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INFINITE FROUDE NUMBER SOLUTIONS
TO THE PROBLEM OF A SUBMERGED SOURCE OR SINK

G. C. HOCKING

(Received 9 December 1986; revised 10 June 1987)

Abstract

The problem of a source or sink submerged beneath a free surface is investigated
in the infinite Froude number limit. Solutions are found for all cases in which the
source is situated away from the bottom of the channel. Solutions are also found
for the case where the source is situated above the asymptotic level of the free
surface, giving fountain type free surface shapes.

1. Introduction

Several recent investigations ([3], [4], [5], [9], [10]) have considered the free surface
flow problem for the steady motion of an ideal fluid toward a line source or sink
above a solid horizontal plane. One class of solutions to this problem gives a free
surface shape in which a cusp exists above the sink (or source). These solutions
can be related to the critical flow at which the fluid above an interface in a
two-layer fluid will be drawn down into the sink if the flow rate is increased.

Two of these papers, Collings [3], and Yih [10], have discussed the linearised
problem in which gravity approaches zero. Yih found the solution for the problem
where the sink is situated on the bottom, while Collings found both this solution
and another in which the sink is situated off the base. Yih also gave some
solutions to the full nonlinear problem, for the problem where the base is not
flat.

This paper presents solutions to the linearised problem for all cases where the
sink is situated off the base, thus linking the solutions obtained by Collings and
Yih. Solutions have also recently been found by Vanden-Broeck and Keller [9]
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to the corresponding nonlinear problem, filling the gap in the work of Hocking
[4]-

It is shown that the resultant free-surface shapes are very much like those for
the nonlinear problem [4], [9], [10] when the sink is on or near the base. The
shape of the free surface changes to include a hump on the free surface for the
situations in which the sink is higher off the bottom, similar to the nonlinear
solutions of Vanden-Broeck and Keller [9j. Solutions exist in which the sink is
located above the asymptotic level of the free surface at infinity.

2. Integral equation and solution

In this section, an integral equation is derived for the linearised problem. The
resultant equation can be transformed to the airfoil equation [7] by removing
that component of the solution which is known to satisfy the problem for the
sink on the base, from Collings [3], and Yih [10].

The mathematical problem is to find a complex potential w = <& + i$, which
satisfies Laplace's equation within the flow domain, and which satisfies conditions
of no flow across the solid boundaries and the free surface, and the condition
of constant pressure on the free surface. This last condition is linearised by
considering the limit as gravity tends to zero, reducing it to the condition of
constant velocity on the free surface.

The transformation
exp(w) = f, (2.1)

maps the infinite strip between * = 0 and * = — n in the w-plane to the lower
half f-plane. Without loss of generality we may choose to let w — 0 correspond
to the cusp point, so that the free surface V = 0, $ > 0, lies along the real f-axis
where f > 1. The sink lies at the origin in the f-plane, and the negative real axis
corresponds to "i> = —TT (see Figure 1).

We seek to find w by solving for Q(f) = 6 + ir, defined in relation to the
complex conjugate of the velocity field by

«;'(*(*)) = exp(-in(f)). (2.2)

The magnitude of the velocity at any point is then given by |w'(^)| = exp(r(f)),
and the angle any streamline makes with the horizontal is 6($). Thus for cusp-
like solutions, we require that S = n/2 at f = 1 and 6 —> 0 as f —» oo. Note
that we have nondimensionalised the problem with respect to the velocity of the
flow at infinity, and the depth at infinity divided by ir. The nondimensional flux
from the source is n.

The free surface corresponds to the positive real f-axis for f > 1, and if we set
r = 0 in this region, the requirement of constant unit velocity is satisfied. On
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Figure 1. (a) The complex velocity potential tu-plane,
(b) the lower half f-plane,
(c) the real z-plane.
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the remainder of the real ?-axis, which corresponds to the solid boundaries of the
flow domain, the streamlines must be parallel to the walls, so that if we choose
6 to be the angle of the wall to the horizontal, that is, zero on — oo < ? < fe,
-TT/2 on qB < ? < 0, n/2 on 0 < f < 1, then the conditions of no flow across the
solid boundaries are satisfied.

The only singularities of the function Q(f) in the f-plane are those at the
origin and at ? = fs, corresponding to the sink and the stagnation point on the
bottom beneath the sink respectively. Both of these singularities can be shown
to be weaker than a simple pole, so that Cauchy's theorem can be applied to
fi(f) on a path consisting of the real f-axis and a semi-circle at |f | = oo in the
lower half plane. Hence, for Im{^} < 0 we have

since fi —> 0 as |f | —• oo. If we let Im{f} - » 0 , we obtain

7- ( 2-4 )

where the integrals are of Cauchy principal value form.
Substituting the known values of <5(f) into the equation for r(?) gives

Setting r = 0 on f > 1 then gives an integral equation for <5(f) on 1 < f < oo. If
£B = 0, that is, if the sink is located on the base, the equivalent equation reduces

to which the solution (Yih [10], Collings [3]) is

% ) = arcsinr1 / 2- (2-7)

If we let 6o{$) be this solution for the case fa = 0, and write <5(f) as <$o(?) +
6B(?) in (2.5) then rearrange, we obtain

r Q& <to - - CPV r *s îdo,,
7i ft)-f It i l fO-f

on 1 < ? < oo. The first terms on each side of this equation, however, drop out
since they are equal (from 2.6 and 2.7), leaving
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a new integral equation for <5fi(f) along the real f-axis, 1 < f < oo.
If we let f = (f + 1/2)"1/2, equation (2.9) can be transformed to

1 f1

K J--l/2

where

and

G(te;Co) = 0,~]i, log(l - ? B ( £ O + I))- (2.10)
2(?o + 2)

This equation is the airfoil equation [7], to which the solution is known [7], [6],
and hence the solution to this problem can be written

where f = f1. Note that as fs tends to zero, 6B tends to zero and hence 6
tends to So, the solution for the sink on the base. For this solution to be valid,
6B must approach zero both as <; tends to one and as f tends to infinity, and this
is easily shown.

This integral has no closed-form solution, but can easily be solved numerically
using a trapezoidal discretisation scheme, being sure to integrate through the
singular point carefully. The solution can also be written as a series expansion
in fs of the form

SB(i) = §£1/2(1 " tV'Hte + *?£(e + \) + yUe + $t + I) + O(f|)), (2.12)

convergent for - 1 < fs < 0, and we can use this to test the numerical scheme.
Once 6B is known, r can be found from (2.5) and (2.7). Using 6 and r, it is

possible to integrate (2.2) to obtain the location of points on the free surface.
These may be written as

cos ( ? )? ,
(2-13)

Since y —> 0 as f —» 00, the cusp depth is

hc= r V 1 sin 6'(fjdf, (2.14)
Ji

the sink depth is

hs = hc+ f Cle~TMds, (2.15)
Jo
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Figure 2. Some typical free-surface profiles.

and the base depth is

hB = . - l p -T(f) , (2.16)

which must be equal to TT for all fs, to conserve volume.

Substituting (2.7) and (2.12) into (2.14) gives a series expansion for he in
terms of fs, of the form

he ~ 2 + § (2.17)

Table 2.1 shows a comparison of the numerical solution to the series expansion
for he, for values of |?B| less than unity; the series does not converge for larger
values of |fe|. The series is not fully converged for the larger values shown, but
the comparison verifies that the numerical scheme is performing adequately.
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Figure 3. Plot of cusp to sink and cusp to base ratios against the

sink to base depth ratio.

TABLE 2.1. Table showing the comparison of the series solution for the cusp depth to the
numerical solution.

?B

0.00
-0 .10
-0 .25
-0.50
- 1.00

Cusp Depth he
Series
2.000
1.935
1.845
1.708
1.490

Numerical
2.000
1.935
1.845
1.708
1.474

Figure 2 shows typical free-surface shapes over a range of values of the sink
depth. For |f#| small, the free surface rises monotonically from the cusp to the
asymptotic level at infinity. When |fe| is larger, the water rises to a maximum
height before asymptoting to the level at upstream infinity from above. Solutions
continue to exist even when the sink is situated above the level of the free surface
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at infinity. Figure 3 shows the cusp to sink and cusp to base depth ratios, plotted
against the sink to base ratio. The results of Collings [3] and Yih [10] are shown to
agree with those obtained here. In contrast to the findings of Collings, however,
no particular fluid depth was found to be critical.

3. Conclusions

The solutions presented cover the full range of problems for a submerged sink
(source) situated above a flat base. The most interesting solutions are those for
which the source or sink lies above the asymptotic level of the free stream at
infinity. As fs —> —oo, the source, moves higher and higher above the level of the
free stream, and the flow looks more and more like a fountain. It appears unlikely
that an equivalent flow of this type could exist for a sink in a real situation, but
this is not so clear for a source.

The similarity in shape of these results to those of Vanden-Broeck and Keller
[9] for the full nonlinear free-surface condition raises the question of whether
the full nonlinear solutions apply for a source, a sink, or for some range of
both. Further, the existence of solutions at infinite Froude number indicates
that any cusp-like free surface shape calculated at finite Froude number can only
be regarded as determining an upper bound for the critical drawdown Froude
number, as suggested by Yih [10]. This is supported by the work of Vanden-
Broeck and Keller [9], who found cusp-like free-surface shapes at all values of
F greater than some finite value, for all bottom geometries similar to those
considered here.

Acknowledgements

The author would like to thank Prof. J. Imberger and Dr. S. Monismith for
their comments on a draft of this paper.

References

[1] M. Abramowitz and I. A. Stegun (eds.), Handbook of mathematical functions (Dover, New
York, 1970)

[2] A. Craya, "Theoretical research on the flow of nonhomogeneous fluids", Houille Blanche
4 (1949), 44-55.

[3] I. L. Collings, "Two infinite Froude number cusped free surface flows due to a submerged
line source or sink" J. Austral. Math. Soc. Ser. B 28 (1986), 260-270.

https://doi.org/10.1017/S0334270000005907 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005907


[9] Solutions for a submerged source or sink 409

[4] G. C. Hocking, "Cusp-like free-surface flows due to a submerged source or sink in the
presence of a flat or sloping bottom" J. Austral. Math. Soc. Ser. B 26 (1985), 470-486.

[5] D. H. Peregrine, "A line source beneath a free surface", Mathematics Research Centre,
Univ. Wisconsin Rep. 1248 (1972).

[6] F. G. Tricomi, Integral Equations (Interscience, 1957).
[7] E. O. Tuck, "Application and solution of Cauchy singular integral equations", in The

application and numerical solution of integral equations (ed. R. S. Anderssen et al) (Sijthoff
and Noordhoff, 1980)

[8] J. M. Vanden-Broeck, L. W. Schwartz and E. O. Tuck, "Divergent Low-Froude-number
series expansion of non-linear free-surface flow problems", Proc. Roy. Soc. London Ser. A
361 (1978), 207-224.

[9] J. M. Vanden-Broeck and J. B. Keller, "Free surface flow due to a sink" J. Fluid Mech.
75 (1987), 109-117.

[10] C. S. Yih, "Effect of geometry on selective withdrawal" (to appear in J. Fluid Mech.)

https://doi.org/10.1017/S0334270000005907 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005907

