BULL. AUSTRAL. MATH. SOC. Vol. 44 (1991) [375-380]

LOCAL INTEGRABILITY OF CR-HYPERSURFACES

KIL H. KWON AND BYEONG C. SONG

By characterising CR-hypersurfaces of dimension m having m strongly independent CR-functions, we find the necessary condition for a CR-hypersurface to be locally integrable and show that the same condition is also sufficient if the CR-hypersurface is strongly pseudoconvex and has m strongly independent CRfunctions.

1. PRELIMINARIES

Let V be a CR-hypersurface of dimension $m \ (\geq 1)$ in an open set Ω in \mathbb{R}^{2m+1} . That is, V is a subbundle of $\mathbb{C} \otimes T\Omega$ of fibre dimension m such that

$$(1.1) [V, V] \subset V$$

(1.2)
$$V \cap \overline{V} = \{0\} (\overline{V} \text{ is "the complex conjugate" of } V).$$

We call V locally integrable at p in Ω if in some neighborhood U of p in Ω there are m+1 C^{∞} -functions $\{u_j\}_{j=1}^{m+1}$ such that

(1.3) u_j are CR-functions, that is, $Lu_j = 0$ for any smooth section L of V on U; (1.4) $du_1 \wedge \cdots \wedge du_{m+1} \neq 0.$

Let V' be the orthogonal of V in $\mathbb{C} \otimes T^*\Omega$. Then the condition (1.2) is equivalent to $V' + \overline{V}' = \mathbb{C} \otimes T^*\Omega$. Hence, if V is locally integrable, then there are m CR-functions $\{u_i\}_1^m$ such that

$$(1.5) du_1 \wedge \cdots \wedge du_m \wedge d\overline{u}_1 \wedge \cdots \wedge d\overline{u}_m \neq 0.$$

We call m such CR-functions to be strongly independent. Not every CR-hypersurface is locally integrable (see for example [3, 5, 8, 9]) (even if it has m strongly independent CR-functions). In [8], Nirenberg constructed a single C^{∞} -vector field in \mathbb{R}^3

$$L = \frac{\partial}{\partial \overline{z}} + iz \frac{\partial}{\partial t} + iz \phi(x, y, t) \frac{\partial}{\partial t}, \qquad (\phi \text{ is real-valued})$$

Received 20 November 1990

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

satisfying for any C^{∞} -function $\psi(x, y, t)$ with $L\psi = 0$, $\partial\psi/\partial\overline{z}$ and $\partial\psi/\partial t$ vanish of infinite order at the origin. Thus the vector field L spans a CR-hypersurface of dimension 1 having a strongly independent CR-function z, which is also strongly pseudoconvex (that is, L, \overline{L} , and $[L, \overline{L}]$ are linearly independent) but not locally integrable at the origin. Motivated by the above example, Hanges [2] found a necessary condition for a CR-hypersurface of dimension 1 to be locally integrable and showed that the same condition is also sufficient in some restricted cases. Here, we shall extend the results in [2] to the CR-hypersurfaces of any dimension $m \ge 1$.

Once we characterise the CR-hypersurfaces having m strongly independent CR-functions in terms of local coordinates (see for example, Proposition 2.1), the extension from m = 1 to any $m \ge 1$ is rather straightforward.

2. MAIN RESULTS

From now on, V always means a CR-hypersurface of dimension $m \ge 1$ in Ω .

PROPOSITION 2.1. Locally V has m strongly independent CR-functions if and only if Ω can be covered by local charts (U; x, y, t) in which V is spanned by m smooth vector fields

(2.1)
$$L_j = \frac{\partial}{\partial \overline{z}_j} + a_j(x, y, t) \frac{\partial}{\partial t}, \quad z_j = x_j + iy_j, \quad j = 1, \cdots, m.$$

PROOF: The sufficiency is clear since z_1, \dots, z_m are strongly independent CR-functions of V. Conversely, let u_1, \dots, u_m be strongly independent CR-functions about a point, say 0, in Ω ; then condition (1.5) is equivalent to

$$(2.2) dReu_1 \wedge \cdots \wedge dReu_m \wedge dImu_1 \wedge \cdots \wedge dImu_m \neq 0.$$

Hence we can take a local coordinate system (x, y, t) about 0 where

(2.3)
$$x_1 = Reu_1, \cdots, x_m = Reu_m, y_1 = Imu_1, \cdots, y_m = Imu_m.$$

For any local basis $B = \{L_j\}_1^m$ of V about 0, we have

(2.4)
$$L_j = \sum_{k=1}^m 2L_j(Reu_k) \frac{\partial}{\partial \overline{z_k}} + L_j(t) \frac{\partial}{\partial t}, \ z_j = x_j + iy_j, \ j = 1, \cdots, m.$$

Note that the matrix $A = 2[L_j(Reu_k)]_{j,k}$ is nonsingular at 0 and so in some neighbourhood of 0. Indeed, if otherwise, the vector fields $\{L_j - L_j(t)\partial/\partial t\}_1^m$ are linearly dependent at 0 and so $\partial/\partial t$ must be in $V \cap \overline{V}$ at 0, which contradicts to (1.2). Then $A^{-1}B$ is another local basis of V in a neighbourhood of 0 having the form (2.1).

CR-hypersurfaces

Note that when V is spanned by L_j in (2.1), condition (1.1) is equivalent to

(2.5)
$$[L_j, L_k] = 0$$
, that is, $L_j a_k - L_k a_j = 0$, $j, k = 1, \dots, m$

PROPOSITION 2.2. V is locally integrable at p in Ω if and only if there is a local chart (U; x, y, t) about p in which V is spanned by vector fields L_j in (2.1) and a CR-function $u \in C^{\infty}(U)$ of the form

(2.6)
$$u(x, y, t) = t + i\phi(x, y, t)$$

where $\phi \in C^{\infty}(U)$ is real-valued and $\phi(p) = 0$ and $d\phi(p) = 0$.

PROOF: The necessity is trivial since $\{z_1, \dots, z_m, u\}$ are m+1 independent CRfunctions of V on U. Conversely, by Proposition 2.1, locally, V is spanned by L_j in (2.1). Furthermore, we may assume $a_j(p) = 0$ via suitable linear change of coordinates fixing x and y. Then $\{z_j\}_1^m$ are m independent CR-functions of V on U. Since V is locally integrable, there is a CR-function $u \in C^{\infty}(U)$ (possibly after shrinking U) such that

$$(2.7) dz_1 \wedge \cdots \wedge dz_m \wedge du \neq 0.$$

Then $(\partial u/\partial t)(p) \neq 0$, since otherwise du is a linear combination of $\{dz_j\}_1^m$ which contradicts (2.7). If we set $v = Au + \sum_{j=1}^m B_j z_j$ where $A = (\partial u/\partial t)(p)^{-1}$ and $B_j = -(\partial u/\partial z_j)(p)\{(\partial u/\partial t)(p)\}^{-1}$, then v is a CR-function satisfying dv(p) = dt. Hence v(x, y, t) = t + W(x, y, t) with dW(p) = 0 so that $\partial Rev/\partial t(p) \neq 0$. Then in a new coordinate system (x, y, t') with t' = t + ReW about p, we have $v = t' + i\phi(x, y, t')$ and $d\phi(p) = 0$. We may assume $\phi(p) = 0$.

For later use, we note that a_j and ϕ are related by

(2.8)
$$i\frac{\partial\phi}{\partial\overline{z}_j} + a_j\left(1+i\frac{\partial\phi}{\partial t}\right) = 0, \ j = 1, \cdots, m.$$

We say that a smooth function a(x, y, t) defined near a point p in \mathbb{R}^{2m+1} is microanalytic at (p, +1) (relative to t) (respectively (p, -1)) if there exist a neighbourhood \mathcal{O} of (p, 0) in \mathbb{R}^{2m+2} and $A(x, y, t, s) \in C^{\infty}(\mathcal{O})$ such that

(2.9)
$$\frac{\partial A}{\partial \overline{w}} = 0 \text{ in } \mathcal{O}^+(\text{ respectively } \mathcal{O}^-);$$

(2.10)
$$A(x, y, t, 0) = a(x, y, t)$$
 in $\mathcal{O}^0 = \{(x, y, t) \in \mathbb{R}^{2m+1} : (x, y, t, 0) \in \mathcal{O}\},\$

where w = t + is and $\mathcal{O}^+(\mathcal{O}^-) = \{(x, y, t, s) \in \mathcal{O} : s > 0 \ (s < 0)\}$.

THEOREM 2.1. (Necessity) If V is locally integrable in Ω , then for any p in Ω there is a local chart (U; x, y, t) about p in which V is spanned by the vector fields L_j in (2.1), where all a_j are microanalytic at (p, +1).

We shall omit the proof since it is essentially the same as that of Theorem 1 in [2]. For a local basis $\{L_j\}$ of V and any real vector field $L_0 \notin V + \overline{V}$ about a point p in Ω , define complex numbers $C_{j,k}(p)$ by

(2.11)
$$-\frac{i}{2}[L_j, \overline{L}_k](p) - C_{j,k}(p)L_0(p) \in V_p + \overline{V}_p.$$

We call the $m \times m$ matrix $L(p) = [C_{j,k}(p)]_{j,k}$ the Levi matrix of V at p. When it is nonsingular, the absolute value of its signature is an invariant of V. We call V strongly pseudoconvex at p if L(p) is positive or negative definite.

THEOREM 2.2. (Sufficiency) Let V be a CR-hypersurface of dimension m having m strongly independent CR-functions so that V has a local basis $\{L_j\}_1^m$ in (2.1). Then V is locally integrable at p in Ω if the Levi matrix L(p) of the system $\partial/\partial t, L_1, \dots, L_m$ is positive (respectively negative) definite at p and the coefficients a_j of L_j are microanalytic at (p, +1) (respectively (p, -1)). In this case, there is a CR-function u of the form (2.6) which is also microanalytic at (p, +1) (respectively (p, -1)).

We need the following lemma which can be easily proved by Proposition 2.2 (see for example, [2]).

LEMMA. Let V be the same as in Theorem 2.2. Then V is locally integrable at p in Ω if and only if there exist an open neighbourhood U of p and $v \in C^{\infty}(U)$ satisfying

(2.12)
$$L_j v = -\frac{\partial a_j}{\partial t}, \quad j = 1, \cdots, m.$$

PROOF OF THEOREM 2.2: We always assume p = 0. Since a_j and so $f_j := -\partial a_j/\partial t$ are microanalytic at (0, +1), we have an open neighbourhood \mathcal{O} of 0 in \mathbf{R}^{2m+2} and $A_j, F_j \in C^{\infty}(\mathcal{O})$ such that

(2.13)
$$\frac{\partial A_j}{\partial \overline{w}} = \frac{\partial F_j}{\partial \overline{w}} = 0 \quad \text{in } \mathcal{O}^+,$$

$$(2.14) A_j(x, y, t, 0) = a_j(x, y, t), \ F_j(x, y, t, 0) = f_j(x, y, t) \quad \text{in } \mathcal{O}^0.$$

On \mathcal{O}^+ , define $L_0^+ = \partial/\partial \overline{w}$ and $L_j^+ = \partial/\partial \overline{z}_j + A_j \partial/\partial w$, $j = 1, \dots, m$. Then they are linearly independent and commute with each other. The latter comes directly from (2.5), (2.13) and Schwarz's reflection principle. Hence $\{L_j^+\}_0^m$ define a (almost) complex structure on \mathcal{O}^+ by Newlander-Nirenberg theorem [7].

CR-hypersurfaces

Now in order to solve the system (2.12), it suffices to solve

(2.15)
$$L_0^+ u = 0, L_j^+ u = F_j, j = 1, \cdots, m$$

smoothly up to $\{s=0\}$.

Let $\alpha_0, \dots, \alpha_m$ be 1-forms which are dual to L_0^+, \dots, L_m^+ (for example, $\alpha_0 = d\overline{w} - \sum_{j=1}^{m} \overline{A_j} dz_j$ and $\alpha_j = d\overline{z}_j, j = 1, \dots, m$). Then (2.15) becomes

(2.16)
$$\overline{\partial}u = \sum_{j=1}^m F_j \alpha_j$$

where the operator $\overline{\partial}$ is defined on $v \in C^{\infty}(\mathcal{O}^+)$ by $\overline{\partial}v = \sum_{j=0}^m (L_j^+v)\alpha_j$.

Using (2.3), (2.13) and Schwarz's reflection principle, we can see that the 1-form $\sum_{j=1}^{m} F_j \alpha_j$ is $\overline{\partial}$ -closed, that is, $\overline{\partial} \left(\sum_{j=1}^{m} F_j \alpha_j \right) = 0.$

As in [2], we can find a strongly pseudoconvex domain in \mathcal{O}^+ whose boundary intersects with $\{s = 0\}$ near 0. Hence, by the well known fact about the $\overline{\partial}$ -problem (see for example, [1]), we can solve the equation (2.16) (or equivalently (2.15)) smoothly up to $\{s = 0\}$.

REMARK. In fact, if $m \ge 4$, then Theorem 2.2 gives only a simple proof of a special case of Kuranishi's theorem [6] saying that any strongly pseudoconvex CR-hypersurface of dimension ≥ 4 is locally integrable. However, for m < 4 (at least for m = 1 by Nirenberg's example in [8]) not every strongly pseudoconvex CR-hypersurface of dimension m is locally integrable.

References

- G.B. Folland and J.J. Kohn, The Neumann problem for the Cauchy-Riemann complex (Princeton University Press, Princeton, N.J., 1972).
- [2] N. Hanges, 'The missing first integral', J. Differential Equations 72 (1988), 178-188.
- [3] H. Jacobowitz, 'Simple examples of non-realizable CR hypersurfaces', Proc. Amer. Math. Soc. 98 (1986), 467-468.
- [4] H. Jacobowitz, 'The canonical bundle and realizable CR hypersurfaces', Pacific J. Math. 127 (1987), 91-101.
- [5] H. Jacobowitz and F. Treves, 'Non-realizable CR structures', Invent. Math. 66 (1982), 231-249.
- [6] M. Kuranishi, 'Strongly pseudoconvex CR structures over small balls', Ann. of Math. Part I 115 (1982), 451-500. Part II 116 (1982), 1-64. Part III 116 (1982), 249-330.

- [7] A. Newlander and L. Nirenberg, 'Complex analytic coordinates in almost complex manifolds', Ann. of Math. 65 (1957), 391-404.
- [8] L. Nirenberg, Lectures on linear partial differential equations: Regional Conference Series in Mathematics (Amer. Math. Soc., Providence, R.I., 1973).
- [9] L. Nirenberg, 'On a question of Hans Lewy', Russian Math. Surveys 29 (1974), 251-262.

Department of Mathematics KAIST P.O. Box 150 Cheongryang, Seoul 130-650 Korea