lift and drag forces arise from regions where the gap h is
very small, and the forces are, therefore, expected to be proportional to L. There is a small
region at the edge of the plate, where the Poiseuille flow approximation is not valid. In this
region, with width of order h, the velocity gradients rapidly reduce from the large values
in the lubrication layer to the much lower values which occur in other regions of the flow.
These considerations indicate that the fractional error which arises when estimating forces
using lubrication theory is O(ε).

The assumption that there is a Poiseuille flow in the gap implies that the volume flux
per unit depth is J(x, t), and the flux and pressure p are related by

J =
(
v1 + v2

2

)
h − h3

12μ
∂p
∂x
, (2.1)

and the continuity equation is

∂h
∂t

+ ∂J
∂x

= 0. (2.2)

Poiseuille flow also implies that the tangential stress on the upper surface is

σ = −μ
(
v2 − v1

h

)
− h

2
∂p
∂x
. (2.3)

We can use these equations in any convenient Cartesian frame. Rather than using the
laboratory frame, let us use a frame that is attached to the plate. The displacement of the
left-hand edge of the plate relative to some fixed position in the laboratory frame is X(t).
The velocity of the upper bounding surface in the plate frame is then v2 = 0, and the
velocity of the lower surface is v1 = −Ẋ. The configuration of the plate is then described
by specifying height at displacement x from the left edge:

h(x, t) = Z(t)+ θ(t)x, (2.4)

where Z(t) is the gap between the left-hand edge of the plate and the surface, and θ(t) is
the angle between the plate and the horizontal, see figure 1.
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We wish to determine the force components in the vertical and horizontal direction, Fz
and Fx, respectively, and torque G on the plate. These are

Fz =
∫ L

0
dx p = p0L −

∫ L

0
dx x

∂p
∂x
, (2.5a)

Fx =
∫ L

0
dx σ − θFz = −μ

∫ L

0
dx

Ẋ
h

−
∫ L

0
dx

h
2
∂p
∂x

− θFz, (2.5b)

G =
∫ L

0
dx xp = −

∫ L

0
dx

x2

2
∂p
∂x
, (2.5c)

where p0 = p(0). The above expressions depend on the pressure gradient ∂p/∂x, which
we can determine from (2.1) as follows. Inserting (2.4) into the continuity equation (2.2)
and integrating once we obtain

J = J0 − Żx − θ̇

2
x2, (2.6)

where J0 is a constant. It will be useful to define

In
m =

∫ L

0
dx

xn

hm . (2.7)

We can now find the pressure gradient

∂p
∂x

= 12μ
[

Ż
x
h3 + θ̇

2
x2

h3 − Ẋ
2

1
h2 − J0

1
h3

]
, (2.8)

where J0 is found by integrating the above expression and imposing that p(L) = p(0):

J0 = 1
I0
3

[
ŻI1

3 + θ̇

2
I2
3 − Ẋ

2
I0
2

]
. (2.9)

Provided the background pressure is high enough to prevent cavitation, its value must be
irrelevant, so we set p0 = 0. Therefore, the force components are

Fz = 12μ
I0
3

[
Ẋ

1
2

(
I0
3I1

2 − I0
2I1

3
)+ Ż

(
I1
3I1

3 − I2
3I0

3
)+ θ̇

1
2

(
I1
3I2

3 − I3
3I0

3
)]
, (2.10a)

Fx = 12μ
I0
3

[
Ẋ
(

1
6

I0
1I0

3 − 1
4

I0
2I0

2

)
+ Ż

1
2

(
I1
3I0

2 − I1
2I0

3
)+ θ̇

1
4

(
I0
2I2

3 − I2
2I0

3
)]− θFz,

(2.10b)

G = 12μ
I0
3

[
Ẋ

1
4

(
I2
2I0

3 − I2
3I0

2
)+ Ż

1
2

(
I1
3I2

3 − I3
3I0

3
)+ θ̇

1
4

(
I2
3I2

3 − I4
3I0

3
)]
. (2.10c)

We can write the relation between forces and velocities in terms of a matrix:

(Fx + θFz,Fz,G)T = 6μ
I0
3

A(Ẋ, Ż, θ̇ )T (2.11)

977 A28-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

82
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.829


Lubrication dynamics of a settling plate

where the matrix A is

A =

⎛
⎜⎜⎜⎜⎝

1
3

I0
1I0

3 − 1
2

I0
2I0

2 I0
2I1

3 − I1
2I0

3
1
2

(
I0
2I2

3 − I2
2I0

3
)

I1
2I0

3 − I1
3I0

2 2
(
I1
3I1

3 − I2
3I0

3
)

I1
3I2

3 − I3
3I0

3

1
2

(
I2
2I0

3 − I0
2I2

3
)

I1
3I2

3 − I3
3I0

3
1
2

(
I2
3I2

3 − I4
3I0

3
)

⎞
⎟⎟⎟⎟⎠ . (2.12)

(Note that our definitions do not imply that this matrix need be symmetric, but it may be
possible to obtain a symmetric matrix using an alternative formulation of the problem.)
Equations of motion in which a generalised velocity vector is obtained from a generalised
force vector by matrix multiplication occur quite generally in treatments of viscosity
dominated flow, and the matrix A is termed the resistance matrix (Happel & Brenner
1983). The equations of motion derived in Cawthorn & Balmforth (2010) were obtained in
a slightly different form, compared with our (2.11) and (2.12), but they are consistent with
our formulation.

3. Dimensionless equations

It will be efficient to define non-dimensional dynamical variables,

η = Lθ
Z
, ζ = X

L
, ξ = Z

L
, (3.1a–c)

and a non-dimensional version of the integrals In
m,

In
m = Ln+1

Zm Kn
m(η), (3.2)

with

Kn
m(η) =

∫ 1

0
du

un

(1 + ηu)m
. (3.3)

With these definitions the generalised force components are expressed in terms of the
dimensionless dynamical variables as follows:

Fz = 6μL

K0
3

[
ζ̇

ξ2

(
K1

2K0
3 − K1

3K0
2
)+ ξ̇

ξ3

[(
2K1

3K1
3 − 2K0

3K2
3
)+ η

(
K1

3K2
3 − K3

3K0
3
)]

+ η̇

ξ2

(
K1

3K2
3 − K0

3K3
3
)]
, (3.4a)

Fx + θFz = 6μL

K0
3

[
ζ̇

ξ

(
1
3

K0
1K0

3 − 1
2

K0
2K0

2

)
+ ξ̇

ξ2

[(
K0

2K1
3 − K1

2K0
3
)

+ η

(
1
2

K0
2K2

3 − 1
2

K2
2K0

3

)]
+ η̇

ξ

(
1
2

K0
2K2

3 − 1
2

K2
2K0

3

)]
, (3.4b)

G = 6μL2

K0
3

[
ζ̇

ξ2

(
1
2

K2
2K0

3 − 1
2

K2
3K0

2

)
+ ξ̇

ξ3

[(
K2

3K1
3 − K3

3K0
3
)

+ η

(
1
2

K2
3K2

3 − 1
2

K4
3K0

3

)]
+ η̇

ξ2

(
1
2

K2
3K2

3 − 1
2

K4
3K0

3

)]
. (3.4c)
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It will also be helpful to introduce another dimensionless variable λ that can be used in
place of ξ , defined by

λ = ln ξ. (3.5)

Then the force equations are

Fx = μL
ξ

[
B11(η)ζ̇ + B12(η)λ̇+ B13(η)η̇

]
, (3.6a)

Fz = μL
ξ2

[
B21(η)ζ̇ + B22(η)λ̇+ B23(η)η̇

]
, (3.6b)

G = μL2

ξ2

[
B31(η)ζ̇ + B32(η)λ̇+ B33(η)η̇

]
, (3.6c)

where the coefficients Bij(η) are obtained by comparison with (3.4), e.g.

B11(η) = 2K0
1K0

3 − 3K0
2K0

2

K0
3

− 6η
K1

2K0
3 − K1

3K0
2

K0
3

. (3.7)

The equations of motion can then be expressed in the form

ξ2

μL

⎛
⎝Fx/ξ

Fz
G/L

⎞
⎠ = B

⎛
⎜⎝
ζ̇

λ̇

η̇

⎞
⎟⎠ . (3.8)

We are interested in settling of the body due to a gravity force W, that is, in the vertical
direction, and acts through a point x = sL from the left-hand edge, so the opposing forces
on the body due to the fluid are (Fx,Fz,G) = (0,W, sWL). Introduce a transformed time
variable τ , which satisfies

dτ
dt

= ξ2W
μL

(3.9)

so that, if the inverse of B(η) is C(η), then (3.8) becomes⎛
⎜⎜⎜⎜⎜⎜⎝

dζ
dτ
dλ
dτ
dη
dτ

⎞
⎟⎟⎟⎟⎟⎟⎠

= C

⎛
⎝Fx/Wξ

Fz/W
G/WL

⎞
⎠ = C

⎛
⎝0

1
s

⎞
⎠ . (3.10)

For our settling plate we then have the following equations of motion:

dζ
dτ

= C12(η)+ sC13(η) ≡ Fζ (η, s), (3.11a)

dλ
dτ

= C22(η)+ sC23(η) ≡ Fλ(η, s), (3.11b)

dη
dτ

= C32(η)+ sC33(η) ≡ Fη(η, s). (3.11c)

The matrix elements of B(η) and C(η) can be determined analytically: the expressions are
given in Appendix A.
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Lubrication dynamics of a settling plate

It is possible to find solutions in which Z(t) is increasing, but the height of the centre
of gravity must always decrease monotonically. It is not obvious that (3.11a)–(3.11c) have
this property. Appendix B demonstrates that this property holds.

4. Solution of dimensionless equations

In § 4.2 it will be shown that the equations of motion (3.11) can be solved, expressing t, ξ
and ζ as functions of η, defined as integrals of elementary functions. These exact solutions
are, however, quite difficult to interpret. It is the qualitative behaviour of the solutions
that is usually of more interest than precise expressions. In particular, it is desirable to
understand whether the edge of the plate makes contact in finite time, or whether the angle
of the plate decreases so that it settles without ever making contact. This is addressed in
the next § 4.1, before we consider the exact solution.

4.1. Fixed points
The qualitative form of the solution is addressed by looking at the dynamics of the
dimensionless variable η. If the left-hand edge makes contact, this corresponds to η → ∞
(and a contact of the right-hand edge is η → −1).

Consider (3.11c). This is a differential equation for η(τ) that is independent of the
other variables. Any fixed points (nullclines) of the η(τ) dynamics are determined by the
condition

Fη(η∗, s) = 0. (4.1)

This determines a fixed point η∗(s) as a function of the position of the centre of gravity, s.
The fixed point is stable if

κ(s) ≡ −∂Fη
∂η

(η∗(s), s) > 0, (4.2)

(and, conversely, unstable if κ < 0). The matrix elements quoted in (A2) of Appendix B
enable us to express Fη(η, s) in terms of elementary functions: we find that the values of s
and η at a fixed point are related by

s = 2 (ln (η + 1))2 (η + 1)+ ln (η + 1) η(η + 1)− 3η2

ln (η + 1) η2 . (4.3)

Figure 2 shows plots of Fη(η, s) as a function of η for different values of s. Because fixed
points were found with widely differing values of η, the plots of figure 2 correspond to
four different ranges of η. Figure 2(a) illustrates the limit:

lim
η→−1

Fη(η, s) = 0, (4.4)

i.e. η = −1 (right-hand edge approaches contact) is a fixed point for all s. By symmetry,
the limit η → ∞ (i.e. left-hand edge approaches contact) can also be regarded as a fixed
point. However, the function Fη(η, s) has a singular form as η → −1, and the dynamics
in the vicinity of these edge-contact fixed points is highly unusual. In § 6 we consider in
some detail the case where the edge is close to contact. There we argue that the plate
makes contact in finite time.

Figures 2(b)–2(d) show the behaviour of Fη for three different ranges of η as we increase
its value above η = −1. We can see how fixed points are found at increasingly large values
of η. It would be instructive to plot a phase diagram that shows the locations of the stable
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η

Figure 2. Plot of Fη(η, s) as a function of η for different choices of the centre of mass position, s, and for four
different ranges of η. Attractive fixed points of η occur where Fη = 0 and F′

η < 0.

and unstable fixed points as lines in the (η, s) plane, but the fact that η may approach
infinity is inconvenient. There is a left–right symmetry of the system, such that a fixed
point at (η, s) should be reflected as a fixed point with the same stability at (−η/(1 +
η), 1 − s). If we were to use an alternative dimensionless parameter,

φ = η

2 + η
(4.5)

to describe the configuration of the plate, then the configuration space extends from φ =
−1 (right-hand edge in contact) to φ = +1 (left-hand edge in contact), and a fixed point
at (φ, s) is mirrored by one at (−φ, 1 − s). In terms of the symmetrised configuration
variable φ, the equation for the fixed points is

s = S(φ) ≡
(

1 − φ2

2φ2

)
ln
(

1 + φ

1 − φ

)
+
(

1 + φ

2φ

)
− 3

ln
(

1 + φ

1 − φ

) . (4.6)

The function S(φ) satisfies the symmetry relation

S(φ)+ S(−φ) = 1. (4.7)

Figure 3 shows the phase diagram of the system using the (φ, s) coordinates. If we
include the stable fixed points at φ = ±1, there are either three or five fixed points,
depending upon the value of s (the centre of mass position).

(i) For 0 < s < 0.3764208755 . . . there is an unstable fixed point at a value of φ∗ that is
very close to the point at which the right-hand side touches (note the dashed red line
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Lubrication dynamics of a settling plate

1.0

0.5

(0.3764, 0.8377)

(0.6236, –0.8377)

φ 0
0.2 0.4 0.6 0.8 1.0

–0.5

–1.0

S

Figure 3. Plot showing fixed points in phase space of model, using φ, defined by (4.5) and (3.1a–c), to describe
the configuration of the plate, and s to parametrise the position of its centre of gravity. The blue line indicates
stable fixed points, the red line indicates unstable fixed points.

and solid horizontal blue lines are indistinguishable in figure 3). In this range of s,
φ∗ lies in (−1,−0.999206 . . . ]. If the right-hand edge is exquisitely close to making
contact, it does so. Otherwise, we expect that the left-hand edge will make contact.
In § 6 we argue that, in both cases, contact happens in finite time.

(ii) For 1 > s > 0.623579125 . . . , the situation is the mirror image of the case 0 < s <
0.3764208755 . . . . There is an unstable fixed point at a value of φ∗ that lies in
the interval [0.999206 . . . , 1). If φ is initially greater than φ∗, the left-hand edge
contacts in finite time. If φ is less than φ∗ (which is the only case that is of practical
relevance), the right-hand edge contacts in finite time.

(iii) There is a region in the interval 0.3764208755 . . . ≤ s ≤ 0.6235791253 . . . that
has two stable fixed points at φ = ±1, two unstable fixed points, and one other
stable fixed point between the unstable fixed points. There is a basin of attraction
for which the value of φ approaches the non-trivial stable fixed point φ∗(s).
This stable fixed point starts at φ∗(0.3764208755 . . .) = 0.83774254 . . . , passes
through φ∗(1/2) = 0, and disappears at φ∗(0.6235791253 . . .) = −0.83774254 . . . .
The basin of attraction in the φ variable is at its largest when s = 1/2. At this point,
the unstable fixed points are at φ = ±0.9956216, and all initial conditions in between
these values converge to the plate settling in the flat, φ = 0, configuration.

There does not appear to be any reason to anticipate that the phase diagram of the system
should be this complicated. In § 5 we show that the approach to the stable fixed point has a
power-law dependence upon time t. The unstable fixed points drive φ towards ±1, that is,
towards one of the edges contacting the fixed baseplate. In § 6.1 we show, when an edge is
sufficiently close, contact occurs in finite time, and § 6.2 considers the subsequent motion.
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A. Wilkinson, M. Pradas and M. Wilkinson

4.2. Exact solution
We define a dimensionless time variable

t̃ = Wt
μL
ξ2

0 , (4.8)

where ξ0 is the initial value of Z/L. Equations (3.9) and (3.11) then lead to the following
differential equations for t̃(η), λ(η) and ζ(η):

dt̃
dη

= ξ2
0

exp[−2λ(η, s)]
Fη(η, s)

, (4.9a)

dλ
dη

= Fλ(η, s)
Fη(η, s)

, (4.9b)

dζ
dη

= Fζ (η, s)
Fη(η, s)

. (4.9c)

These three differential equations can be integrated to express t, λ = ln ξ and ζ as
functions of η, for example (4.9a) gives

t = μL
W

∫ η

η0

dη′ exp[−2λ(η′)]
C32(η′)+ sC33(η′)

(4.10)

where λ(η) is found by integrating (4.9b):

λ(η)− λ(η0) =
∫ η

η0

dη′ C22(η
′)+ sC23(η

′)
C32(η′)+ sC33(η′)

. (4.11)

These expressions give an exact expression for t in terms of integrals of elementary
functions of η, but they are too complicated to be instructive. Furthermore, in order to
express Z, θ and X as functions of t, it is necessary to invert the function t(η) defined by
(4.10) and (4.11).

5. Asymptotic solution near stable fixed point

If the initial conditions are in the basin of attraction of a stable fixed point η∗(s), then the
long-time behaviour of the solution is determined by the solution in the vicinity of this
fixed point.

If η is close to η∗, then

dη
dτ

= Fη(η, s) ≈ Fη(η∗, s)+ (η − η∗)F′
η(η

∗, s) = −(η − η∗)κ(s), (5.1)

so, with η0 = η(0), the solution of (3.11c) is approximated by

η(τ) ∼ η∗ + [η0 − η∗] exp[−κ(s)τ ], (5.2)

where κ(s) was defined in (4.2). When η(τ) converges to this stable fixed point at η∗, the
functions Fζ and Fλ in (3.11a), (3.11b) approach constant values. Equation (3.11b) then
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Lubrication dynamics of a settling plate

implies that
ξ(τ ) ∼ ξ0 exp[Fλ(η∗, s)τ ], (5.3)

and hence (3.9) can be integrated to give t as a function of τ and ξ0:

t = μL
W

∫ τ

0
dτ ′ ξ−2(τ ′)

∼ μL

Wξ2
0

∫ τ

0
dτ ′ exp[−2Fλ(η∗, s)τ ′]

∼ −μL

2Fλ(η∗, s)Wξ2
0
(exp[−2Fλ(η∗, s)τ ] − 1), (5.4)

so that (noting that (5.3) implies that we must have Fλ < 0) the leading term in the
dependence of τ upon time is proportional to ln t. Using (5.3) in (5.4) we obtain

t ∼ −μL
2Fλ(η∗, s)W

(
1

ξ2(t)
− 1
ξ2

0

)
. (5.5)

We can now determine dependences upon the true time, valid for t → ∞. In the limit as
t → ∞, (5.5) then implies

ξ(t) ∼
√

−μL
2Fλ(η∗, s)W

t−1/2, (5.6)

and (5.2) can be written as

η(t) ∼ η∗ + (η(0)− η∗)t−γ (s), γ (s) = κ(s)
2|Fλ(η∗, s)| . (5.7a,b)

The long-time evolution of ζ(t) is (assuming X(0) = 0):

ζ(t) ∼ Fζ (η∗, s)τ

∼ Fζ (η∗, s)
Fλ(η∗, s)

ln
(
ξ(t)
ξ0

)

∼ K − Fζ (η∗, s)
2Fλ(η∗, s)

ln(t)

≡ K − ζ̃ (s) ln(t), (5.8)

(where K and ζ̃ are independent of t). Figure 4 shows plots of γ (s) and ζ̃ (s).
We conclude that, rather than exhibiting the usual exponential approach to a stable fixed

point, both ξ and η exhibit power-law relaxation: ξ ∼ t−1/2 and η ∼ t−γ (s). Equation (5.8)
implies that the plate slides by an unbounded distance (unless Fζ (η∗, s) = 0). In practice,
the slow (logarithmic) growth of this unbounded displacement suggests that it would be
difficult to make an impressive experimental demonstration.

In the special case where the centre of mass is placed symmetrically, so that s = 0, it is
expected that the stable fixed point of (3.11c) will be η∗(1/2) = 0. Thus, let us expand the
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2.0

2.0

0.1

–0.1

–0.2

0

1.5

1.0

0,5

0.40 0.45 0.50 0.55 0.60

0.40 0.45 0.50 0.55 0.60

s

s

γ (s) ζ̃(s)

(a) (b)

Figure 4. (a) Plot of the exponent γ , which characterises the relaxation of η(t) towards its fixed point (5.7a,b).
(b) Coefficient of the logarithm, ζ̃ , describing the slippage of the plate (5.8), as function of the centre of mass
position parameter, s.

matrix C about η = 0. The leading order of Kn
m(η) when |η| � 1 is

Kn
m(η) =

∫ 1

0
dx

xn

(1 + ηx)m
∼
∫ 1

0
dx xn(1 − mηx) =

∫ 1

0
dx xn − mη

∫ 1

0
dx xn+1, (5.9)

so that

Kn
m(η) ∼ 1

n + 1
− m

n + 2
η. (5.10)

Using the Maple computer algebra system, we obtain up to second order:

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 − 1
2
η + 1

12
η2 −1

2
η − 1

4
η2 0

−1
2
η − 1

4
η2 −16 − 18η − 137

35
η2 30 + 39η + 153

14
η2

1
2
η2 30 + 55η + 405

14
η2 −60 − 120η − 510

7
η2

⎞
⎟⎟⎟⎟⎟⎟⎠
, (5.11)

so that

Fζ (η, 1/2) = −1
2η − 1

4η
2 + O(η3), (5.12a)

Fλ(η, 1/2) = −1 + 3
2η + 31

20η
2 + O(η3), (5.12b)

Fη(η, 1/2) = −5η − 15
2 η

2 + O(η3). (5.12c)

Hence, κ(1/2) = 5 and the exponent of η for s = 1/2 is

γ (1/2) = 5
2 . (5.13)
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Lubrication dynamics of a settling plate

Since ξ(t) ∼ t−1/2 from (5.6), the above result shows that the inclination angle θ(t) ∼
t−3, which is in accordance to the results reported in Argentina et al. (2007), where they
considered the symmetric settling plate.

The motion of X in the symmetric case is different from (5.8) because Fζ (0, 1/2) = 0.
In this case, using (5.2) with τ � 1, and η0 � 1, (3.11a) becomes

dζ
dτ

∼ −1
2
η − 1

4
η2 ∼ −η0

2
exp(−5τ). (5.14)

Integrating this expression, we find that when η � 1 and s = 1/2, ζ(τ, η0) ≈
η0[exp(−5τ)− 1]/10. In the limit as τ → ∞ and η0 → 0, the horizontal displacement
therefore remains finite:

ζ ∼ ζ0 − η0

10
. (5.15)

6. Asymptotic solution near and following edge contact

In this section we first consider (§ 6.1) the form of the solution of the lubrication equations
when η � 1, so that the left-hand edge is very close to contact, showing that contact
occurs after a finite time. We then consider (§ 6.2) what happens after the left-hand edge
has contacted the plate. Because this latter calculation has to start from first principles, all
of the calculations in this section will use the full, dimensional, equations of motion. The
results of § 6.1 can be reproduced using the η → ∞ limit of the coefficients in (3.11).

6.1. Solution in the vicinity of left-hand edge contact
The equation of motion for η developed in § 3 always has a stable fixed point at η = −1
(right-hand edge contacts), and by symmetry there must be a corresponding motion in
which η → ∞. Usually, a stable fixed point implies an exponential approach, but without
the fixed point being reached for any finite time. However, the form of the equations on the
vicinity of η = −1 and η → ∞ is so unusual that it is possible that η ≡ Lθ/Z → ∞ in a
finite time. In the following, we consider that possibility.

When Z is very small, the integrals In
m have simple asymptotic approximations:

In
m ∼ 1

θm

∫ L

Z/θ
dv vn−m, (6.1)

that is,

In
m ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
(k − 1)Zk−1θn+1 m = n + k, k = 2, 3, . . .

ln(Lθ/Z)
θm m = n + 1

Lk+1

(k + 1)θm n = m + k, k = 0, 1, . . .

. (6.2)
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Then, (3.4) become

Fz

24μθZ2 = Ẋ
2

(
ln(Lθ/Z)

2Z2θ3 − 1
Z2θ3

)
+ Ż

(
1

Z2θ4 − ln(Lθ/Z)
2Z2θ4

)

+ θ̇

2

(
ln(Lθ/Z)

Zθ5 − L
2Z2θ4

)
,

G
24μθZ2 = Ẋ

4

(
L

2Z2θ3 − ln(Lθ/Z)
Zθ4

)
+ Ż

2

(
ln(Lθ/Z)

Zθ5 − L
2Z2θ4

)

+ θ̇

4

(
[ln(Lθ/Z)]2

θ6 − L2

4Z2θ4

)
,

Fx + θFz

24μθZ2 = Ẋ
(

ln(Lθ/Z)
12Z2θ2 − 1

4Z2θ2

)
+ Ż

2

(
1

Z2θ3 − ln(Lθ/Z)
2Z2θ3

)

+ θ̇

4

(
ln(Lθ/Z)

Zθ4 − L
2Z2θ3

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.3)

We now set Fx = 0, Fz = W, G = WsL and retain leading-order terms in the variable
Lθ/Z ≡ η:

W
6μ

= ln(Lθ/Z)
θ2 Ẋ − 2 ln(Lθ/Z)

θ3 Ż − L
θ3 θ̇ , (6.4a)

WsL
6μ

= L
2θ2 Ẋ − L

θ3 Ż − L2

4θ3 θ̇ , (6.4b)

Wθ
6μ

= ln(Lθ/Z)
3θ

Ẋ − ln(Lθ/Z)
θ2 Ż − L

2θ2 θ̇ . (6.4c)

From (6.4a) and (6.4c) we find

Ẋ = − Wθ2

2μ ln(Lθ/Z)
. (6.5)

Using the above equation with (6.4b) and (6.4a), and keeping only the leading-order terms
in η = Lθ/Z, we obtain

Ż = −1 − s
3

W
μ

θ3

ln(η)
. (6.6)

Next substitute (6.5) and (6.6) into (6.4b) to obtain

θ̇

θ3 = −2s
3

W
μL
, (6.7)

which has the solution

θ(t) = θ0√
1 + 4s

3
θ2

0 Kt

, K = W
μL
, (6.8a,b)

where θ0 = θ(0). Equations (6.5), (6.6) and (6.7) are equations of motion for X, Z and θ ,
derived assuming that η = Lθ/Z is large. We must consider whether (6.6) and (6.7) imply
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Lubrication dynamics of a settling plate

that η → ∞ in finite time. Define a variable K as in (6.8a,b), and a dimensionless (scaled)
time τ (note that this is distinct from the pseudo-time defined by (3.9)) as follows:

τ = Kt. (6.9)

Noting that θ = ηZ/L, the equation of motion for θ is then

dθ
dτ

= 1
L

[
Z

dη
dτ

+ η
dZ
dτ

]
. (6.10)

Using (6.6) and (6.7), we obtain a differential equation for η(τ):

dη
dτ

= 1 − s
3

η2θ2

ln(η)
− 2s

3
ηθ2. (6.11)

We now write X = 1 + 4sθ2
0 τ/3, and consider the limit as η → ∞, where this equation of

motion is approximated by
1
X

dX
dη

= − 4s
1 − s

ln η
η2 , (6.12)

which has solution (with η = η0 at τ = 0)

ln
[

1 + 4
3

sθ2
0 τ

]
= 4s

1 − s

[
ln(η0)+ 1

η0
− ln(η)+ 1

η

]
. (6.13)

When η0 is very large and η → ∞ we have

4
3

sθ2
0 τ ∼ 4s

1 − s
ln(η0)+ 1

η0
� 1. (6.14)

Hence, we find that η → ∞ in a finite time t̂, which is approximated by

t̂ ∼ 3
1 − s

ln(η0)+ 1
η0θ

2
0

μL
W
, (6.15)

where we have changed back to the dimensional time t.

6.2. Motion after contact
We have seen that, if the initial value of η ≡ Lθ/Z is sufficiently large, the left-hand edge
contacts the surface in finite time. In order to complete our analysis of the problem, we
need to consider what happens after contact is made. We might expect that, when the edge
makes contact, roughness of the surface will prevent it from sliding horizontally, while it
is able to pivot about the point of contact. Let us first consider what happens if left-hand
edge makes contact with no gap, and is able to pivot (θ̇ < 0), but not to slide (that is,
Ẋ = 0). Applying (2.1), (2.3) with h = θ(t)x gives an expression for the pressure which
diverges at the corner, x = 0:

p(x, t) = p0 + 6μ
θ̇

θ3 ln
( x

L

)
, (6.16)

where p0 is the pressure at the right-hand edge. Upon performing the integrations in (2.5),
this yields finite expressions for the lift force Fz and torque G. If the vertical component
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Figure 5. Schematic illustration of asperities on the surfaces. This simplified model assures that the pressure
field is essentially unchanged across most of the surface, while the gap h cannot be less than the prominence of
the asperities, ε.

of the reaction force at the point of contact is R, we have

− Fz = W − R = 6μL
θ̇

θ3 , −G = WsL = 6μL
θ̇

θ3
L
4
. (6.17a,b)

These equations imply that

R = W(1 − 4s). (6.18)

A physical solution has a positive reaction force, R > 0, so that this solution is only viable
if s ≤ 1/4. When s > 1/4, this approach is inconsistent, because it implies that the torque
will cause the left-hand edge to lift again, which would be followed by an immediate
restoration of contact.

It should be inferred that the model needs to be refined to give physically meaningful
predictions in all cases, including s > 1/4. In particular, if the torque tends to lift the
edge away from the surface, we might seek a solution in which the reaction force R is
equal to zero, and the left-hand edge is able to slide along the surface. The motion after
making contact depends upon the precise nature of the surfaces , and in the following we
consider the consequences of a particular model. We assume that there are asperities on
the contacting surfaces, such that the gap Z never falls below a microscopically small
value, ε. We assume that the typical separation between the asperities, �L, satisfies
L � �L � ε. We also assume that θ satisfies θ�L � ε, so that the size of the gap is
nowhere reduced significantly due to tilt of the contacting surfaces. If these asperities
are widely spaced, as illustrated in figure 5, the equations of motion for the generalised
forces that are mediated by the pressure in the gap, namely Fz and G, may be assumed
to be obtained by a simple modification of (6.4a) and (6.4b): after contact occurs, Z = ε,
Ż = 0, and there is an upward component of the reaction force per unit depth R at the
left-hand edge.

Because this additional force acts through the axis that defines the torque G, it makes no
contribution to the torque equation. The modified forms of (6.4a) and (6.4b) are, therefore,

W − R
6μ

= ln(Lθ/ε)
θ2 Ẋ − L

θ3 θ̇ , (6.19)

WsL
6μ

= L
2θ2 Ẋ − L2

4θ3 θ̇ . (6.20)

The equation for the horizontal force, Fx, will be changed more fundamentally because
this component is sensitive to the precise form of the asperities. However, we do not need
the modified version of (6.4c).
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Lubrication dynamics of a settling plate

Equation (6.19) implies that

Ẋ = Lθ2

ln
(

Lθ
ε

) [W − R
6μL

+ θ̇

θ3

]
, (6.21)

so that the term proportional to Ẋ in (6.20) is negligible as ε → 0. After contact, the
equation of motion for θ is very well approximated by

θ̇

θ3 = −4s
W

6μL
, (6.22)

and (6.21) implies that the sliding velocity, Ẋ, while being indeterminate because we have
not determined the reaction force R, is very small. Combining (6.21) and (6.22), we find a
relation between Ẋ and R:

Ẋ = θ2

6μ ln
(

Lθ
ε

) [W(1 − 4s)− R] . (6.23)

Note that the equation of motion for θ , (6.22) is the same as that which is applicable
before contact (6.7), whereas (6.21) implies that the value of Ẋ changes upon contact. The
values of Ẋ and R remain ambiguous because we have not specified how the equation
for the horizontal force is modified when surfaces are in contact. We now assume that,
whenever there is a non-zero reaction force between the plate and the surface, the plate
is prevented from moving horizontally, so that Ẋ = 0 when R > 0. Then (6.23) implies
that the reaction force is given by (6.18). The condition that the reaction force R must
be non-negative cannot, therefore, be satisfied, if s > 1/4 and Ẋ = 0, because the torque
exerted by the downward force causes the left-hand edge of the plate to lift. If s > 1/4, the
reaction force R is reduced to zero, and the plate is then able to slide. The sliding motion
produces additional contributions to the force Fz and the torque G, such that the left-hand
edge remains in contact as it slides with reaction force R = 0. By symmetry, there must
be sliding motion if 1/4 < s < 3/4. In this range of s, the slow sliding motion creates a
downward force on the plate that counters the effect of the torque. After contact the plate
can slide over the surface so that the reaction force is R = 0. The slip velocity when the
left-hand edge is in contact is

Ẋ = (1 − 4s)
Wθ2

6μ ln
(

Lθ
ε

) . (6.24)

We have argued that, after edge contact has occurred, the equations of motion must
be supplemented by additional information, representing knowledge of the physical
properties of the surfaces. It is plausible that, whenever there is a positive vertical
component of the reaction force R, the falling object will be prevented from sliding,
while it can still sink by pivoting about its line of contact. We have shown that such a
non-sliding solution is only possible when s ≤ 1/4. When s > 1/4, the torque from the
lift forces cannot balance the torque due to the weight of the plate, unless it is allowed to
slide, remaining in contact with the surface, but with zero reaction force. We introduced
a specific physical model in which prominences on the surface prevent the gap from
decreasing below ε. This model yields a prediction for the sliding speed which vanishes
as ε → 0: see (6.24).
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7. Numerical studies

We have compared our analytical predictions with numerical solutions of the equations
of motion. In each case we compared the numerical solution with the exact solution, and
with the appropriate asymptotic approximation. We used dimensionless variables in all of
the simulations, equivalent to setting L = μ = ρ = W = 1. We used Maple to solve the
ordinary differential equations, applying appropriate built-in functions.

The exact solution given in § 4.2 was evaluated as follows. First, we convert the initial
values of the coordinates (X, Z, θ) to the dimensionless coordinates (ζ, λ, η). We then
integrated (4.9a), (4.9b) and (4.9c) to obtain t̃, λ and ζ as functions of η. In the case where
we expect convergence to a stable fixed point of η, these integrations can only be continued
to a point close to the fixed-point value. The values of t̃ were stored in a table along with
the values of ζ , λ and η. The plots of the exact solution are generated by interpolating this
table to plot η, ζ or ξ = exp(λ) as a function of t̃.

Figures 6 and 7 illustrate motion in which η converges to a stable fixed point. Figure 6,
shows the case where the centre of gravity is placed symmetrically, s = 1/2, so that the
fixed point is at η∗ = 0 (equivalently φ∗ = 0), and there are unstable fixed points at η =
−0.99562 and η = 227.39933. We consider two different sets of initial conditions, which
are: (X, Z, θ) = (0, 0.001, 0.01) and (X, Z, θ) = (0, 0.01, 0.001), corresponding to initial
values η = 10 (φ = 0.83333) and η = 0.1 (φ = 0.047619), respectively. We plot η(t̃) and
ξ(t̃) on double-logarithmic scales, showing the asymptotic power-law behaviour of these
functions, with exponents −γ (1/2) = −5/2 and −1/2 respectively, in agreement with
(5.13) and (5.6). The second set of initial conditions also show the finite horizontal plate
movement, close to −η0/10 (= −0.01 here), as expected from (5.15). For the first set of
initial conditions, Z(t) initially increases, but in both cases the height of the centre of mass
always decreases monotonically.

Figure 7 considers an asymmetric case, where s = 0.4, which has a stable fixed point at
η∗ = 3.13266 (or φ∗ = 0.61033), and there are unstable fixed points at η = −0.99933 and
η = 33.20746. We consider two different sets of initial conditions, which are (X, Z, θ) =
(0, 0.001, 0.01) and (X, Z, θ) = (0, 0.005, 0.005), corresponding to initial values η = 10
(φ = 0.83333) and η = 1 (φ = 0.33333), respectively. Both initial conditions are within
the basin of attraction of the stable fixed point. The double-logarithmic scale plot of
ξ(t̃) shows the asymptotic power-law behaviour with exponent −1/2 also holds in the
asymmetric case, but the exponent γ (s) for the decrease of η(t) takes a different value,
plotted in figure 4(a). In figure 7, the horizontal displacement is plotted as a function
of ln t̃, in accord with the prediction that X(t) increases logarithmically, with coefficient
plotted in figure 4(b).

Figure 8 illustrates cases in which the left-hand edge of the plate makes contact with the
surface, corresponding to η → ∞. We show trajectories for the following cases (L = 1
throughout):

(i) (panels a,c,e) s = 0.4, (X, Z, θ) = (0, 0.001, 0.035), for which η = 35 (φ =
0.94595), beyond the unstable fixed point at η = 33.20746;

(ii) (panels b,d, f ) s = 0.3, (X, Z, θ) = (0, 0.0001, 0.01), for which η = 100 (φ =
0.98039) and there is an unstable fixed point at η = −0.99995 and the only stable
fixed points are at η = −1 and η → ∞.

In both cases we plot η(t̃), ξ(t̃) and ζ(t̃) up to the point of contact. The contact time, t̂, is
shown in each case. For the first set of initial conditions, η0 is close to a fixed point, so that
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Figure 6. Comparison of numerical solutions of the equations of motion with analytical predictions for the
case where the centre of gravity is symmetrically placed, s = 1/2, and when the parameter η(t) = Lθ(t)/Z(t)
approaches a stable fixed point. Panels (a,c,e) and (b,d, f ) correspond to two different sets of initial conditions,
where CoM stands for centre of mass. Both η(t̃) (a,b) and the dimensionless plate height ξ(t̃) = Z(t̃)/L (c,d)
show a power-law relaxation at large t, and the horizontal displacement ζ(t̃) = X(t̃)/L (e, f ) approaches a
constant.

t̂ is much larger than the prediction of (6.15). Our second case has a relatively large initial
η value of 100 and here the contact time is t̂ = 2847, approaching the theoretical contact
time of 2402 predicted by (6.15) for very large initial η values.
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Figure 7. Comparison of numerical solutions of the equations of motion with analytical predictions for the
case where the centre of gravity is displaced from the centre, s = 0.4, and when the parameter η(t) =
Lθ(t)/Z(t) approaches a stable fixed point. Panels (a,c,e) and (b,d, f ) correspond to two different sets of initial
conditions, where CoM stands for centre of mass. The exponent for the relaxation of η, given by (5.7a,b),
is different than in the symmetric case [compare panels (a,b) with figure 6(a,b)], but ξ(t̃) = Z(t̃)/L ∼ t̃−1/2

continues to hold in this asymmetric case (c,d). The horizontal displacement ζ(t̃) = X(t̃)/L (e, f ) grows
logarithmically, as given by (5.8).
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Figure 8. Plot of trajectory that makes contact in finite time, showing η(t̃), ξ(t̃) and ζ(t̃) up to the point of
contact: (a,c,e) s = 0.4, (X,Z, θ) = (0, 0.001, 0.035), for which η = 35 (which is beyond the unstable fixed
point at η = 33.20746, so outside the basin of attraction of the non-trivial stable fixed point at η = 3.13266);
(b,d, f ) s = 0.3, (X,Z, θ) = (0, 0.0001, 0.01). CoM stands for centre of mass.
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8. Concluding remarks

Our motivation for examining the lubrication theory for a settling plate came from the
observation that there are two plausible types of solution: the plate might ‘side-slip’ onto
the surface, making contact in finite time, or the motion might ‘round out’, so that the
plate settles in a progressively flatter attitude, without ever making contact.

We find that both of these types of solution may be realised, depending upon the initial
position of the plate and the position of the centre of force. We find that there is only
one dimensionless coordinate that controls the nature of the trajectory: throughout most
of the calculations we used η = Lθ/Z, but if we wish to represent the phase diagram of
the system (figure 3) in a manner that reflects its symmetry, the alternative choice φ =
η/(2 + η) can be used.

The elements of both the resistance matrix (detailed in Appendix A) and its inverse can
be expressed exactly as elementary functions of η. This observation was used to write
an exact solution of the equations of motion, in parametric form, in terms of integrals
of elementary functions. The exact solution (presented in § 4.2) is, however, difficult
to interpret. This led us to investigating asymptotic approximations to the solution. We
investigated two types of asymptotic solution.

(i) There are solutions where η approaches a constant η∗, with both Z and θ decreasing
as t−1/2. Numerical experiments show that these solutions only exist for s ∈ [s∗, 1 −
s∗], with s∗ ≈ 0.376 . . . . The value of X(t) shows a logarithmic evolution, except
for the case s = 1/2, and the relaxation of η(t) towards η∗ is a power-law, η − η∗ ∼
t−γ (s). The exponent γ (s) has a maximum γ (1/2) = 5/2, and approaches zero as
s → s∗ or s → 1 − s∗.

(ii) For all values of s there are also solutions where either of the edges will contact
the baseplate in finite time, although the basin of attraction of one or both of
these solutions may be extremely small. For s ∈ [0, 1/4] or s ∈ [3/4, 1], there is a
solution where the plate contacts without sliding (Z = 0, Ẋ = 0). For s ∈ [1/4, 3/4],
however, the plate must slip slowly in order to maintain contact. In both cases
(whether or not the point of contact slips), the angle decreases as θ ∼ t−1/2.

Our results show that the dynamics of a settling plate has an unexpected richness, even in
the two-dimensional context considered here. It should also be experimentally accessible
because the system can be realised as a pivoted slider bearing. The fully three-dimensional
problem is not treated here, and may yield further surprises.
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Appendix A. Matrix coefficients

We list the matrix elements of B, defined by (3.6). In the following expressions, ψ =
ln(η + 1). The elements are

B11 = (−4η − 8) ψ + 6η
(η + 2) η

(A1a)
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B12 = (−6η − 6) ψ + 3η2 + 6η
(η + 2) η2 (A1b)

B13 = (−12η − 18) ψ + 3η2 + 18η
(η + 2) η3 (A1c)

B21 = (6η + 12) ψ − 12η
(η + 2) η2 (A1d)

B22 = (12η + 12) ψ − 6η2 − 12η
(η + 2) η3 (A1e)

B23 = (24η + 36) ψ − 6η2 − 36η
(η + 2) η4 (A1f )

B31 = (−12η − 18) ψ + 3η2 + 18η
(η + 2) η3 (A1g)

B32 = −3
2
((2η + 2) ψ + η2 − 2η)((−2η − 2) ψ + η2 + 2η)

(η + 2) η5 (A1h)

B33 = 12 (η + 1)2 ψ2 + (−72η2 − 96η)ψ − 3η2(η2 − 4η − 28)
2 (η + 2) η6 . (A1i)

The matrix elements of C = B−1 are

C11 = − η

ψ
(A2a)

C12 = −η2

2ψ
(A2b)

C13 = 0 (A2c)

C21 = −η2

2ψ
(A2d)

C22 = (4 (η + 1)2 ψ3 − (6η2 + 8η)ψ2 − η2(η2 + 8η + 2)ψ + 3η4 + 6η3)η3

3((−2η − 2) ψ + η2 + 2η)ψ((2η + 2) ψ2 + (η2 + 2η)ψ − 4η2)
(A2e)

C23 = ((−4η − 6) ψ + η2 + 6η)η5

3((−2η − 2)ψ + η2 + 2η)((2η + 2)ψ2 + (η2 + 2η)ψ − 4η2)
(A2f )

C31 = η3

2ψ
(A2g)

C32 = ((2η + 2) ψ2 + (η2 + η)ψ − 3η2)η4

3ψ((2η + 2) ψ2 + (η2 + 2η)ψ − 4η2)
(A2h)

C33 = − η6

(6η + 6) ψ2 + (3η2 + 6η)ψ − 12η2 . (A2i)
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Figure 9. Plot of the maximum value of K(η, s) (defined by (B2) along a line of constant s. The fact that this
is always negative ensures that the centre of gravity is always sinking.

Appendix B. Demonstration that the system (3.11) is always dissipative

It is instructive to check that our equations of motion do have the property that the height
of the centre of mass always decreases. This can be shown as follows. The height of
the centre of gravity is Zc = Z + sLθ ≡ Lξc, where ξc = ξ(1 + sη). We define λc ≡ ln ξc,
such that Zc is always decreasing if λc is decreasing as a function of time t. Noting that
the pseudo-time τ (defined by (3.9)) is a monotonically increasing function of time t, it
suffices to show that

dλc

dτ
= dλ

dτ
+ s

1 + sη
dη
dτ

< 0. (B1)

Using the equations of motion (3.11b) and (3.11c), this can be expressed as an inequality
involving the matrix elements of C:

K(η, s) ≡ (1 + sη) [C22(η)+ sC23(η)] + s [C32(η)+ sC33(η)] < 0. (B2)

This argument shows that, for any s, the inequality ensuring that the centre of mass falls is
expressed in terms of just one variable, η.

The definitions of the dimensionless variables ξ and η are based upon the separation Z
at the left-hand edge of the plate. It is sufficient to consider only the case where gap at the
left-hand edge is smaller than or equal to that at the right-hand edge, that is, η � 0. If we
are interested in the case where the right-hand gap is smaller, we can apply a reflection,
and change the centre of gravity parameter from s to 1 − s. So it is sufficient to show that
the maximal values of K(η, s) and K(η, 1 − s) for η � 0 are both negative.

Rather than using analysis to prove that this inequality holds, we provide a numerical
demonstration. Figure 9 is a plot of the maximum value of K(η, s) along a line of
constant s, for all η > 0. Because this maximum value is always negative, for all s ∈ [0, 1],
the system is always dissipative, for all choices of s.
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