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Representing a Product System
Representation as a Contractive Semigroup
and Applications to Regular Isometric
Dilations

Orr Moshe Shalit

Abstract. In this paper we propose a new technical tool for analyzing representations of Hilbert C∗-

product systems. Using this tool, we give a new proof that every doubly commuting representation

over Nk has a regular isometric dilation, and we also prove sufficient conditions for the existence of a

regular isometric dilation of representations over more general subsemigroups of Rk
+.

1 Introduction, Preliminaries, and Notation

1.1 Background, Correspondences, Product Systems, and Representations

In the following paragraphs we review the definitions of our main objects of study.
The reader familiar with C∗-correspondences, product systems of correspondences,
and representations of product systems, may skip ahead to Subsection 1.2.

Definition 1.1 Let A be a C∗ algebra. A Hilbert C∗-correspondence over A is a (right)
Hilbert A-module E that carries an adjointable left action of A.

The following notion of representation of a C∗-correspondence was studied ex-
tensively in [4] and turned out to be a very useful tool.

Definition 1.2 Let E be a C∗-correspondence over A, and let H be a Hilbert space.
A pair (σ, T) is called a completely contractive covariant representation of E on H (or,
for brevity, a c.c. representation) if the following hold:

(i) T : E → B(H) is a completely contractive linear map;
(ii) σ : A → B(H) is a nondegenerate ∗-homomorphism, and
(iii) T(xa) = T(x)σ(a) and T(a · x) = σ(a)T(x) for all x ∈ E and all a ∈ A.

Given a C∗-correspondence E and a c.c. representation (σ, T) of E on H, one can
form the Hilbert space E ⊗σ H, which is defined as the Hausdorff completion of the
algebraic tensor product with respect to the inner product

〈x ⊗ h, y ⊗ g〉 = 〈h, σ(〈x, y〉)g〉.
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One then defines T̃ : E ⊗σ H → H by T̃(x ⊗ h) = T(x)h.

Definition 1.3 A c.c. representation (T, σ) is called isometric if for all x, y ∈ E,

T(x)∗T(y) = σ(〈x, y〉).

(This is the case if and only if T̃ is an isometry.) It is called fully coisometric if T̃ is a
coisometry.

Given two Hilbert C∗-correspondences E and F over A, the balanced (or inner)
tensor product E⊗A F is a Hilbert C∗-correspondence over A defined to be the Haus-
dorff completion of the algebraic tensor product with respect to the inner product

〈x ⊗ y, w ⊗ z〉 = 〈y, 〈x, w〉 · z〉, x, w ∈ E, y, z ∈ F.

The left and right actions are defined as a·(x⊗y) = (a·x)⊗y and (x⊗y)a = x⊗(ya),
respectively, for all a ∈ A, x ∈ E, y ∈ F. We will usually omit the subscript A, writing
just E ⊗ F.

Suppose S is an abelian cancellative semigroup with identity 0, and p : X → S is a
family of C∗-correspondences over A. Write X(s) for the correspondence p−1(s) for
s ∈ S. We say that X is a (discrete) product system1 over S if X is a semigroup, p is
a semigroup homomorphism and, for each s, t ∈ S \ {0}, the map X(s) × X(t) ∋
(x, y) 7→ xy ∈ X(s + t) extends to an isomorphism Us,t of correspondences from
X(s) ⊗A X(t) onto X(s + t). The associativity of the multiplication means that, for
every s, t, r ∈ S,

Us+t,r(Us,t ⊗ IX(r)) = Us,t+r(IX(s) ⊗Ut,r).

We also require that X(0) = A and that the multiplications X(0) × X(s) → X(s) and
X(s) × X(0) → X(s) are given by the left and right actions of A and X(s).

Definition 1.4 Let H be a Hilbert space, A a C∗-algebra and X a product system of
Hilbert A-correspondences over the semigroup S. Assume that T : X → B(H) and
write Ts for the restriction of T to X(s), s ∈ S, and σ for T0. T (or (σ, T)) is said to
be a completely contractive covariant representation of X if

(i) For each s ∈ S, (σ, Ts) is a c.c. representation of X(s), and
(ii) T(xy) = T(x)T(y) for all x, y ∈ X.

T is said to be an isometric (fully coisometric) representation if it is an isometric
(fully coisometric) representation on every fiber X(s).

Since we will not be concerned with any other kind of representation, we will
call a completely contractive covariant representation of a product system simply a
representation.

1Product systems of Hilbert spaces over R+ were introduced by Arveson, and the best reference for
such product systems is probably [1]. For product systems of Hilbert C∗-correspondences over R+, see
the survey by Skeide [8]. Product systems over other semigroups were first studied by Fowler [3].
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1.2 What This Paper is About

In many ways, representations of product systems are analogous to semigroups of
contractions on Hilbert spaces. For example, when A = C and E is the trivial product
system C × [0,∞), then {Tt (1)}t≥0 is a contractive semigroup. Many proofs of re-
sults concerning representations are based on the ideas of the proofs of the analogous
results concerning contractions on a Hilbert space, with the appropriate, sometimes
highly nontrivial, modifications made. For example, the proof given in [5] that every
representation has an isometric dilation uses some methods from the classical proof
that every contraction on a Hilbert space has an isometric dilation.

The point of view we adopt in this paper is that one may try to exploit the re-

sults rather than the methods of the theory of contractive semigroups on a Hilbert
space when attacking problems concerning representations of product systems. In
other words, we wish to find a systematic way to reduce (problems concerning) a rep-
resentation of a product system to (analagous problems concerning) a semigroup of

contractions on a Hilbert space. This paper contains a first step in this direction. In
Section 2, given a product system X over a semigroup S and representation (σ, T) of
X on a Hilbert space H, we construct a Hilbert space H and a contractive semigroup
T̂ = {T̂s}s∈S on H such that T̂ contains all the information regarding the repre-
sentation. In Section 3, we show that if T̂ has a regular isometric dilation, then so
does T.

In Section 4, we prove that doubly commuting representations of product systems
of Hilbert correspondences over certain subsemigroups of Rk

+ have doubly commut-
ing, regular isometric dilations. This was proved in [9] for the case S = Nk. Our
proof is based on the construction made in Section 2.

This is a good point at which to remark that our approach has some limitations.
For example, the construction introduced in Section 2 does not seem to be canonical
in any nice way, and we cannot obtain all of the results in [9]. We will illustrate these
limitations in Section 5 after proving another sufficient condition for the existence
of a regular isometric dilation. One might wonder, indeed, how far can one get by
trying to reduce representations of product systems to semigroups of operators on a
Hilbert space, as the former are certainly “much more complicated”. In this context,
let us just mention that in another paper ([7]), we have shown how we can obtain by
these methods another result that has not yet been proved by other means, namely
the existence of an isometric dilation to a fully-coisometric representation of product
systems over (a subsemigroup of) Rk

+.

1.3 Notation

A commensurable semigroup is a semigroup Σ such that for every N elements
s1, . . . , sN ∈ Σ, there exist s0 ∈ Σ and a1, . . . , aN ∈ N such that si = ais0 for all
i = 1, . . . N. For example, N is a commensurable semigroup. If r ∈ R+, then r · Q+ is
commensurable, and any commensurable subsemigroup of R+ is contained in such
a semigroup.

Throughout this paper, Ω will denote some fixed set, and S will denote the semi-
group S =

∑

i∈Ω
Si , where Si is a commensurable and unital (i.e., contains 0) sub-
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semigroup of R+. To be more precise, S is the subsemigroup of RΩ
+ consisting of

finitely supported functions s such that s( j) ∈ S j for all j ∈ Ω. Still another way to
describe S is the following:

S =
{

∑

j∈Ω

e j(s j) : s j ∈ S j , all but finitely many s j ’s are 0
}

,

where ei is the inclusion of Si into
∏

j∈Ω
S j . Here is a good example to keep in mind:

if |Ω| = k ∈ N, and if Si = N for all i ∈ Ω, then S = Nk. We denote by S − S

the subgroup of RΩ generated by S (with addition and subtraction defined in the
obvious way). For s ∈ S − S we shall denote by s+ the element in S that sends j ∈ Ω

to max{0, s( j)}, and s− = s+ − s. It is worth noting that if s ∈ S − S, then s+ and s−
are both in S.

S becomes a partially ordered set if one introduces the relation

s ≤ t ⇐⇒ s( j) ≤ t( j), j ∈ Ω.

The symbols <, ¤, etc., are to be interpreted in the obvious way.
If u = {u1, . . . , uN} ⊆ Ω, we let |u| denote the number of elements in u (this

notation will only be used for finite sets). We shall denote by e[u] the element of RΩ

having 1 in the ith place for every i ∈ u, and having 0’s elsewhere, and we denote
s[u] := e[u] · s, where multiplication is pointwise.

2 Representing Representations as Contractive Semigroups on a
Hilbert Space

In this section, we can replace S by any abelian cancellative semigroup with identity
0 and an appropriate partial ordering (for example, S can be taken to be Rk

+).
Let A be a C∗-algebra, and let X be a discrete product system of C∗-correspon-

dences over S. Let (σ, T) be a completely contractive covariant representation of X

on the Hilbert space H. Our assumptions do not imply that X(0) ⊗ H ∼= H. This
unfortunate fact will not cause any real trouble, but it will make our exposition a little
clumsy.

Define H0 to be the space of all finitely supported functions f on S such that for
all 0 6= s ∈ S, f (s) ∈ X(s)⊗σ H and such that f (0) ∈ H. We equip H0 with the inner
product 〈δs · ξ, δt · η〉 = δs,t〈ξ, η〉, for all s, t ∈ S− {0}, ξ ∈ X(s) ⊗ H, η ∈ X(t) ⊗ H

(where the δ’s on the left-hand side are Dirac deltas, the δ on the right-hand side is
Kronecker’s delta). If s or t is 0, then the inner product is defined similarly. Let H be
the completion of H0 with respect to this inner product. Note that

H ∼= H ⊕ (
⊕

0 6=s∈S

X(s) ⊗ H).

We define a family T̂ = {T̂s}s∈S of operators on H0 as follows. First, we define T̂0

to be the identity. Now assume that s > 0. If t ∈ S and t ¤ s, then we define
T̂s(δt · ξ) = 0 for all ξ ∈ X(t) ⊗σ H (or all ξ ∈ H, if t = 0). If ξ ∈ X(s) ⊗σ H, we
define T̂s(δs · ξ) = δ0 · T̃sξ. Finally, if t > s > 0, we define

(2.1) T̂s(δt · (xt−s ⊗ xs ⊗ h)) = δt−s · (xt−s ⊗ T̃s(xs ⊗ h)).
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Since T̃s is a contraction, T̂s extends uniquely to a contraction in B(H).
Let us stop to explain what we mean by equation (2.1). There are isomorphisms

of correspondences Ut−s,s : X(t − s) ⊗ X(s) → X(t). Denote their inverses by U−1
t−s,s.

When we write xt−s ⊗ xs for an element of X(t), we actually mean the image of this
element by Ut−s,s, and equation (2.1) should be read as

T̂s(δt · (Ut−s,s(xt−s ⊗ xs) ⊗ h)) = δt−s · (xt−s ⊗ T̃s(xs ⊗ h)),

or
T̂s(δt · (ξ ⊗ h)) = δt−s · ((I ⊗ T̃s)(U−1

t−s,sξ ⊗ h)).

This shows that T̂ is well defined.
We now show that T̂ is a semigroup. Let s, t, u ∈ S. If either s = 0 or t = 0, then

it is clear that the semigroup property T̂sT̂t = T̂s+t holds. Assume that s, t > 0. If
u ¤ s + t , then both T̂sT̂t and T̂s+t annihilate δu · ξ, for all ξ ∈ X(u)⊗H. Otherwise,2

T̂sT̂t (δu(xu−s−t ⊗ xs ⊗ xt ⊗ h)) = T̂s(δu−t (xu−s−t ⊗ xs ⊗ T̃t (xt ⊗ h)))

= δu−s−t (xu−s−t ⊗ T̃s(xs ⊗ T̃t (xt ⊗ h)))

= δu−s−t (xu−s−t ⊗ T̃s(I ⊗ T̃t )(xs ⊗ xt ⊗ h))

= δu−s−t (xu−s−t ⊗ T̃s+t (xs ⊗ xt ⊗ h))

= T̂s+t (δu(xu−s−t ⊗ (xs ⊗ xt ) ⊗ h)).

We summarize the construction in the following proposition.

Proposition 2.1 Let A, X, and S and (σ, T) be as above, and let

H = H ⊕
(

⊕

0 6=s∈S

X(s) ⊗σ H
)

.

There exists a contractive semigroup T̂ = {T̂s}s∈S on H such that for all 0 6= s ∈ S,

x ∈ X(s) and h ∈ H, T̂s(δs · x ⊗ h) = Ts(x)h. If (σ, S) is another representation of X,

and if Ŝ is the corresponding contractive semigroup, then T̂ = Ŝ ⇒ T = S.

One immediately sees a limitation in this construction. We cannot say that T̂ is
unique, or, equivalently, that T̂ = Ŝ ⇔ T = S.

3 Regular Isometric Dilations of Product System Representations

Let H be a Hilbert space, and let T = {Ts}s∈S be a semigroup of contractions over S.
A semigroup V = {Vs}s∈S on a Hilbert space K ⊇ H is said to be a regular dilation

of T if for all s ∈ S − S,
PHV ∗

s
−

Vs+
|H= T∗

s
−

Ts+
.

2Strictly speaking, this only takes care of the case u > s + t , but the case u = s + t is handled in a
similar manner. This annoying issue will come up again and again throughout the paper. Assuming that
σ is unital, X(0) ⊗ H ∼= H, and one does not have to separate the reasoning for the X(s) ⊗ H blocks and
the H blocks.
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Here and henceforth, PH will denote the orthogonal projection from K onto H. V is
said to be an isometric dilation if it consists of isometries. An isometric dilation V is
said to be a minimal isometric dilation if

K =
∨

s∈S

VsH.

In [6], we collected various results concerning isometric dilations of semigroups, all
of them direct consequences of [10, Sections I.7 and I.9].

The notion of regular isometric dilations can be naturally extended to representa-
tions of product systems.

Definition 3.1 Let X be a product system over S, and let (σ, T) be a representation
of X on a Hilbert space H. An isometric representation (ρ,V ) on a Hilbert space
K ⊇ H is said to be a regular isometric dilation if for all a ∈ A = X(0), H reduces
ρ(a) and ρ(a) |H= σ(a), and for all s ∈ S − S,

PX(s
−

)⊗HṼ ∗
s
−

Ṽs+
|X(s+)⊗H= T̃∗

s
−

T̃s+
.

Here, PX(s
−

)⊗H denotes the orthogonal projection of X(s−) ⊗ρ K onto X(s−) ⊗ρ H.
(ρ,V ) is said to be a minimal dilation if

K =
∨

{V (x)h : x ∈ X, h ∈ H}.

In [9], Solel studied regular isometric dilation of product system representations
over Nk and proved some necessary and sufficient conditions for the existence of a
regular isometric dilation. One of our aims in this paper is to show how the con-
struction of Proposition 2.1 can be used to generalize some of the results in [9]. The
following proposition is the main tool.

Proposition 3.2 Let A be a C∗-algebra, let X = {X(s)}s∈S be a product system of

A-correspondences over S, and let (σ, T) be a representation of X on a Hilbert space H.

Let T̂ and H be as in Proposition 2.1. Assume that T̂ has a regular isometric dilation.

Then there exists a Hilbert space K ⊇ H and an isometric representation V of X on K,

such that

(i) PH commutes with V0(A), and V0(a)PH = σ(a)PH , for all a ∈ A;

(ii) PX(s
−

)⊗HṼ ∗
s
−

Ṽs+

∣

∣

X(s+)⊗H
= T̃∗

s
−

T̃s+
for all s ∈ S − S;

(iii) K =
∨

{V (x)h : x ∈ X, h ∈ H} ;

(iv) PHVs(x)
∣

∣

K⊖H
= 0 for all s ∈ S, x ∈ X(s).

That is, if T̂ has a regular isometric dilation, then so does T. If σ is nondegenerate and X

is essential (that is, AX(s) is dense in X(s) for all s ∈ S), then V0 is also nondegenerate.

Remark 3.3 The results also hold in the W ∗ setting, that is, if A is a W ∗-algebra, X

is a product system of W ∗-correspondences and σ is normal, then V0 is also normal.
For a proof, see [7, Theorem 5.2].
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Proof Construct H and T̂ as in the previous section.

Let V̂ = {V̂s}s∈S be a minimal, regular, isometric dilation of T̂ on some Hilbert
space K. Minimality means that

K =
∨

{V̂t (δs · (x ⊗ h)) : s, t ∈ S, x ∈ X(s), h ∈ H}.

Introduce the Hilbert space K,

K =
∨

{V̂s(δs · (x ⊗ h)) : s ∈ S, x ∈ X(s), h ∈ H}.

We consider H as embedded in K (or in H or in K) by the identification h ↔ δ0 ·h.
Next, we define a left action of A on H by a · (δs · x ⊗ h) = δs · ax ⊗ h, for all
a ∈ A, s ∈ S − {0}, x ∈ X(s) and h ∈ H, and

(3.1) a · (δ0 · h) = δ0 · σ(a)h, a ∈ A, h ∈ H.

By [2, Lemma 4.2], this extends to a bounded linear operator on H. Indeed, this
follows from the following inequality:

∥

∥

∥

n
∑

i=1

axi ⊗ hi

∥

∥

∥

2

=

n
∑

i, j=1

〈hi , σ(〈axi , ax j〉)h j〉

=
〈(

σ(〈axi , ax j〉)
)

(h1, . . . , hn)T , (h1, . . . , hn)T
〉

H(n)

(∗) ≤ ‖a‖2
〈(

σ(〈xi , x j〉)
)

(h1, . . . , hn)T , (h1, . . . , hn)T
〉

H(n)

= ‖a‖2
∥

∥

n
∑

i=1

xi ⊗ hi

∥

∥

2
.

The inequality (∗) follows from the complete positivity of σ and from (〈axi , ax j〉) ≤
‖a‖2(〈xi , x j〉), which is the content of the cited lemma.

In fact, this is a ∗-representation (and it is faithful if σ is). Indeed, it is clear that
this is a homomorphism of algebras. To see that it is a ∗-representation, it is enough
to take s ∈ S, x, y ∈ X(s) and h, k ∈ H and to compute

〈ax ⊗ h, y ⊗ k〉 = 〈h, σ(〈ax, y〉)k〉 = 〈h, σ(〈x, a∗y〉)k〉 = 〈x ⊗ h, a∗y ⊗ k〉

(recall that the left action of A on X(s) is adjointable). Note that this left action
commutes with T̂:

aT̂s(δt xt−s ⊗ xs ⊗ h) = δt−saxt−s ⊗ Ts(xs)h = T̂s(δt axt−s ⊗ xs ⊗ h),

or

aT̂s(δsxs ⊗ h) = δ0σ(a)Ts(xs)h = δ0Ts(axs)h = T̂s(δsaxs ⊗ h).
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We shall now define a representation V of X on K. We wish to define V0 by the
following rules:

V0(a)V̂s(δs · xs ⊗ h) = V̂s(δs · axs ⊗ h),

V0(a)(δ0 · h) = δ0 · σ(a)h.

To see that this extends to a bounded, linear operator on K, let
∑

t V̂t (δt ·xt ⊗ht ) ∈ K

(a finite sum), and compute

‖
∑

t

V̂t (δt · axt ⊗ ht )‖
2
=

∑

s,t

〈V̂s(δs · axs ⊗ hs), V̂t (δt · axt ⊗ ht )〉

=
∑

s,t

〈V̂ ∗
(s−t)

−

V̂(s−t)+
(δs · axs ⊗ hs), δt · axt ⊗ ht〉

(∗) =
∑

s,t

〈T̂∗
(s−t)

−

T̂(s−t)+
(δs · axs ⊗ hs), δt · axt ⊗ ht〉

=
∑

s,t

〈T̂∗
(s−t)

−

T̂(s−t)+
(δs · a∗axs ⊗ hs), δt · xt ⊗ ht〉

=
∑

s,t

〈V̂s(δs · a∗axs ⊗ hs), V̂t (δt · xt ⊗ ht )〉.

(The computation would have worked for finite sums including summands from H

also). Step (∗) is justified because V̂ is a regular dilation of T̂. This will be used
repeatedly. We conclude that if a ∈ A is unitary, then

∥

∥

∥

∑

t

V̂t (δt · axt ⊗ ht )
∥

∥

∥
=

∥

∥

∥

∑

t

V̂t (δt · xt ⊗ ht )
∥

∥

∥
.

For general a ∈ A, we may write a =
∑4

i=1 λiui , where ui is unitary and |λi | ≤ 2‖a‖.
Thus,
∥

∥

∥

∑

t

V̂t (δt · axt ⊗ ht )
∥

∥

∥
=

∥

∥

∥

4
∑

i=1

λi

∑

t

V̂t (δt ui · xt ⊗ ht )
∥

∥

∥
≤ 8‖a‖

∥

∥

∥

∑

t

V̂t (δt · xt ⊗ ht )
∥

∥

∥
.

In fact, we will soon see that V0 is a representation, so this quite a lousy estimate. But
we make it only to show that V0(a) can be extended to a well-defined operator on K.

It is immediate that V0 is linear and multiplicative. To see that it is ∗-preserving,
let s, t ∈ S, x ∈ X(s), x ′ ∈ X(t) and h, h ′ ∈ H.

〈V0(a)∗V̂s(δs · x ⊗ h), V̂t (δt · x ′ ⊗ h ′)〉 = 〈V̂s(δs · x ⊗ h),V0(a)V̂t (δt · x ′ ⊗ h ′)〉

= 〈V̂s(δs · x ⊗ h), V̂t (δt · ax ′ ⊗ h ′)〉

= 〈V̂ ∗
(s−t)

−

V̂(s−t)+
(δs · x ⊗ h), δt · ax ′ ⊗ h ′〉

= 〈T̂∗
(s−t)

−

T̂(s−t)+
(δs · x ⊗ h), δt · ax ′ ⊗ h ′〉

= 〈T̂∗
(s−t)

−

T̂(s−t)+
(δs · a∗x ⊗ h), δt · x ′ ⊗ h ′〉

= 〈V̂s(δs · a∗x ⊗ h), V̂t (δt · x ′ ⊗ h ′)〉

= 〈V0(a∗)V̂s(δs · x ⊗ h), V̂t (δt · x ′ ⊗ h ′)〉.
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Thus, V0(a)∗ = V0(a∗).

By (3.1), H reduces V0(A), and V0(a)
∣

∣

H
= σ(a)

∣

∣

H
(under the appropriate identi-

fications). The assertion about the nondegeneracy of V0 is clear from the definitions.

To define Vs for s > 0, we will show that the rule

(3.2) Vs(xs)V̂t (δt · xt ⊗ h) = V̂s+t (δs+t · xs ⊗ xt ⊗ h)

can be extended to a well-defined operator on K. Let
∑

V̂ti
(δti

· xi ⊗ hi) be a finite
sum in K, and let s ∈ S, xs ∈ X(s). To estimate

‖
∑

V̂ti +s(δti +s·xs ⊗ xi ⊗ hi)‖
2

=
∑

〈V̂ti +s(δti +s · xs ⊗ xi ⊗ hi), V̂t j +s(δt j +s · xs ⊗ x j ⊗ h j)〉

=
∑

〈V̂sV̂ti
(δti +s · xs ⊗ xi ⊗ hi), V̂sV̂t j

(δt j +s · xs ⊗ x j ⊗ h j)〉

=
∑

〈V̂ti
(δti +s · xs ⊗ xi ⊗ hi), V̂t j

(δt j +s · xs ⊗ x j ⊗ h j)〉,

we look at each summand of the last equation. Denoting ξi = xi ⊗ hi , we have

〈

V̂ti
(δti +s · xs ⊗ ξi),V̂t j

(δt j +s · xs ⊗ ξ j)
〉

=
〈

V̂ ∗
(ti−t j )−

V̂(ti−t j )+
(δti +s · xs ⊗ ξi), δt j +s · xs ⊗ ξ j

〉

=
〈

T̂∗
(ti−t j )−

T̂(ti−t j )+
(δti +s · xs ⊗ ξi), δt j +s · xs ⊗ ξ j

〉

=
〈

δt j +s · xs ⊗
(

I ⊗ T̃∗
(ti−t j )−

)(

I ⊗ T̃(ti−t j )+

)

ξi , δt j +s · xs ⊗ ξ j

〉

=
〈

δt j
·
(

I ⊗ T̃∗
(ti−t j )−

)(

I ⊗ T̃(ti−t j )+

)

ξi , δt j
· |xs|

2ξ j

〉

=
〈

T̂∗
(ti−t j )−

T̂(ti−t j )+
(δti

· ξi), δt j
· |xs|

2ξ j

〉

=
〈

V̂ti
(δti

· |xs|ξi), V̂t j
(δt j

· |xs|ξ j)
〉

=
〈

V0(|xs|)V̂ti
(δti

· ξi),V0(|xs|)V̂t j
(δt j

· ξ j)
〉

,

(again, this argument works also if some ξ’s are in H). This means that

‖
∑

V̂ti +s(δti +s · xs ⊗ xi ⊗ hi)‖
2
= ‖V0(|xs|)

∑

V̂ti
(δti

· xi ⊗ hi)‖
2

≤ ‖V0(|xs|)‖
2
∥

∥

∑

V̂ti
(δti

· xi ⊗ hi)
∥

∥

2
,

so the mapping Vs defined in (3.2) does extend to a well-defined operator on K. Now
it is clear from the definitions that for all s ∈ S, (V0,Vs) is a covariant representation
of X(s) on K. We now show that it is isometric. Let s, t, u ∈ S, x, y ∈ X(s), xt ∈ X(t),
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xu ∈ X(u) and h, g ∈ H. Then

〈Vs(x)∗Vs(y)V̂tδt · xt ⊗ h,V̂uδu · xu ⊗ g〉

= 〈V̂t+sδt+s · y ⊗ xt ⊗ h, V̂u+sδu+s · x ⊗ xu ⊗ g〉

= 〈V̂ ∗
(t−u)

−

V̂(t−u)+
δt+s · y ⊗ xt ⊗ h, δu+s · x ⊗ xu ⊗ g〉

(∗) = 〈V̂ ∗
(t−u)

−

V̂(t−u)+
δt · xt ⊗ h, δu · 〈y, x〉xu ⊗ g〉

= 〈V̂tδt · xt ⊗ h, V̂uδu · 〈y, x〉xu ⊗ g〉

= 〈V0(〈x, y〉)V̂tδt · xt ⊗ h, V̂uδu · xu ⊗ g〉.

The justification of (∗) was essentially carried out in the proof that Vs(xs) is well
defined. Let us, for a change, show that this computation works also for the case
u = 0:

〈Vs(x)∗Vs(y)V̂tδt · xt ⊗ h, δ0 · g〉 = 〈V̂t+sδt+s · y ⊗ xt ⊗ h, V̂sδs · x ⊗ g〉

= 〈V̂tδt+s · y ⊗ xt ⊗ h, δs · x ⊗ g〉

= 〈T̂tδt+s · y ⊗ xt ⊗ h, δs · x ⊗ g〉

= 〈δs · y ⊗ Tt (xt ) ⊗ h, δs · x ⊗ g〉

= 〈Tt (xt ) ⊗ h, σ(〈y, x〉)g〉

= 〈T̂tδt · xt ⊗ h,V0(〈y, x〉)δ0 · g〉

= 〈V̂tδt · xt ⊗ h,V0(〈y, x〉)δ0 · g〉

= 〈V0(〈x, y〉)V̂tδt · xt ⊗ h, δ0 · g〉.

We have constructed a family V = {Vs}s∈S of maps such that (V0,Vs) is an iso-
metric covariant representation of X(s) on K. To show that V is a product system
representation of X, we need to show that the “semigroup property” holds.

Let h ∈ H, s, t, u ∈ S, and let xs, xt , xu be in X(s), X(t), X(u), respectively. Then

Vs+t (xs ⊗ xt )V̂u(δu · xu ⊗ h) = V̂s+t+u(δs+t+u · xs ⊗ xt ⊗ xu ⊗ h)

= Vs(xs)V̂t+u(δt+u · xt ⊗ xu ⊗ h)

= Vs(xs)Vt (xt )V̂u(δu · xu ⊗ h),

so the semigroup property holds.

We have yet to show that V is a minimal regular dilation of T. To see that it is a
regular dilation, let s ∈ S−S, x+ ∈ X(s+), x− ∈ X(s−) and h = δ0 ·h, g = δ0 · g ∈ H.
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Using the fact that V̂ is a regular dilation of T̂, we compute

〈Ṽ ∗
s
−

Ṽs+
(x+ ⊗ δ0 · h), (x− ⊗ δ0 · g)〉 = 〈V̂s+

(δs+
x+ ⊗ h), V̂s

−

(δs
−

x− ⊗ g)〉

= 〈V̂ ∗
s
−

V̂s+
(δs+

x+ ⊗ h), δs
−

x− ⊗ g〉

= 〈T̂∗
s
−

T̂s+
(δs+

x+ ⊗ h), δs
−

x− ⊗ g〉

= 〈T̃s+
(x+ ⊗ h), T̃s

−

(x− ⊗ g)〉

= 〈T̃∗
s
−

T̃s+(x+ ⊗ h), x− ⊗ g〉.

V is a minimal dilation of T, because

K =

∨

{V̂s(δs · (x ⊗ h)) : s ∈ S, x ∈ X(s), h ∈ H}

=

∨

{Vs(x)(δ0 · h) : s ∈ S, x ∈ X(s), h ∈ H}.

Finally, let us note that item (iv) from the statement of the proposition is true
for any minimal isometric dilation (of any c.c. representation of a product system
over any semigroup). Indeed, let V be a minimal isometric dilation of T on K. Let
xs ∈ X(s), xt ∈ X(t) and h ∈ H. Then

PHVs(xs)Vt (xt )h = PHVs+t (xs ⊗ xt )h

= Ts+t (xs ⊗ xt )h = Ts(xs)Tt (xt )h

= PHVs(xs)PHVt (xt )h.

But K =
∨

{Vs(x)h : s ∈ S, x ∈ X(s), h ∈ H}, so PHVs(xs)PH = PHVs(xs), from
which item (iv) follows.

It is worth noting that, as commensurable semigroups are countable, if S =
∑∞

i=1 Si , then, using the notation of the above proposition, separability of H im-
plies that K is separable. It is also worth recording the following result, the proof of
which essentially appears in the proof of [9, Proposition 3.7].

Proposition 3.4 Let X be a product system over S, and let T be a representation of X.

A minimal, regular, isometric dilation of T is unique up to unitary equivalence.

4 Regular Isometric Dilations of Doubly Commuting
Representations

It is well known that in order for a k-tuple (T1, T2, . . . , Tk) of contractions to
have a commuting isometric dilation, it is not enough to assume that the contrac-
tions commute. One of the simplest sufficient conditions that one can impose on
(T1, T2, . . . , Tk) is that it doubly commute, that is

T jTk = TkT j and T∗
j Tk = TkT∗

j
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for all j 6= k. Under this assumption, the k-tuple (T1, T2, . . . , Tk) actually has regular

unitary dilation. In fact, if the k-tuple (T1, T2, . . . , Tk) doubly commutes, then it also
has a doubly commuting, regular, isometric dilation (see [6, Proposition 3.5] for the
simple explanation). This fruitful notion of double commutation can be generalized
to representations as follows.

Definition 4.1 A representation (σ, T) of a product system X over S is said to dou-

bly commute if

(Iek(sk) ⊗ T̃e j (s j ))(t ⊗ IH)(Ie j (s j ) ⊗ T̃∗
ek(sk)) = T̃∗

ek(sk)T̃e j (s j )

for all j 6= k and all nonzero s j ∈ S j , sk ∈ Sk, where t stands for the isomorphism
between X(e j(s j))⊗X(ek(sk)) and X(ek(sk))⊗X(e j(s j)), and Is is shorthand for IX(s).

The following theorem appeared already as [9, Theorem 3.10] (for the case
S = Nk). We give a new proof here.

Theorem 4.2 Let A be a C∗-algebra, let X = {X(s)}s∈S be a product system of A-cor-

respondences over S, and let (σ, T) be a doubly commuting representation of X on a

Hilbert space H. There exists a Hilbert space K ⊇ H and a minimal, doubly commuting,

regular isometric representation V of X on K.

Proof Construct H and T̂ as in Section 2.
We now show that T̂e j (s j ) and T̂ek(sk) doubly commute for all j 6= k, and all s j ∈

S j , sk ∈ Sk. Let t ∈ S, x ∈ X(t), y ∈ X(e j(s j)) and h ∈ H. Using the assumption that
T is a doubly commuting representation,

T̂∗
ek(sk)T̂e j (s j )(δt+e j (s j ) · x ⊗ y ⊗ h)

= T̂∗
ek(sk)

(

δt · x ⊗ T̃e j (s j )(y ⊗ h)
)

= δt+ek(sk) · x ⊗ T̃∗
ek(sk)T̃e j (s j )(y ⊗ h)

= δt+ek(sk) · x ⊗
(

(Iek(sk) ⊗ T̃e j (s j ))(t ⊗ IH)(Ie j (s j ) ⊗ T̃∗
ek(sk))(y ⊗ h)

)

= T̂e j (s j )T̂
∗
ek(s j )

(δt+e j (s j ) · x ⊗ y ⊗ h),

where we have written t for the isomorphism between X(e j(s j)) ⊗ X(ek(sk)) and
X(ek(sk))⊗X(e j(s j)), and we have not written the isomorphisms between X(s)⊗X(t)
and X(s + t).

By [6, Corollary 3.7], there exists a minimal, regular isometric dilation V̂ =

{V̂s}s∈S of T̂ on some Hilbert space K, such that V̂e j (s j ) and V̂ek(sk) doubly commute
for all j 6= k, s j ∈ S j , sk ∈ Sk.

Proposition 3.2 gives a minimal, regular isometric dilation V of T on some Hilbert
space K.

To see that V is doubly commuting, one computes what one should using the fact
that V̂ is a minimal, doubly commuting, regular isometric dilation of T̂ (all the five
adjectives attached to V̂ play a part). This takes about four pages of handwritten
computations, so is omitted. Let us indicate how it is done. For any i ∈ Ω, si ∈ Si ,
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write Ṽi for ṼX(ei (si )), Ii for IX(ei (si )), and so on. Taking j 6= k, s j ∈ S j , sk ∈ Sk, operate
with

Ṽk(Ik ⊗ Ṽ j)(t j,k ⊗ I J)(I j ⊗ Ṽ ∗
k )

and with
ṼkṼ

∗
k Ṽ j

on a typical element of X(e j(s j)) ⊗ K of the form:

(4.1) x ⊗ V̂s(δs · xs ⊗ h),

to see that what you get is the same. One has to separate the cases where ek(sk) ≤ s

and ek(sk) £ s (this is the case where the fact that V̂ is a doubly commuting semi-
group comes in). Because Ṽk is an isometry and the elements (4.1) span X(e j(s j))⊗K,
one has

Ṽ ∗
k Ṽ j = (Ik ⊗ Ṽ j)(t j,k ⊗ I J)(I j ⊗ Ṽ ∗

k ).

That will conclude the proof.

5 A Sufficient Condition for the Existence of a Regular Isometric
Dilation

Using the above methods, one can, quite easily, arrive at the following result, which
is, for the case S = Nk, one half of Theorem 3.5 of [9].

Theorem 5.1 Let X be a product system over S, and let T be a representation of X. If

(5.1)
∑

u⊆v

(−1)|u|
(

Is[v]−s[u] ⊗ T̃∗
s[u]T̃s[u]

)

≥ 0

for all finite subsets v ⊆ Ω and all s ∈ S, then T has a regular isometric dilation.

Proof Here are the main lines of the proof. Construct T̂ as in section 2. From (5.1),
it follows that T̂ satisfies

∑

u⊆v

(−1)|u|T̂∗
s[u]T̂s[u] ≥ 0,

for all finite subsets v ⊆ Ω and all s ∈ S, which, by Proposition 3.5 and Theorem 3.6
in [6], is a necessary and sufficient condition for the existence of a regular isometric
dilation V̂ of T̂. The result now follows from Proposition 3.2.

Among other reasons, this example has been put forward to illustrate the lim-
itations of our method. By [9, Theorem 3.5], when S = Nk, equation (5.1) is a
necessary, as well as a sufficient, condition that T has a regular isometric dilation. But
our construction “works only in one direction”, so we are able to prove only sufficient
conditions (roughly speaking). We believe that, using the methods of [9] combined
with commensurability considerations, one would be able to show that (5.1) is in-
deed a necessary condition for the existence of a regular isometric dilation (over S).
Whether or not the constructions of Section 2 can be modified to give the other di-
rection remains to be answered.
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