MRSA in Rural US

Until recently, methicillin-resistant Staphylococcus aureus (MRSA) infections were acquired primarily in nosocomial settings. In 1999, four deaths among children in Minnesota and North Dakota, one of which occurred in an American Indian, were attributed to community-acquired MRSA infection. These findings suggested that MRSA was being acquired outside nosocomial settings. Groom and colleagues conducted a study to document the occurrence of community-acquired MRSA infections and to evaluate risk factors for community-acquired MRSA infection compared with methicillin-susceptible S. aureus (MSSA) infection.

This retrospective cohort study, using medical record review, was conducted in an Indian Health Service facility in a rural Midwestern American Indian community and included patients whose medical records indicated laboratory-confirmed S. aureus infection diagnosed during 1997. The primary outcome measure was the proportion of MRSA infections classified as community-acquired, based on standardized criteria; risk factors for community-acquired MRSA infection, compared with those for community-acquired MSSA infection; and relatedness of MRSA strains, determined by pulsed-field gel electrophoresis (PFGE). The results indicated that, of 112 S. aureus isolates, 62 (55%) were MRSA and 50 (45%) were MSSA. Forty-six (74%) of the 62 MRSA infections were classified as community-acquired. Risk factors for community-acquired MRSA infections were not significantly different from those for community-acquired MSSA. PFGE subtyping indicated that 34 (89%) of 38 community-acquired MRSA isolates were clonally related and distinct from nosocomial MRSA isolates found in the region.

The authors concluded that community-acquired MRSA may have replaced community-acquired MSSA as the dominant strain in this community. Antimicrobial-susceptibility patterns and PFGE subtyping support the finding that MRSA is circulating beyond nosocomial settings in this, and possibly in other, rural US communities. Based on these findings, the authors recommended that healthcare practitioners in rural communities in the Midwest consider the possibility of MRSA infection among young, healthy patients without a history of nosocomial exposure. Obtaining cultures of suspected S. aureus infections and conducting antibiotic-susceptibility testing, particularly in communities with known high rates of MRSA infection, are important measures to ensure that appropriate antibiotic therapy is provided.


FDA Approves First Nucleic Acid Test for HIV and HCV

The FDA licensed the first nucleic acid test (NAT) systems intended for screening of plasma donors. These test systems are expected to ensure further the safety of plasma-derived products by permitting earlier detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections in donors. The newly approved test systems were developed by National Genetics Institute, Los Angeles, for screening plasma used in manufacturing of products such as clotting factors and immune globulins. Alpha Therapeutic Corporation, Los Angeles, also was approved to use new testing systems at its plasma collection facilities.

NAT is a recently developed technology that allows detection of very small amounts of genetic material (DNA or RNA) by a process of massive copying (amplification) of a gene fragment. The approved test systems permit highly sensitive detection of RNA from HIV, type 1 (the HIV variant that is responsible for the vast majority of acquired immunodeficiency virus (AIDS) cases in the United States), and HCV in test pools of 512 plasma samples obtained from multiple donors. The use of pooled plasma samples for testing makes use of the NAT system cost-effective. However, if a test pool is positive for either virus, the individual donation that is suspected of containing a virus can be identified and would not be used for further manufacturing, and the donor can be deferred and notified.

Although effective procedures for virus inactivation are required in the manufacturing of all US-licensed plasma derivatives, removal of potentially infectious donations through donor screening adds a safeguard by limiting the amount of virus contamination that the manufacturing process must clear. Currently, donors of blood and plasma are tested for antibodies to HCV, antibodies to HIV, and HIV-1 antigens, which are the virus's own proteins. However, there is still a "window period" during which a donor can be infected but have negative screening tests. With the use of NAT for HCV, the window period for detection of HCV is reduced by 37 days (from an average of 82 days to 25 days). For HIV-1, the average window period with antibody tests is 22 days. Antigen testing cuts the window period to approximately 16 days, and NAT further reduces this period to 12 days.

FROM: FDA Press Release. FDA approves first nucleic acid test (NAT) systems to screen plasma for human immunodeficiency virus (HIV) and hepatitis C virus.