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Abstract

In this paper, we consider a certain type of space- and time-fractional kinetic equation with
Gaussian or infinitely divisible noise input. The solutions to the equation are provided
in the cases of both bounded and unbounded domains, in conjunction with bounds for
the variances of the increments. The role of each of the parameters in the equation is
investigated with respect to second- and higher-order properties. In particular, it is shown
that long-range dependence may arise in the temporal solution under certain conditions
on the spatial operators.
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1. Introduction

The Riesz–Bessel fractional diffusion equation subject to Gaussian white noise on rectan-
gular and unbounded domains was introduced in [2]. The equation has the form

∂

∂t
c(t, x)+ (I −�)α/2(−�)γ/2c(t, x) = ε(t, x), c(0, x) = c0(x), (1)

where t ∈ R+, x ∈ D ⊂ R
d , α ≥ 0, γ > 0, I is the identity operator, � is the Laplacian

operator, ε(t, x) is Gaussian space–time white noise, and c0(x) is a spatial random field
independent of ε(t, x). Here, (I −�)−α/2 is the Bessel potential and (−�)−γ /2 is the Riesz
potential. Apart from in the classical context of heat conduction, an equation of the form (1)
with γ = 2 and α = 0 also arises in neurophysiology [50], [51], for example. Diffusion
operators of the form (−�)1+γ , γ > 0, have been used to define hyperviscosity and to study its
effect on the inertial-range scaling of fully developed turbulence [28], [33]. The presence of the
Bessel operator is essential for a study of stationary solutions of (1); see [9] for related models.
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Fractional kinetic equations 367

Angulo et al. [2] studied the existence, sample path regularity, and second-order properties,
particularly spatial long memory in the case of unbounded spatial domain, of the solution of
(1) as t → ∞. A similar problem was investigated by Bonaccorsi and Tubaro [13] in a Hilbert
space setting. However, the issue of temporal memory of the solution of (1) has not been
investigated in sufficient detail.

This issue is addressed in the present paper. A fractional-in-time differential operator will
be introduced into (1) explicitly, and the effects of the fractional operators in depicting spatial
and temporal long memory in the space–time context will be studied (a background on the issue
of long memory is provided in the introduction of [2]). In fact, we will consider an extended
form of (1):(

An
∂βn

∂tβn
+ · · · + A1

∂β1

∂tβ1
+ A0

∂β0

∂tβ0

)
c(t, x)+ (I −�)α/2(−�)γ/2c(t, x) = ε(t, x),

βn > βn−1 > · · · > β1 > β0 ≥ 0, Ai > 0, i = 0, . . . , n.

(2)

Here, the fractional-in-time derivative is the regularized fractional derivative or fractional
derivative in the Caputo–Djrbashian sense, i.e.

∂βu

∂tβ
=

⎧⎪⎪⎨
⎪⎪⎩
∂mu

∂tm
(t, x) if β = m ∈ N,

1

�(m− β)

∫ t

0
(t − τ)m−β−1 ∂

mu(τ, x)

∂τm
dτ if m− 1 < β < m

(see [15], [19], and [42]), where �(·) is the gamma function. The focus in this paper is on the
case of βn ≤ 1, although (2) without the random forcing term covers many important diffusion-
type equations as special cases. For example, the equation for generalized Cattaneo diffusion
is given by (

τγ
∂2

∂t2
+ ∂1−γ

∂t1−γ

)
c(t, x) = K

∂2c

∂x2 , 0 < γ < 1,

τ and K being constants [17]; the time-fractional telegraph equation takes the form

(
∂2α

∂t2α
+ 2λ

∂α

∂tα

)
c(t, x) = K

∂2c

∂x2 , 0 < α ≤ 1,

λ being a constant [41]; while the fractional Riesz–Bessel diffusion is governed by

∂β

∂tβ
c(t, x) = −µ(I −�)α/2(−�)γ/2c(t, x), µ > 0. (3)

Equation (3) is a fractional diffusion equation when 0 < β ≤ 1 and is a fractional wave
equation when 1 < β ≤ 2; hence, it is also referred to as a fractional diffusion–wave equation.
Special cases of (3) have been treated by many authors including Anh and Leonenko [3]–[5],
Barkai et al. [11], Benson et al. [12], Chaves [16], Gorenflo et al. [22]–[25], Klafter et al. [30],
Kochubei [31], Mainardi [35], Meerschaert et al. [37]–[39], Metzler and Klafter [40], Saichev
and Zaslawsky [45], Schneider [46], Schneider and Wyss [47], Shlesinger et al. [48], and
Uchaikin and Zolotarev [49].

Equation (2) is capable of encoding various short- and long-range correlation structures in
space and time. We will pay attention to the role of the parameters of (2) in these correlation

https://doi.org/10.1239/aap/1118858630 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1118858630


368 J. M. ANGULO ET AL.

structures of the solution. We consider in detail the behaviour of the solution observed at
a single spatial location. The reason for this is that, in many applied areas, for example
in turbulence and air pollution, time series data are collected in this fashion (from hot-wire
anemometers and air quality monitoring stations). Therefore, in this paper we will study the
exact behaviour of the temporal evolution at such spatial locations. A significant finding is
that we observe temporal long-range dependence even in the case of the infinite-dimensional
Ornstein–Uhlenbeck process (1).

In the next section, we provide a connection with the theory of continuous-time random
walks (CTRWs) and, hence, a motivation for considering equations of the form (2). In fact,
we will show the existence of stochastic processes which are the limits, in the weak sense,
of sequences of CTRWs whose probability density functions p(t, x) are governed by general
equations of the form

An
∂βnp(t, x)

∂tβn
+ · · · + A0

∂β0p(t, x)

∂t
β0

= Ap(t, x), (4)

where A is the infinitesimal generator of a Lévy process. The Riesz–Bessel operator
(I −�)α/2(−�)γ/2 is a special case of A.

For notational simplicity, we concentrate on the fractional kinetic equation

∂β

∂tβ
c(t, x)+ (I −�)α/2(−�)γ/2c(t, x) = ε(t, x), 0 < β ≤ 1. (5)

This will be sufficient for our purposes. Extension to the more general equation (2) is discussed
in Subsection 3.3.

We first consider (5) for the case of bounded spatial domains in Subsection 3.1. We formulate
a solution to the Dirichlet problem via the eigenfunction expansion of the associated Green
function. Sharp bounds are obtained for the variance of the increments in space and time. In
the case of unbounded spatial domains (Subsection 3.2), we obtain a solution in terms of the
Fourier transform of the associated Green function. At each time t ∈ R+, the solution is a
homogeneous random field. We calculate its spatial spectral density and then obtain a similar
bound for the variance of the increments. In both cases studied, the solutions are asymptotically
stationary in time. We derive the corresponding spectral densities and bounds on the variances
of the increments, as well as the joint spatio-temporal spectral density in the second case. These
results allow us to describe the memory nature (both spatial and temporal) of the solutions. In
Section 4, we provide some results in the case when the Gaussian noise in (5) is replaced by
infinitely divisible noise. In particular, sufficient conditions for the existence of higher-order
moments of the solution, and corresponding higher-order spectral densities, will be derived.

2. Stochastic processes associated with fractional kinetic equations

This section provides a CTRW pathway to the general fractional kinetic equation (4). We
first define and recall some salient features of the CTRW model. In this model, a random walker
starts at r = 0 at time t = 0 and proceeds by successive random jumps. It is generally assumed
that the waiting times τi , i = 1, 2, . . . , between consecutive jumps are independent, identically
distributed random variables with probability densityψ(τ), and that the jumps ξi , i = 1, 2, . . . ,
are independent, identically distributed random vectors in R

d with probability density λ(ξ). It
is further assumed that τi and ξi are independent. Let T0 = 0 and let Tn = ∑n

i=1 τi be the time
of the nth jump. For t ≥ 0, we define Nt = max{n ≥ 0 : Tn ≤ t}. The position of the random
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walker at time t is then given by Xt = ∑Nt
i=1 ξi . The stochastic process {Xt }t≥0 is called a

continuous-time random walk.
The probability densityp(t, r) of finding the random walker at position r at time t is governed

by the equation

p(t, r) = δ(r)
(t)+
∫ t

0
ψ(t − s)

[∫
Rd
λ(r − r ′)p(s, r ′) dr ′

]
ds, t ∈ R+, r ∈ R

d , (6)

where δ(r) is the Dirac delta function, used here to reflect the initial condition p(0, r) =
δ(r), and 
(t) is the survival probability, which is related to the waiting time density through

(t) = 1 − ∫ t

0 ψ(s) ds [26, pp. 118–119], [36]. The first term on the right-hand side of (6)
expresses the persistence of the initial position r = 0, while the second term describes the
contribution to p(t, r) from the walker via the jump r− r ′ at instant t after a waiting time t− s.
The evolution equation (6) is known as the master equation of the continuous-time random
walk Xt .

From now on, we consider the one-dimensional case, d = 1, which is sufficient for our
purpose. Mainardi et al. [36] noted that if ψ is the Mittag-Leffler density, that is, if

ψ(t) = tβ−1Eβ,β(−tβ), 0 < β ≤ 1,

where Eα,β(x) is the two-parameter Mittag-Leffler function (see [19, pp. 1–6], for example),
which can be defined by the series expansion

Eα,β(x) =
∞∑
k=0

zk

�(αk + β)
, z ∈ C, α > 0, β > 0,

then (6) may be written as

∂βp(t, x)

∂tβ
= −p(t, x)+

∫ ∞

−∞
λ(x − y)p(t, y) dy.

To consider the more general fractional-in-time operator given in (4), with βn ≤ 1, we require
the class of extended Mittag-Leffler distributions defined in [6]. Distributions in this class have
densities described by the Laplace transform

ψ̃(s) = (1 + A1s
β1 + · · · + Ans

βn)−1, s > 0,

where 1 ≥ βn > · · · > β1 > 0 and Ai > 0, i = 1, . . . , n. Following [36], we work in the
Fourier–Laplace domain so that (6) becomes

1 − ψ̃(s)

sψ̃(s)
[s ˆ̃p(κ, s)− 1] = [λ̂(κ)− 1] ˆ̃p(κ, s),

with ‘˜’ and ‘ˆ’ denoting the Laplace and Fourier transforms, respectively. Hence, with the
extended Mittag-Leffler distribution as the waiting time distribution of the CTRW, we have

(Ans
βn−1 + · · · + A1s

β1−1)[s ˆ̃p(κ, s)− 1] = [λ̂(κ)− 1] ˆ̃p(κ, s).
By inverting the Laplace and Fourier transforms, we arrive at the extended form

An
∂βnp(t, x)

∂tβn
+ · · · + A1

∂β1p(t, x)

∂tβ1
= −p(t, x)+

∫ ∞

−∞
λ(x − y)p(t, y) dy.
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We will now restrict our attention to the case of n = 1, although the results will apply to the
general case.

Let λ be an infinitely divisible distribution with characteristic function

λ̂(ω) = exp

(
− 1

2σ
2 + iγω +

∫
R\{0}

[eiωx − 1 − iωx 1{|x|≤1}]ν(dx)
)
,

where σ, γ ∈ R, ν(dx) is a Lévy measure [34], and 1{·} is an indicator function. Let c be a
positive constant and λ∗c be the distribution with characteristic function (λ̂(ω))c. When c is
a positive integer, λ∗c is the distribution of the sum of c independent random variables with
distribution λ. For c < 1, the distribution λ∗c represents a convolution root of λ. Our interest
is in the behaviour of solutions to the master equation

c
∂βp(t, x)

∂tβ
= −p(t, x)+

∫ ∞

−∞
λ∗c(x − y)p(t, y) dy, (7)

as c → 0. The CTRW corresponding to (7) with c > 0 has waiting time density

c−1tβ−1Eβ,β

(−tβ
c

)

and jump distribution λ∗c. We will show that the master equation converges to the fractional
space–time equation

∂βp(t, x)

∂tβ
= Ap(t, x) (8)

(in a sense to be specified below), where A is the infinitesimal generator of the Lévy motion
associated with the infinitely divisible distribution λ, and the sequence of random walks Xct ,
which (7) describes, converges weakly. Interesting examples of A include the inverse of the
Riesz potential (−�)α, α ∈ (0, 1], which generates 2α-stable motion, and the inverse of the
composition of the Riesz and Bessel potentials (−�)α(I − �)γ , α ∈ (0, 1], α + γ ∈ [0, 1],
which generates Riesz–Bessel Lévy motion [7]. The following theorem has been proved by
Meerschaert and Scheffler [37] in a more general context. An alternative proof is provided here
to indicate that there is further scope for extension to general operators that are fractional in
time and space.

Theorem 1. Let pc(t, x) be the solution to (7) subject to the initial condition pc(0, x) =
f (x) ∈ C0, the Banach space of continuous functions with decay at infinity. Then

(i) the sequence of solutionspc(t, x) converges pointwise in R to a mild solution of (8) under
the same initial condition, and

(ii) the sequence of continuous-time random walks described by (7) converges in the weak
sense.

Proof. (i) The solution to (7) is seen to exist and be unique for f ∈ C0 by using the
representation (6) and applying the Banach fixed point theorem. The solution may be written
as the expectation E(f (x + Xct )), with Xct being the corresponding continuous-time random
walk. As f is bounded, f (x + Xct ) is uniformly integrable; hence, we need only show that
Xct

d= Xt for fixed t . If L(t) is the Lévy motion with infinitesimal generator A, then we may

https://doi.org/10.1239/aap/1118858630 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1118858630


Fractional kinetic equations 371

write Xct
d−→ L(cNc

t ), where Nc
t is the counting process defined in the following manner. Set

T c(0) = 0 and

T c(n) =
n∑
i=1

c1/βJi,

where n is an integer and Ji are independent Mittag-Leffler random variables. Note that the
probability density function of the random variable c1/βJi has Laplace transform (1 + csβ)−1.
The process T c(n) gives the nth jump time of the CTRW and the counting process Nc

t is given
by

Nc
t = max{n ≥ 0 : T c(n) ≤ t}.

We show convergence of the Laplace transform of the distribution of cNc
t , i.e.

E(e−ucNct ) =
∞∑
n=0

e−ucn P(Nc
t = n).

Taking the Laplace transform with respect to time, we find that∫ ∞

0
e−st E(e−ucNct ) dt =

∞∑
n=0

e−ucn
∫ ∞

0
e−st P(Nc

t = n) dt

= csβ−1

1 + csβ

∞∑
n=0

e−ucn(1 + csβ)−n

= csβ−1

1 + csβ

1 + csβ

1 + csβ − e−uc

→ sβ−1

u+ sβ
. (9)

Convergence of Laplace transforms implies convergence of the original function; hence,
E(e−ucNct ) converges. Inverting the Laplace transform of (9) with respect to s givesEβ,1(−utβ)
andEβ,1(0) = 1 (see, for example, [36, Equation (3.4)]). Hence, cNc

t converges in distribution
as c → 0 for fixed t . As a result, the sequence of solutions pc(t, x) converges to some function
q(t, x). Standard conditioning arguments can now be used to yield

q(t, x) =
∫

R

eiωxEβ,1(−ϕ(ω)tβ)f̂ (ω) dω (10)

(provided that the integral exists), where f̂ is the Fourier transform of f and ϕ(ω) = −ln λ̂(ω).
For an f in the space of Schwartz distributions, we may use a result of [20] (see also [3]) to
show that (10) is the unique solution to (8).

(ii) To show that the continuous-time random walk converges in the weak sense to a well-defined
stochastic process, we need only show convergence of the process cNc

t since the random walk
is given by L(cNc

t ). Furthermore, we need only show convergence of cNc
t in the sense of

finite-dimensional distributions as it is increasing and, hence, tight. Convergence in finite-
dimensional distributions of a tight sequence implies convergence in the weak sense.

We will prove convergence in finite-dimensional distributions using an argument of [37].
Take T c(n) and Nc

t as defined in the proof of part (i), and note that

{T c(n) ≤ t} = {Nc
t ≥ n}.
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Fix 0 < t1 < · · · < tm and x1, . . . , xm ≥ 0; then

P{cNc
ti
< xi for all i} = P{Nc

ti
< c−1xi for all i}

= P{T c([c−1xi]) > ti for all i}.
(Note that here [x] denotes the integer part of x.) By a theorem of Skorokhod (see Theorem
16.14 of [29]), to show that T c([c−1x]) converges weakly to a Lévy process Lt , we need only
show that T c([c−1x]) d= L1 when T c(n) is a random walk on the integers. Let c = 1/n; the
density of the distribution of T 1/n(n) has Laplace transform (1 + sβ/n)n. Letting n → ∞, we
see that (1 + sβ/n)n → exp(−sβ) and, therefore, that T 1/n(n) converges to a β-stable random
variable. It follows that T 1/n([nx]) converges in the sense of finite-dimensional distributions
to a β-stable subordinator and, so, cNc

t converges in finite-dimensional distributions and in the
weak sense.

Remark 1. The theorem can be adapted to show that a sequence of solutions to

An
∂βnp(t, x)

∂tβn
+ · · · + A1

∂β1p(t, x)

∂tβ1
= c−1

(
−p(t, x)+

∫ ∞

−∞
λ∗c(x − y)p(t, y) dy

)

will converge to a mild solution of (4) as c → 0. This is achieved by replacing the waiting time
distribution by an extended Mittag-Leffler distribution with Laplace transform

ψ̃(s) = (1 + cA1s
β1 + · · · + cAns

βn)−1, s > 0.

The sequence of continuous-time random walks that this equation describes will also converge
in the weak sense.

Remark 2. A more general equation is obtained by allowing A in (8) to be the infinitesimal
generator of a Markov process. The restriction that β satisfy 0 < β ≤ 1 is still required in this
remark. A special case of this is the fractional Fokker–Planck equation studied by Metzler and
Klafter [40], among others. We are able to propose an alternative interpretation of this equation
and provide an explicit construction of a stochastic process whose marginal distribution satisfies
the fractional Fokker–Planck equation. This is achieved by taking the limit of a sequence of
solutions to a fractional-in-time linear Boltzmann equation.

Let (�,F , µ) be a measure space. Following [32], any linear operator P : L1 → L1

satisfying
Pf ≥ 0, ‖Pf ‖ = ‖f ‖,

for f ≥ 0 and f ∈ L1, is called a Markov operator. In this paper, for p ∈ [1,∞) we let
Lp := Lp(I), I ∈ R

m, be the space of all measurable functions f : I → R with finite norm
‖f ‖p := (

∫
I
|f (x)|p dx)1/p. We shall write ‖ · ‖ for the norm if p is clear from the context. A

measurable function K : �×� → R satisfying

K(x, y) ≥ 0,
∫
�

K(x, y) dx = 1

is called a stochastic kernel. Clearly, the operator defined by

Pf (x) =
∫
�

K(x, y)f (y) dy, f ∈ L1,
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is a Markov operator. An example of a Markov operator is obtained by letting K(x, y) =
λ(x − y). This is the convolution operator, which was used in the master equation. Using
a general Markov operator instead of a convolution operator allows the jump distribution to
depend on the current position of the walk.

Let P be a Markov operator with stochastic kernel and let Nt be the counting process with
Mittag-Leffler jump times. Define the function u(t, x) by

u(t, x) =
∞∑
k=0

P(Nt = k)P kf (x).

Making Laplace transforms with respect to the time variable gives [27]

ũ(s, x) =
∞∑
k=0

sβ−1

(1 + sβ)k+1 P kf (x).

Applying the Caputo fractional differentiation with respect to time for Laplace transforms gives

∞∑
k=0

s2β−1

(1 + sβ)k+1 P kf (x)− sβ−1f (x)

=
∞∑
k=0

sβ−1

(1 + sβ)k+1 P k+1f (x)−
∞∑
k=0

sβ−1

(1 + sβ)k+1 P kf (x)

= P ũ(s, x)− ũ(s, x).

Inverting the Laplace transform then yields the equation

∂βu(t, x)

∂tβ
= Pu(t, x)− u(t, x), (11)

subject to the initial condition
u(0, x) = f (x).

Again, if P is the convolution operator, we obtain the master equation (7). For β = 1, (11) is
the linear Boltzman equation and so we refer to this equation as the fractional-in-time linear
Boltzmann equation.

We now introduce a scale parameter c into the Mittag-Leffler jump distribution, as in the
previous section, and let the Markov operators Pc form a continuous-time semigroup at time
t = c. Equation (11) then becomes

∂βuc(t, x)

∂tβ
= c−1(Pc − I )uc(t, x), (12)

and taking the limit c → 0, as in the proof of Theorem 1, gives the desired equation (8) with
A being the infinitesimal generator of Pt . The solution to (12) is given by the expectation

uc(t, x) = E f (Y (cNc
t )+ x),

where Y (t) is the Markov process with semigroup Pt . Note that the conditional expectation

E(f (Y (cNc
t )+ x) | cNc

t = ζ ) = v(ζ, x),
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where v(t, x) is the solution to (8) with β = 1, and subject to the initial condition
v(0, x) = f (x). Hence, we can write the solution to (12) as

uc(t, x) =
∫ ∞

0
v(ζ, x)σt,c(dζ ),

where σt,c is the distribution of cNc
t . Assuming that f (·) is a bounded and continuous function,

it follows that v(t, ·) is bounded for all t ≥ 0. The dominated convergence theorem can then
be applied to conclude that the limiting solution has the representation

u0(t, x) =
∫ ∞

0
v(λ, x)t−βM(t−βλ;β) dλ, (13)

where M(λ;β) is a special case of the Wright function given by

M(λ;β) = 1

π

∞∑
n=1

(−λ)n−1

�(n)
�(βn) sin(βnπ).

We note that representation (13) is equivalent to [10, Equation (25)] when A is taken to be the
generator of a Feller semigroup associated with an infinitely divisible law. The representation
(13) suggests that numerical solution of the equation is possible by first solving the equation
with β = 1 and then performing the integration over time numerically.

3. Gaussian random fields

In studying the behaviour of the sample paths of the solution to (5), it will be useful to
recall some results on the geometry of random fields [1]. Let {X(t), t ∈ R

d} be a zero-mean
Gaussian random field with stationary increments and continuous covariance function. Define
σ 2(t) = E(X(t + s)−X(t))2. If there exists a β ∈ (0, 1) such that

β = sup{β : σ(t) = o(|t |β), |t | ↓ 0} = inf{β : |t |β = o(σ (t))},
then {X(t), t ∈ R

d} is called an index-β Gaussian field. The following results hold with
probability one.

• dimH(graph(X)) = d+1−β, where dimH is the Hausdorff dimension and graph(X) :=
{(t, X(t)), t ∈ R

d}.
• X satisfies a stochastic Hölder continuity condition of order α for any α < β. Further-

more, for any α > β, X fails to satisfy any uniform Hölder condition of order α.

The following subsections examine the conditions under which a solution to (5) exists, and
establish some properties of that solution. Propositions 2–4 and 6 give the conditions on the
operators of (5) for the solution, or a restriction of it, to be an index-β Gaussian random field.
Hence, these propositions will allow the dimension and the Hölder continuity of the solution
to be determined.

3.1. The fractional kinetic equation on a bounded spatial domain

For t > 0 and x = (x1, . . . , xd) ∈ R
d+, we denote

Wtx = W((0, t] × (0, x1] × · · · × (0, xd ]),
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whereW is a Gaussian additive set function on the Borel sets of R
d+1 such that there is a version

of Wtx that is a continuous, real-valued zero-mean Gaussian random field with covariance
function

E(WsxWty) = (s ∧ t)(x1 ∧ y1) · · · (xd ∧ yd).
For a measurable square-integrable function f (t, x), the Itô stochastic integral

∫∫
f (t, x) dWtx

is defined in [14] (see also theAppendix of [50]). Here, and where not specified in the following,
the range of integration is R × R

d . The following properties hold:

E

(∫∫
f (t, x) dWtx

)2

=
∫∫

f 2(t, x) dx dt,

E

(∫∫
f (t, x) dWtx

)(∫∫
g(t, x) dWtx

)
=

∫∫
f (t, x)g(t, x) dx dt.

Clearly, if f and g have disjoint support then the two stochastic integrals are uncorrelated
and, hence, independent. Define a generalized random function ε by the stochastic integral
representation ε = (f, ε) = ∫∫

f (t, x) dWtx for f ∈ C∞
0 (R

d+1), the space of infinitely
differentiable functions with compact support in R

d+1. This is a mean-square continuous
linear function with respect to the L2-norm over C∞

0 (R
d+1) and, following [44, Sections I.1.3

and I.5.1], we may treat ε as a random Schwartz distribution. Formally, we identify ε(t, x)
with ∂d+1Wtx/∂x1 · · · ∂xd∂t and call it space–time white noise.

We will consider the problem (5) for x ∈ (0, L1)×· · ·× (0, Ld) = DL, L = (L1, . . . , Ld),
with initial condition c(0, x) = 0 and Dirichlet boundary conditions. As will be proved in the
next result, a solution to this problem can be formulated in terms of the following function:

G(t, x; s, y) =

⎧⎪⎨
⎪⎩

∑
k∈N

d∗

φk(x)φk(y)(t − s)β−1Eβ,β(−λk(t − s)β), t ≥ s,

0, t < s,

(14)

for all x, y ∈ DL. Here, N∗ = {1, 2, 3, . . . }; k = (k1 . . . , kd) with ki ∈ N∗;

φk(x) =
(

2d

VL

)1/2 d∏
i=1

sin

(
kiπxi

Li

)

are the eigenfunctions of the Laplacian in the Dirichlet problem; VL = ∏d
i=1 Li is the volume of

the parallelepipedDL; and λk = (1 + wk)
α/2w

γ/2
k are the eigenvalues of (I −�)α/2(−�)γ/2,

with wk = ∑d
i=1 k

2
i π

2/L2
i = π2 ∑d

i=1(ki/Li)
2 = π2|k|2L being the eigenvalues of −�.

The function G defined in (14) can be interpreted as the Green function of the corresponding
deterministic problem in the weak (or generalized) sense.

Proposition 1. For β ≤ 1 and (α + γ )(2β − 1) > βd, the stochastic fractional kinetic
equation (5), defined onDL, with the initial condition c(0, x) = 0, for all x, and homogeneous
boundary conditions admits the following solution in the mean-square sense (and, therefore, in
the distribution sense):

c(t, x) =
∫ t

0

∫
DL

G(t, x; s, y) dWsy, t > 0, x ∈ DL, (15)

where the integral is interpreted in the mean-square sense and G(t, x; s, y) is defined by (14).
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Proof. We recall, from Chapter 5 of [42], that the solution to the linear fractional differential
equation

dβf (t)

dtβ
+ λf (t) = δ(t) (16)

is given by the function
Gλ(t) = tβ−1Eβ,β(−λtβ). (17)

From the asymptotic properties of the two-parameter Mittag-Leffler function (see [19,
Theorem 1.3-3]), it can be seen that (17) is square integrable on R+ for β > 1

2 . The proof
now follows along the same lines as that of Proposition 2.1 of [2]. We require, for a fixed
(t, x) ∈ R+×DL, the convergence in the mean-square sense of the following random sequence
of partial sums:

St,xn =
∫

R+

∫
DL

∑
l≤n

Gλl (t − s)H(t − s)φl(x)φl(y) dWs,y, n ∈ N∗.

This is equivalent to the convergence in L2(R+ ×DL) of the sequence of functions

S̃t,xn (s, y) =
∑
l≤n

Gλl (t − s)H(t − s)φl(x)φl(y), n ∈ N∗.

Here,H(t − s) = 1[0,t](s) represents the Heaviside function. Now, form, n ∈ N∗ withm < n,

‖S̃t,xn − S̃t,xm ‖ =
∫

R+

∫
DL

( ∑
m<l≤n

Gλl (t − s)H(t − s)φl(s)φl(y)

)2

dy ds

=
∫ t

0

∫
DL

∑
m<l≤n

G2
λl
(t − s)φ2

l (x)φ
2
l (y) dy ds

=
∫ t

0

∑
m<l≤n

G2
λl
(t − s)φ2

l (x) ds

=
∑
m<l≤n

φ2
l (x)

∫ t

0
G2
λl
(t − s) ds

≤
∫ ∞

0
G2

1(s) ds
∑
m<l≤n

φ2
l (x)λ

1/β−2
l

≤ 2d

VL

∫ ∞

0
G2

1(s) ds
∑
m<l≤n

λ
1/β−2
l .

As λl ∼ l(α+γ )/d , the sum
∑
l∈N∗ λ

1/β−2 is finite if (α+γ )(2β−1) > βd and, hence, we have
convergence in the mean-square sense. From (16) and (17), we may take the fractional-in-time
derivative of (15) to show that it solves (5) in the mean-square sense.

Remark 3. The solution to (5) with random initial condition in the rectangular domain case,
and β ≤ 1, is given by

c(t, x) =
∫
DL

∑
k∈N

d∗

φk(x)φk(y)Eβ,1(−λktβ)c0(y) dy +
∫ t

0

∫
DL

G(t, x; s, y) dWsy, (18)
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with conditions on the parameters as given in Proposition 1 and assuming that c0(x) has finite
variance. Convergence, in the mean-square sense, of the first term on the right-hand side of
(18) is guaranteed if

∫
DL

∫
DL

∑
k∈N

d∗

φk(x)φk(y1)Eβ,1(−λktβ)
∑
k∈N

d∗

φk(x)φk(y2)Eβ,1(−λktβ)

× cov[c0(y1), c0(y2)] dy1 dy2 < ∞,

which generally requires that

∑
k∈N

d∗

φk(x)φk(y)Eβ,1(−λktβ) ∈ L1(DL).

From the asymptotics of the Mittag-Leffler function [19], this means that α + γ > d, which
is satisfied if the condition of Proposition 1 is satisfied, i.e. β ≤ 1. To see that (18) solves (5),
we recall a result of [20] (also see [3]), namely that the unique solution in Lp([0, T ]) to the
Cauchy problem of the fractional differential equation

dβu(t)

dtβ
+ au(t) = 0, u(0) = 1, a > 0,

is given by u(t) = Eβ,1(−atβ). Clearly, limt→0 c(t, x) = c0(x) and, taking fractional
derivatives with respect to time, we see that (18) solves (5) in the mean-square sense.

Proposition 2. The solution (15) of the fractional kinetic equation (5) satisfies the following
inequalities:

E(c(t, x)− c(s, x))2 ≤ K|t − s|2β−1−βd/(α+γ ), with

βd < (α + γ )(2β − 1), (19)

E[c(t, x)− c(t, y)]2 ≤ ML|x − y|(α+γ )(2−1/β)−d , with

βd < (α + γ )(2β − 1) < β(d + 2). (20)

Here, t, s ∈ R+, x, y ∈ DL, andK andML are constants independent of t and s, and x and y,
respectively. Also, the following inequality holds:

E(c(t, x)− c(t, y))2 ≤

⎧⎪⎨
⎪⎩
M̃L|x − y|2 + M̃ ′

L|x − y|2(−log|x − y|),
(α + γ )(2β − 1) = β(d + 2),

˜̃
ML|x − y|2, (α + γ )(2β − 1) > β(d + 2),

(21)

where M̃L, M̃
′
L, and ˜̃

ML are constants independent of x and y.

Remark 4. Note that the constant in the inequality (19) does not depend on time, unlike in
Proposition 2.3 and Remark 2.2 of [2]. The slightly sharper result given above is due to a
different proof.
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Proof of Proposition 2. We have

E(c(t, x)− c(t, y))2 =
∫ t

0

∫
DL

∑
k∈N

d∗

[φk(x)− φk(y)]2φ2
k (z)G

2
λk
(t − r) dz dr

=
∑
k∈N

d∗

[φk(x)− φk(y)]2λ
1/β−2
k

∫ tλk

0
G2

1(t − r) dr

≤
∫ ∞

0
G2

1(s) ds
∑
k∈N

d∗

[φk(x)− φk(y)]2λ
1/β−2
k

≤
∫ ∞

0
G2

1(s) ds
∑
k∈N

d∗

[φk(x)− φk(y)]2ω
(α+γ )(1/2β−1)
k .

Following the proof of Proposition 2.3 of [2], we then have

E(c(t, x)− c(t, y))2

≤
∫ ∞

0
G2

1(s) ds

(
2d

VL

) ∑
k∈N

d∗

[2 ∧ (π |x − y||k|L)]2ω
(α+γ )(1/2β−1)
k

≤
∫ ∞

0
G2

1(s) ds

(
2d

VLπ(α+γ )/β

) ∑
k∈N

d∗

(
4

|k|(α+γ )(2−1/β)
L

∧ π2|x − y|2
|k|(α+γ )(2−1/β)−2

L

)
.

The remainder of the proof of (19) and (21) follows the proof of Proposition 2.3 of [2] with
α + γ replaced by (α + γ )(2 − 1/β). For the proof of (19), note that the solution c(t, x) can
be written as

c(t, x) =
∑
k∈N

d∗

φk(x)

∫ t

0
(t − s)β−1Eβ,β(−λk(t − s)β) dBk(s),

where Bk(t) are independent Brownian motions. This representation follows from the ortho-
gonality of the eigenfunctions of the negative Laplacian. We define the temporal limiting
process

c̃(t, x) =
∑
k∈N

d∗

φk(x)

∫ t

−∞
(t − s)β−1Eβ,β(−λk(t − s)β) dBk(s)

= c(t, x)+
∑
k∈N

d∗

φk(x)

∫ 0

−∞
(t − s)β−1Eβ,β(−λk(t − s)β) dBk(s). (22)

Clearly, c(t, x) and c̃(t, x)− c(t, x) are independent and, hence,

E((c(t + τ, x)− c(t, x))2) ≤ E((c̃(t + τ, x)− c̃(t, x))2).

The upper bound follows from the proof of Proposition 3, below.
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Remark 5. From Proposition 2, the moduli of continuity of the random field can be determined
as in [2]:

ωt(δ) = sup
|t−s|<δ

|c(t, x)− c(s, x)| = Xδβ−1/2−βd/2(α+γ ) +Kδβ−1/2−βd/2(α+γ )(−log δ)1/2,

ωx(δ) = sup
‖x−y‖<δ

|c(t, x)− c(t, y)| = Yδ(α+γ )(1−1/2β)−d/2 + Lδ(α+γ )(1−1/2β)−d/2(−log δ)1/2,

ωt,x(δ) = sup
‖(t,x)−(s,y)‖<δ

|c(t, x)− c(s, x)| = Zδβ−1/2−βd/2(α+γ )

+Mδβ−1/2−βd/2(α+γ )(−log δ)1/2,

where X, Y , and Z are almost surely finite, positive random variables and K , L, and M are
positive constants.

Proposition 3. Let c(t, x)be the solution of (5) given by (15). For a fixedx ∈ DL, its asymptotic
temporal spectral density is

fx(ω) = 1

2π

∑
k∈N

d∗

φ2
k (x)(|ω|2β + 2 cos( 1

2πβ)|ω|βλk + λ2
k)

−1. (23)

Also, for (2β − 1)(α + γ ) > βd , the asymptotic variance of the increments, σ 2
x (τ ), satisfies

c1|τ |2β−1−dβ/(α+γ ) ≤ σ 2
x (τ ) ≤ c2|τ |2β−1−dβ/(α+γ ) (24)

for some constants c1 and c2. That is, at a fixed x ∈ DL, the temporal limiting process is an
index- 1

2 (2β − 1 − dβ/(α + γ )) process.

Proof. Note that c(t, x) converges, in the mean-square sense, to the random field c̃(t, x)
defined in (22). The spectral density of the stochastic integral in (22) is given by [8, Equa-
tion (3.15)]. The temporal spectral density (23) follows from the fact that the Bk(t) are
independent.

The upper bound in (24) is established by arguments similar to those in the proof of
Proposition 2.6 of [2], which we will briefly outline. By definition,

2πσ 2
x (τ ) =

∫
R

|eiωτ − 1|2fx(ω) dω

=
∑
k∈N

d∗

φ2
k (x)

∫
R

|eiωτ − 1|2(|ω|2β + 2 cos( 1
2πβ)|ω|βλk + λ2

k)
−1 dω

≤
∑
k∈N

d∗

φ2
k (x)

∫
R

|eiωτ − 1|2(|ω|2β + λ2
k)

−1 dω

≤ 2d

VL

∫
R

|eiη − 1|2
[ ∑
k∈N

d+

τ 2β−1

τ 2β(π2|k|2L)α+γ + η2β

]
dη

≤ 2d

VL

∫
R

|eiη − 1|2
∫

[0,∞)d

τ 2β−1

τ 2β(π2|z|2L)α+γ + η2β
dz dη

≤ τ 2β−1−dβ/(α+γ ) 2d

VL

∫
R

∫
[0,∞)d

|eiη − 1|2 dz dη

(π2|z|2L)α+γ + η2β
,

https://doi.org/10.1239/aap/1118858630 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1118858630


380 J. M. ANGULO ET AL.

which completes the proof of the upper bound. In the construction of the lower bound, we will
assume for simplicity that d = 1 and x/L = p/q, with p and q being coprime. Then,

2πσ 2
x (τ ) =

∑
k∈N∗

φ2
k (x)

∫
R

|eiωτ − 1|2(|ω|2β + 2 cos( 1
2πβ)|ω|βλk + λ2

k)
−1 dω

= 2d

VL

∫
R

|eiωτ − 1|2

×
[ ∞∑
l=0

q−1∑
m=1

sin2
(

2πpm

q

)
(|ω|2β + 2 cos( 1

2πβ)|ω|βλlq+m + λ2
lq+m)−1

]
dω.

Note that the eigenvalues are increasing in k and that λk ≤ c|k|α+γ
L for a finite constant c.

Hence, there are finite constants c1 and c2 such that

2πσ 2
x (τ ) ≥ 2d

VL

(q−1∑
m=1

sin2
(

2πpm

q

))

×
∫

R

|eiωτ − 1|2
[ ∞∑
l=1

(|ω|2β + c1|ω|β |lq|α+γ
L + c1|lq|2(α+γ )

L )−1
]

dω

≥ 2d−1

VL

∫
R

|eiωτ − 1|2
∫ ∞

q

(|ω|2β + c1|ω|β |z|α+γ
L + c2|z|2(α+γ )

L )−1 dz dω

≥ τ 2β−1 2d−1

VL

∫
R

|eiu − 1|2
∫ ∞

q

(|u|2β + c1|u|βτβ |z|α+γ
L + c2τ

2β |z|2(α+γ )
L )−1 dz du

≥ τ 2β−1−β/(α+γ ) 2d−1

VL

∫
R

|eiu − 1|2

×
∫ ∞

qτβ/(α+γ )
(|u|2β + c1|u|β |y|α+γ

L + c2|y|2(α+γ )
L )−1 dx du.

So, for rational x/L, the proposition is proved. When x/L is irrational, we note that

E((c(t + τ, x + z)− c(t, x + z)+ c(t + τ, x)− c(t, x))2)

≤
∑
k∈N

d∗

[φk(x + z)− φk(x)]2
∫

R

|eiωτ − 1|2(|ω|2β + 2 cos
( 1

2πβ
)|ω|βλk + λ2

k

)−1 dω

≤ o|z|(1)|τ |2β−1−βd/(α+γ ),

and the proposition is established for irrational x/L by application of the triangle inequality.

Remark 6. In Proposition 2.6 of [2], the asymptotic temporal covariance function is seen to
decay exponentially fast as |τ | → ∞. It is clear from (23) that the temporal covariance function
does not display long-range dependence for β 
= 1; however, the decay is much slower than
exponential. For β < 1, it can be seen from (22) and Theorem 1.3-5 of [19] that the asymptotic
temporal covariance function is given by

Rx(τ) =
∑
k∈N

d+

φ2
k (x)

∫ ∞

0
e−|τ |y yβ sin(πβ) dy

(yβ + λk)(y2β + 2 cos(πβ)yβλk + λ2
k)
. (25)
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Making the change of variable u = |τ |y in (25) and applying the dominated convergence
theorem, we have

lim|τ |→∞ |τ |1+βRx(τ) =
( ∑
k∈N

d+

φ2
k (x)λ

−3
k

)
sin(πβ)�(1 + β). (26)

Remark 7. In the previous discussion, we have assumed that the domain is a bounded rectangle
of R

d . However, this assumption can be weakened considerably. Assume that D is a bounded
region in R

d with smooth boundary ∂D and Dirichlet boundary conditions. The following
properties of the negative Laplacian on D are needed (see Chapter 6 of [18]).

Let λk denote the eigenvalues of the negative Laplacian on the d-dimensional cube, written
in increasing order and repeated according to multiplicity. Then there exists a constant c > 0
such that limk→∞ λkk

−2/d = c.
Let λk(D) be the eigenvalues of the negative Laplacian acting on L2(D). Then λk(D) is a

monotonically decreasing function of the region in the sense that if D1 ⊂ D2 then λk(D1) ≤
λk(D2).

Let φk(x) be the eigenfunctions of the negative Laplacian on D with Dirichlet boundary
conditions. The sequence of eigenfunctions forms a complete orthonormal set in L2(D).
Under additional conditions on the smoothness of ∂D, the eigenfunctions will lie in the domain
C∞

0 (D), the space of smooth functions on D whose partial derivatives can be continuously
extended to the closure of D and vanish on the boundary ∂D.

From the spectral theory of linear self-adjoint operators, the eigenvalues defining the spec-
trum of the operator (I−�)α/2(−�)γ/2 areωk = (1 + λk)

α/2λ
γ/2
k , whereλk are the eigenvalues

of the negative Laplacian on D. Hence, the eigenvalues of (I −�)α/2(−�)γ/2 on D, written
in increasing order and repeated according to multiplicity, satisfy the bounds

c1k
(α+γ )/d ≤ ωk ≤ c2k

(α+γ )/d ,

for some positive constants c1, c2, and k ≥ 1. Thus, with the exception of (20), (21), and the
lower bound in (24), the results of this section hold, using the same proofs.

3.2. The fractional kinetic equation on an unbounded spatial domain

In this section we study the mean-square solution to (5) under the ‘zero’ initial condition
c(0, x) = 0, with x ∈ R

d . We formulate a solution to the problem in terms of the Fourier
transform of a spatially and temporally homogeneous Green function. For t ∈ R+, we denote
by ε̂t (λ), λ ∈ R

d , the complex-valued, generalized random function defined by the following
weak-sense mean-square identity in L2(R+ × R

d), where 〈·, ·〉 is the inner product on R
d :

ε(t, x) =
∫

Rd
ei〈x,λ〉ε̂t (dλ).

In addition, E(ε̂t (dλ)ε̂s(dµ)) = δ(t − s)δ(λ − µ) dλ dµ, for all λ,µ ∈ R
d and t, s ∈ R+,

where a bar denotes complex conjugate. The process ε̂t (·) can be interpreted as the spatial
spectral process of εt (x) := ε(t, x), x ∈ R

d , in the weak sense in time (see [52, p. 101 and
p. 112]).

Proposition 4. A real-valued zero-mean solution (in the mean-square sense) of (5) defined on
R+ × R

d , under zero initial condition and assuming that (2β − 1)(α + γ ) > βd, is given by

c(t, x) =
∫

Rd
ei〈x,λ〉

∫ t

0
G(1+|λ|2)α/2|λ|γ (t − s)ε̂s(dλ) ds, (t, x) ∈ R+ × R

d , (27)
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where the integrals are interpreted in the mean-square sense. In addition, if γ (2β − 1) < βd,
then the process is asymptotically stationary, with spectral density

f (ω, λ) = 1

2π(|ω|2β + 2 cos( 1
2πβ)|ω|β(1 + |λ|2)α/2|λ|γ + (1 + |λ|2)α|λ|2γ ) (28)

for all ω ∈ R and λ ∈ R
d . If the process is stationary then, for a fixed time t0 ∈ R+, the

random field is a fractional Riesz–Bessel random field with spectral density

ft0(λ) = 1

2π

(∫
R

du

|u|2β + 2 cos( 1
2πβ)|u|β + 1

)
(|λ|γ (1 + |λ|2)α/2)1/β−2, (29)

and

lim|z|→0

E((c(t0, x + z)− c(t0, x))
2)

|z|(α+γ )(2−1/β)−d = const.

Thus, at each fixed time t0 ∈ R+, the asymptotically stationary process c(t0, x) is an
index-((α + γ )(2β − 1)− βd)/2β random field.

Proof. We first determine the range of parameters for which the integral in (27) is defined.
For this, it is necessary to show that the Green function is inL2([0, T ]×R

d). By the Plancherel
formula (see, e.g. [21]),

∫ T

0

∫
Rd
G2(s, x) dx ds =

∫ T

0

∫
Rd
G2
(1+|λ|2)α/2|λ|γ (s) dλ ds

=
∫

Rd

∫ T ((1+|λ|2)α/2|λ|γ )1/β−2

0
((1 + |λ|2)α/2|λ|γ )1/β−2G2

1(s) ds dλ.

The domain of integration may be split into the ranges |λ| < δ and |λ| > δ to show that the
integral is finite for (2β − 1)(α + γ ) > βd and finite, positive T . It should also be clear that,
for γ (2β − 1) < βd and (2β − 1)(α + γ ) > βd , the Green function is square integrable on
L2(R+ × R

d) since G1(t) is square integrable on R+ for β > 1
2 . To show that (27) is a

solution, in the mean-square sense, of (5), we simply take the fractional derivative of c(t, x)
with respect to time. Noting that (1 + |λ|2)α/2|λ|γ is the transfer function associated with
(I −�)α/2(−�)γ/2, that (17) is the Green function of fractional differential equation (16), and
that the interchange of differentiation and integration is justified since both are defined in the
mean-square sense, it follows that (27) solves (5). To determine the spectral density, we first
determine the covariance function, which is given by

E(c(t + τ, x)c(t, y)) =
∫

Rd

∫ ∞

0
ei〈x−y,λ〉G(1+|λ|2)α/2|λ|γ (τ + s)G(1+|λ|2)α/2|λ|γ (s) ds dλ.

Equation (28) now follows from [8, Equation (3.15)], and (29) follows by integrating ω out of
(28). The variance of the spatial increments at any fixed time t0 is given by

E((c(t0, x + z)− c(t0, x))
2) = (2π)d/2

∫ ∞

0

(
2(2−d)/2

�( 1
2d)

− J(d−2)/2(r|z|)
(r|z|)(d−2)/2

)
ft0(r)r

d−1 dr,
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where Jκ(s) is the Bessel function of order κ . Application of the dominated convergence
theorem yields

lim|z|→0

E((c(t0, x + z)− c(t0, x))
2)

|z|(α+γ )(2−1/β)−d

= (2π)(d−2)/2
(∫ ∞

0

(
2(d−2)/2

�( 1
2d)

− J(d−2)/2(r)

r(d−2)/2

)
rd−(α+γ )(2−1/β)−1 dr

)

×
(∫

R

du

|u|2β + 2 cos( 1
2πβ)|u|β + 1

)
.

Remark 8. The solution of (5) under random initial conditions will simply be the sum of (27)
and the solution to the Cauchy problem without forcing noise, given in [3].

Remark 9. Other than with a brief comment in their Remark 3.3, Angulo et al. [2] did
not investigate the decay of the asymptotic temporal covariance function in the case of an
unbounded spatial domain. It can be seen that the covariance function decays more slowly
than an exponential function and, if d/γ < 2, that the temporal process will exhibit long-range
dependence. From [2, Proposition 3.3], it follows that the asymptotic temporal covariance
function is given by

Rx(τ) =
∫

Rd

exp{−|τ ||λ|γ (1 + |λ|2)α/2}
2|λ|γ (1 + |λ|2)α/2 dλ.

A change to spherical coordinates yields

Rx(τ) = Sd

∫ ∞

0

exp{−|τ |ργ (1 + ρ2)α/2}
ργ (1 + ρ2)α/2

ρd−1 dρ,

where Sd is a constant resulting from the integration over the angular spherical coordinates.
Making the change of variable u = |τ |ργ , we have

Rx(τ) = Sd

∫ ∞

0

exp{−u(1 + u2/|τ |2)α/2}
γ (1 + u2/|τ |2)α/2 ud/γ−2|τ |1−d/γ du.

From the dominated convergence theorem,

lim|τ |→∞ |τ |d/γ−1Rx(τ) = Sd

γ
�

(
d

γ
− 1

)
.

Thus, we have temporal long-range dependence governed by the spatial dimension and the
exponent γ . We also recall that, in the bounded domain case, the temporal covariance decayed
exponentially fast, which is another important difference between the bounded and unbounded
domain cases. This is also important in view of the fact that we have started with an infinite-
dimensional Ornstein–Uhlenbeck process and have shown that, for a fixed point in space, the
solution exhibits long-range dependence.
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Proposition 5. Let c(t, x) be the asymptotic stationary solution given in Proposition 4. For
a fixed spatial location x0 ∈ R

d , the spectral density of c(x0, t) satisfies the following limits
at |ω| = 0, depending on the value of d/γ :

lim|ω|→0
|ω|β(2−d/γ )fx0(ω) = Sd

2π

∫ ∞

0
(1 + 2 cos( 1

2πβ)u
γ + u2γ )−1ud−1 du,

(2 − 1/β)γ < d < 2γ ;
lim|ω|→0

fx0(ω)

ln |ω| = − Sdβ

2πγ
, d = 2γ ;

lim|ω|→0

fx0(0)− fx0(ω)

|ω|β(d/γ−2)
= Sd

2π

∫ ∞

0

2 cos( 1
2πβ)u

d−1−γ + ud−1−2γ

1 + 2 cos( 1
2πβ)u

γ + u2γ
du, 2γ < d < 3γ ;

lim|ω|→0

fx0(0)− fx0(ω)

|ω|β ln |ω| = −Sdβ cos( 1
2βπ)

πγ
, d = 3γ ;

lim|ω|→0

fx0(0)− fx0(ω)

|ω|β = Sd cos( 1
2πβ)

π

∫ ∞

0

ud−1−3γ

(1 + u2)3α/2
du, d > 3γ.

Proof. Using the change to spherical coordinates, the asymptotic temporal spectral density
of c(x0, t) is given by

fx0(ω) = Sd

2π

∫ ∞

0

ρd−1 dρ

|ω|2β + 2 cos( 1
2πβ)|ω|β(1 + ρ2)α/2ργ + (1 + ρ2)αρ2γ

.

Applying the change of variable u = ρ|ω|−β/γ gives

fx0(ω) = Sd

2π
|ω|β(d/γ−2)

∫ ∞

0

ud−1 du

1 + 2 cos( 1
2πβ)(1 + ω2β/γ u2)α/2uγ + (1 + ω2β/γ u2)αu2γ

.

(30)
If 2γ > d then we may apply the dominated convergence theorem to the integral to conclude

that

lim|ω|→0

fx0(ω)

|ω|β(d/γ−2)
= Sd

2π

∫ ∞

0
(1 + 2 cos( 1

2πβ)u
γ + u2γ )−1ud−1 du.

For 2γ = d , we split the domain of integration of (30) into (0, 1] and (1,∞). The integral
over the first interval is finite for all ω. The integral over the second interval is equal to∫ ∞

1
u−1(1 + ω2β/γ u2)−α du (31)

−
∫ ∞

1

u−1(1 + ω2β/γ u2)−α(1 + 2 cos( 1
2πβ)(1 + ω2β/γ u2)α/2uγ ) du

1 + 2 cos( 1
2πβ)(1 + ω2β/γ u2)α/2uγ + (1 + ω2β/γ u2)αu2γ

. (32)

The integral (32) remains finite as |ω| → 0. Applying the change of variable v = ωβ/γ u to the
integral (31) gives ∫ ∞

ωβ/γ
v−1(1 + v2)−α dv = −β

γ
ln |ω| +O(1)

and, so, the proposition holds for d = 2γ .
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When 3γ > d > 2γ , we may write

fx0(ω) = fx0(0)

+ Sd

2π

∫ ∞

0

{
1

|ω|2β + 2 cos( 1
2πβ)|ω|β(1 + ρ2)α/2ργ + (1 + ρ2)αρ2γ

− 1

(1 + ρ2)αρ2γ

}
ρd−1 dρ

= fx0(0)

− Sd

2π

∫ ∞

0

2 cos( 1
2πβ)|ω|βρd−1 dρ

(|ω|2β + 2 cos( 1
2πβ)|ω|β(1 + ρ2)α/2ργ +(1 + ρ2)αρ2γ )(1 + ρ2)α/2ργ

(33)

− Sd

2π

∫ ∞

0

|ω|2βρd−1 dρ

(|ω|2β + 2 cos( 1
2πβ)|ω|β(1 + ρ2)α/2ργ +(1 + ρ2)αρ2γ )(1 + ρ2)αρ2γ

.

(34)

Making the change of variable u = ρ|ω|−β/γ and applying the dominated convergence
theorem, we have

lim|ω|→0

fx0(0)− fx0(ω)

|ω|β(d/γ−2)
= Sd cos( 1

2πβ)

π

∫ ∞

0

ud−1−γ du

1 + 2 cos( 1
2πβ)u

γ + u2γ

+ Sd

2π

∫ ∞

0

ud−1−2γ du

1 + 2 cos( 1
2πβ)u

γ + u2γ
.

Now, for d = 3γ , we see that

lim|ω|→0

|ω|−β
ln |ω|

∫ ∞

0

|ω|βρd−1(1 + ρ2)−α/2ρ−γ dρ

|ω|2β + 2 cos( 1
2πβ)|ω|β(1 + ρ2)α/2ργ + (1 + ρ2)αρ2γ

= −β
γ
,

using the same approach as for d = 2γ . The integral (34) remains bounded by c|ω|2β as
|ω| → 0, which can be seen from a change of variable and application of the dominated
convergence theorem.

Finally, when d > 3γ we apply the dominated convergence theorem directly to the integral
(33), to find that∫ ∞

0

ρd−1 dρ

(|ω|2β + 2 cos( 1
2πβ)|ω|β(1 + ρ2)α/2ργ + (1 + ρ2)αρ2γ )(1 + ρ2)α/2ργ

→
∫ ∞

0

ρd−3γ−1 dρ

(1 + ρ2)3α/2

as |ω| → 0, provided that d > 3γ and d < 3(α + γ ). The latter inequality is automatically
satisfied whenever a solution exists (see Proposition 4). For the integral (34), we note that∫ ∞

0

|ω|2βρd−1 dρ

(|ω|2β + 2 cos( 1
2πβ)|ω|β(1 + ρ2)α/2ργ + (1 + ρ2)αρ2γ )(1 + ρ2)αρ2γ

= |ω|β
∫ ∞

0

ρd−1 dρ

(|ω|β + 2 cos( 1
2πβ)(1 + ρ2)α/2ργ + |ω|−β(1 + ρ2)αρ2γ )(1 + ρ2)αρ2γ

.
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This integrand is positive, and bounded for all |ω| by

ρd−3γ−1

2 cos( 1
2πβ)(1 + ρ2)3α/2

.

Hence, applying the dominated convergence theorem, we conclude that the proposition holds
for d > 3γ .

Remark 10. From Remark 9 it is clear that, when β = 1, the temporal covariance function is
a mixture of exponentials and, hence, completely monotone. It is also completely monotone in
the case of β < 1. The temporal covariance function is given by

c(τ ) =
∫

Rd

∫ ∞

0
G(1+|λ|2)α/2|λ|γ (τ + s)G(1+|λ|2)α/2|λ|γ (s) ds dλ.

From Section 4 of [6], in spherical coordinates we have

c(τ ) = Sd

π

×
∫ ∞

0

∫ ∞

0

sin(πβ)e−|τ |ωωβρd−1 dω dρ

(ωβ + ργ (1 + ρ2)α/2)(ω2β +2 cos( 1
2πβ)ω

βργ (1 + ρ2)α/2ρ2γ (1 + ρ2)α)

=:
∫ ∞

0
e−|τ |ωσ(ω) dω.

The asymptotic behaviour of c(τ ) as |τ | → ∞ is determined by the asymptotic behaviour of
σ(ω) as ω → 0. An analysis similar to that in Proposition 5 yields

lim
ω→0

ωβ(2−d/γ )σ (ω) =
∫ ∞

0

Sd sin(πβ)ud−1 du

π(1 + uγ )(1 + 2 cos( 1
2πβ)u

γ + u2γ )
,

(2 − 1/β)γ < d < 3γ ;
lim
ω→0

σ(ω)

ωβ lnω
= −Sdβ sin(πβ)

πγ
, d = 3γ ;

lim
ω→0

σ(ω)

ωβ
=

∫ ∞

0

Sd sin(πβ)ρd−3γ−1 dρ

π(1 + ρ2)3α/2
, d > 3γ.

Hence, the covariance function satisfies the following limits:

lim|τ |→∞ c(τ )|τ |
1+β(d/γ−2) =

∫ ∞

0

Sd sin(πβ)�(1 + β(d/γ − 2))ud−1 du

π(1 + uγ )(1 + 2 cos( 1
2πβ)u

γ + u2γ )
,

(2 − 1/β)γ < d < 3γ ;

lim|τ |→∞
c(τ )|τ |1+β

ln |τ | = Sd sin(πβ)β�(β + 1)

πγ
, d = 3γ ;

lim|τ |→∞ c(τ )|τ |
1+β =

∫ ∞

0

Sd sin(πβ)�(β + 1)ρd−3γ−1 dρ

π(1 + ρ2)3α/2
, d > 3γ.
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Proposition 6. The asymptotic variance σ 2
x (τ ) of the time increments of the solution c(t, x)

given in Proposition 4 satisfies

lim|τ |→0

σ 2
x (τ )

|τ |2β−1−βd/(α+γ )

= Sd

2π

∫
R

|eiu − 1|2 |u|β(d/(α+γ )−2) du
∫ ∞

0

vd−1 dv

1 + 2 cos( 1
2πβ)v

α+γ + v2(α+γ ) ,

for (2β − 1)(α + γ ) > βd .

Proof. We have

σ 2
x (τ ) = Sd

2π

∫
R

|eiτω − 1|2
∫ ∞

0

ρd−1 dρ dω

|ω|2β + 2 cos( 1
2πβ)|ω|β(1 + ρ2)α/2ργ + (1 + ρ2)αρ2γ

.

Applying the changes of variable u = |τ |ω and v = |τ |β/(α+γ )ρ, we obtain

σ 2
x (τ ) = Sd

2π

∫
R

|eiu − 1|2

×
∫ ∞

0

|τ |2β−1−dβ/(α+γ )vd−1 dv du

|u|2β + 2 cos( 1
2πβ)|u|β(|τ |2β/(α+γ ) + v2)α/2vγ + (|τ |2β/(α+γ ) + v2)αv2γ

and, from the dominated convergence theorem,

lim|τ |→0
|τ |2β−1−dβ/(α+γ )σ 2

x (τ ) = Sd

2π

∫
R

|eiu−1|2
∫ ∞

0

vd−1 dv du

|u|2β + 2 cos( 1
2πβ)|u|βvα+γ + v2(α+γ ) .

A final change of variable v = wuβ/(α+γ ) then completes the proof.

3.3. General fractional-in-time operators

In the previous two subsections, the extension of the results of [2] depends mainly on finding
bounds on the integral of the squared Green function of the fractional differential equation (16),
in terms of λ. If we were to replace the fractional-in-time derivative of (5) with the more general
linear fractional-in-time operator

An
∂βn

∂tβn
+ · · · + A1

∂β1

∂tβ1
, 0 < β1 < · · · < βn ≤ 1,

then we would have to bound the integral of the squared Green function of the fractional
differential equation

An
∂βn

∂tβn
f (t)+ · · · + A1

∂β1

∂tβ1
f (t)+ λf (t) = δ(t). (35)

The Green function of (35) has a series representation in terms of the two-parameter Mittag-
Leffler function and its derivatives (see [42]). Following [8], we note that the integral over
[0,∞) of the squared Green function is given by

∫
R

( n∑
j=0

n∑
k=0

AjAk|ω|βj+βk cos( 1
2π(βj − βk))

)−1

dω, (36)
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where A0 = λ and β0 = 0. Clearly, it is necessary to have βn > 1
2 for (36) to be finite. Indeed,

by a simple change of variable u = ωλ−1/βn we see that (36) equals

λ1/βn−2
∫

R

( n∑
j=0

n∑
k=0

AjAkλ
(βj+βk)/βn−2|u|βj+βk cos( 1

2π(βj − βk))

)−1

du. (37)

This is clearly finite for λ finite while, if we let λ → ∞, the integral in (37) converges to∫
R

(|u|2βn + 2 cos( 1
2πβn)|u|βn + 1)−1 du.

Hence, for the bounded rectangular domain case, Propositions 1 and 2, and (24) of Proposition 3,
hold with β being replaced by βn. In (23), the asymptotic, stationary temporal spectral density
is given by

fx(ω) =
∑
k∈N

d+

φ2
k (x)

(∑
i

∑
j

AiAj |ω|βi+βj cos( 1
2π(βi − βj ))

)−1

,

where A0 = λk and β0 = 0. Also, we note that Remark 3 still holds for βn ≤ 1. To see this, it
is necessary to replace Theorem 1.3-5 of [19] with Theorem 1 of [6]. The role of β in (26) is
now taken by β1.

In the case of the unbounded spatial domain R
d , for the existence of a solution it will be

sufficient to require that
(2βn − 1)(α + γ ) > βnd.

This condition is derived from an argument similar to that in the proof of Proposition 4, using
(36). For the solution to be asymptotically stationary, it is sufficient to impose the additional
condition that γ (2β1−1) < β1d , as can be seen by applying the change of variableu = ωλ−1/β1

to (35). The spectral density function of the stationary solution is then given by

( n∑
j=0

n∑
k=0

AjAk|ω|βj+βk cos( 1
2π(βj − βk))

)−1

,

where A0 = (1 + |λ|2)α/2|λ|γ and β0 = 0. We note that (29) no longer holds under this more
general model. For a fixed spatial location, the temporal covariance function is completely
monotone by Theorem 1 of [6] and the arguments of Remark 9. The temporal covariance
function satisfies Propositions 5 and 6 with β being replaced by β1 and βn in the respective
propositions.

4. Non-Gaussian random fields

In this section, we consider equation (5) driven by infinitely divisible noise. We first recall
some properties of these measures from [43]. Let S be an arbitrary nonempty set and S a σ -ring
of subsets of S with the property that there exists an increasing sequence {An} of sets in S with⋃
n An = S. Let {�(A) : A ∈ S} be a real stochastic process defined on some probability

space (�,F ,P). We call� an independently scattered random measure if, for every sequence
{An} of disjoint sets in S, the random variables �(An), n = 1, 2, . . . , are independent, and if
�(

⋃
n An) = ∑

n �(An) almost surely, with
⋃
n An ∈ S. If �(A) is infinitely divisible, then
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� is called an infinitely divisible, independently scattered random measure. The characteristic
function of an infinitely divisible random measure �(A) can be written in the Lévy form as

φ̂(�(A))(t) = exp

[
itv0(A)− 1

2 t
2v1(A)+

∫
R

(eitx − 1 − itτ (x))FA(dx)

]
,

where v0 is a signed measure, v1 is a measure, and FA is a Lévy measure for all A ∈ S. Here,
τ(x) is the centring function

τ(x) =
{
x if |x| ≤ 1,

x/|x| if |x| > 1.

We will only be interested in the case where v0, v1, and FA depend on A through its measure
µ(A).

The stochastic integral of a deterministic function, with respect to�, has the usual construc-
tion, i.e. beginning with a sequence of simple functions fn → f,µ almost everywhere, the
integral is defined as the limit in probability of

∫
fn d�. Conditions on f for the limit to exist

are detailed in [43]. We will assume, in this section, that E|�(A)|p < ∞ for some p > 2.
Hence, the integral can be interpreted as the limit in the mean-square sense, and a sufficient
condition on f for the integral to exist is f ∈ L2.

From the definition of the stochastic integral, a generalized random function, which we will
call infinitely divisible noise, can be defined. In fact, let ε now be the generalized random
function defined by

ε = (f, ε) =
∫∫

f (t, x) d�(t, x)

for f ∈ C∞
0 (R

d+1). As in the Gaussian case, ε is a mean-square continuous linear function
with respect to the L2-norm over C∞

0 (R
d+1) and, following [44], we may treat it as a random

Schwartz distribution. Formally, ε is identified with the derivative of the infinitely divisible,
independently scattered random measure and is called infinitely divisible noise.

Assuming finite second-order moments, the conditions for the existence of a solution to (5)
driven by an infinitely divisible noise are given in Proposition 4. The solution can then be
written as

c(t, x) =
∫ t

0

∫
Rd
G(t − s, x − y) d�(s, y),

where G(t, x) is the usual Green function. For c(t, x) to have finite pth-order moments, it is
sufficient that� have finite pth-order moments and thatG(t, x) ∈ Lp. The following theorem
gives the sufficient conditions on the Green function.

Proposition 7. The Green function of (5) on R
d is in Lp([0, T ] × R

d) provided that
(qβ − 1)(α + γ ) > βd , where 1/p + 1/q = 1.

Proof. The Green function is given by the inversion of the Fourier transform, i.e.

G(t, x) =
∫

Rd
e−i〈λ,x〉tβ−1Eβ,β(−(1 + |λ|2)α/2|λ|γ tβ) dλ,

which is the Fourier transform of

tβ−1Eβ,β(−(1 + |λ|2)α/2|λ|γ tβ).
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Assuming that p ≥ 2, we have∫ T

0

∫
Rd

|G(t, x)|p dx dt =
∫ T

0

∫
Rd

∣∣∣∣
∫

Rd
ei〈λ,x〉tβ−1Eβ,β(−|λ|γ (1 + |λ|2)α/2tβ) dλ

∣∣∣∣
p

dx dt.

By the Hausdorff–Young inequality, if q is such that 1/q + 1/p = 1, then∫ T

0

∫
Rd

|G(t, x)|p dx dt

≤
∫ T

0
c

(∫
Rd

|tβ−1Eβ,β(−|λ|γ (1 + |λ|2)α/2tβ)|q dλ

)p/q
dt

= c

∫ T

0
tp(β−1)−dβp/q(α+γ )

(∫
Rd

|Eβ,β(−|ω|γ (t2β/(α+γ ) + |ω|2)α/2)|q dω

)p/q
dt

≤ c

∫ T

0
tp(β−1)−dβp/q(α+γ ) dt

(∫
Rd

|Eβ,β(−|ω|γ+α)|q dω

)p/q
.

These integrals are finite if 2q(α + γ ) > d and (p(β − 1) + 1)q(α + γ ) > pβd. The first
inequality is automatically satisfied if G(t, x) is in L2, while the second inequality can be
simplified to that contained in the statement of the proposition.

As we are interested in the asymptotic stationary solution of (5), we will need the Green
function to be in Lp(R+ × R

d). It follows from Propositions 4 and 7 that this will be the
case if the conditions of these propositions are satisfied. Assume that these conditions are
satisfied and that E�(A) = 0, this latter condition being necessary for processes displaying
long-range dependence. Let κ = E(�3(A))/µ(A). As �(A) is an independently scattered
random measure, the third-order moments of the stationary solution are given by

γ3(s1, s2, x1, x2) = κ

∫ ∞

0

∫
Rd
G(s1 + u, x1 + y)G(s2 + u, x2 + y)G(u, y) du dy. (38)

The integral (38) is finite under the assumptions of Proposition 7. The bispectrum is determined
by

f (λ1, λ2, ω1, ω2)

= 1

(2π)2d+2

∫
Rd+1

exp{−i(λ1s1 + λ2s2 + ω1x1 + ω2x2)}γ3(s1, s2, x1, x2) ds1 ds2 dx1 dx2.

(39)

By interchanging the order of integration in (38) and (39), the bispectrum is then given by

f (ω1, ω2, λ1, λ2) = κ

(2π)2
Ĝ(ω1, λ1)Ĝ(ω2, λ2)Ĝ(−ω1 − ω2,−λ1 − λ2),

where
Ĝ(ω, λ) = ((iω)β + |λ|γ (1 + |λ|2)α)−1.

Similarly, the higher-order cumulant spectra are given by

f (ω1, . . . , ωp, λ1, . . . , λp) = κp+1

(2π)p
Ĝ(−ω1 − · · · − ωp,−λ1 − · · · − λp)

p∏
i=1

Ĝ(ωi, λi),
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where κp, p ∈ N, is the pth-order cumulant, determined as

κp = i−p dp log φ̂(�(A))(t)

dtp

∣∣∣∣
t=0

× µ(A)−1.

It would be of interest to investigate the long-time behaviour of higher-order moments and
their dependence on the spatial and temporal operators. We leave this problem to future research.
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