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Abstract. Chaos appears in various problems of Relativity and Cosmology. Here we discuss (a) the 
Mixmaster Universe model, and (b) the motions around two fixed black holes, (a) The Mixmaster 
equations have a general solution (i.e. a solution depending on 6 arbitrary constants) of Painleve 
type, but there is a second general solution which is not Painleve. Thus the system does not pass the 
Painleve test, and cannot be integrable. The Mixmaster model is not ergodic and does not have any 
periodic orbits. This is due to the fact that the sum of the three variables of the system (a + P + 7) 
has only one maximum for r = r m and decreases continuously for larger and for smaller r. The 
various Kasner periods increase exponentially for large r . Thus the Lyapunov Characteristic Number 
(LCN) is zero. The "finite time LCN" is positive for finite r and tends to zero when r —• 00. Chaos 
is introduced mainly near the maximum of (a + fi + 7). No appreciable chaos is introduced at 
the successive Kasner periods, or eras. We conclude that in the Belinskii-Khalatnikov time, T, the 
Mixmaster model has the basic characteristics of a chaotic scattering problem, (b) In the case of two 
fixed black holes Mi and M2 the orbits of photons are separated into three types: orbits falling into 
Mi (type I), or M2 (type H), or escaping to infinity (type HI). Chaos appears because between any two 
orbits of different types there are orbits of the third type. This is a typical chaotic scattering problem. 
The various types of orbits are separated by orbits asymptotic to 3 simple unstable orbits. In the case 
of particles of nonzero rest mass we have intervals where some periodic orbits are stable. Near such 
orbits we have order. The transition from order to chaos is made through an infinite sequence of 
period doubling bifurcations. The bifurcation ratio is the same as in classical conservative systems. 

1. Introduction 

(a) The subject of chaos in Relativity and Cosmology has attracted much interest 
in recent years. It started with the papers on the Mixmaster Universe model by 
Belinskii and Khalatnikov (1969) and independently by Misner (1969). But, despite 
the large number of papers written on this subject (Hobill et al 1994 and references 
therein), this problem has not been completely solved up to now. 

Some recent results will be discussed in the next sections. Perhaps the most 
impressive result is that this model is not ergodic, nevertheless it is chaotic in the 
sense of chaotic scattering. 

(b) A problem in General Relativity, where chaos is dominant, is the case of 
two fixed black holes (Contopoulos 1990, 1991). This problem will be discussed 
in Section 5 below. It is remarkable that the relativistic problem is chaotic, while 
the corresponding classical problem of two fixed centers is completely integrable. 

Among other problems in Relativity and Cosmology, where chaos plays a role, 
are the following. 

(c) Chaos in Special Relativity (Drake et al. 1996). Chaos was found in the 
motion of charged particles in a static electric field. 

(d) A spinning particle in the Schwarzschild spacetime (Suzuki and Maeda 
1997). The Schwarzschild spacetime is a 1-dimensional system, hence it is in­
tegrable. But adding further degrees of freedom can make the problem chaotic. 
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Chaos in perturbed Schwarzschild spacetimes has been found by Bombelli & 
Calzetta (1992) and by Letelier & Vieira (1997). 

(e) The Robertson-Walker spacetimeis also a 1-dimensional system (spherical), 
hence integrable. But the addition of another field makes it non- integrable and 
chaotic (Calzetta et al. 1993, Cornish & Shellard 1998). 

(f) Motion in the field generated by gravitational waves (Varvoglis & Pa-
padopoulos 1992, Chicone et al. 1997, Podolsky & Vesely 1998). 

(g) Chaos in Yang-Mills fields of curved spacetime (Darian & Ktinzle 1996, 
Barrow & Levin 1998). 

In the present paper we will discuss only the first two topics, namely the 
Mixmaster model and the case of two fixed black holes. 

2. The Mixmaster Universe Model. 

This model is a particular solution of Einstein's field equations (e.g. Landau & 
Lifshitz, 1971) that leads to three second order differential equations for three 
scale factors a, /? and 7: 

2a = (e2? - e^f - e4a (1) 

and cyclic permutations of it, combined with a zero-energy constrain: 

H = ~(p2
a + p2

p + p2 - 2papp - 2ppp1 - 2pap1) (2) 

+e4« + e4/? + e47 _ 2e2(«+« - 2eW+^ - 2e2(a+^ = 0 , 

where 

Pa = -4(/3 + 7), P/? = -4(7 + d), Pl = -4(d + $) . (3) 

The dots are derivatives with respect to the Belinskii- Khalatnikov time 
r = - In t, where t is cosmological time. Thus when the cosmological time t goes 
to zero at the big bang, the time r goes to infinity. 

The Mixmaster equations can be derived from the Hamiltonian (2): 

* = (P*-P0- J*y)/8, pa = ~4[e4a ~ e2(a+V - e2(a+^] , (4) 

and cyclic permutations of them. 
Another simple set of variables is 

X = e2a, Y = e2<3, Z = e2\ pX=pa/4, pY = p0/4, Pz = P^/4(5) 

In these variables the equations of motion take the simple form 

X = X(px-PY-Pz), Px=X(Y + Z-X), (6) 
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and cyclic permutations of them, while the zero energy constrain is 

E = Px +PY + P%~ ZPXPY - 2PYPZ - 2pxPz (7) 
+X2 + Y2 + Z2- 2XY - 2YZ - 2ZX = 0 

Numerical integrations of the Mixmaster equations strongly suggest that the 
Lyapunov characteristic number is zero (Hobill et al. 1992). 

This, and other theoretical indications, lead to the view that the Mixmaster 
model is not chaotic (Cushman and Sniatycki 1995). However other indications 
lead to the conclusion that the Mixmaster is chaotic. 

In the present paper we will see how these two views can be made compatible. 
One method to find evidence for integrability of a dynamical system is the 

Painleve test (Ablowitz et al. 1980). If all solutions of the equations of motion have 
only poles as movable singularities, then probably the system is integrable. 

The first general solution of Eqs. (7), i.e. a solution that depends on 6 arbi­
trary constants, which satisfies the Painlevfi condition, was given by Contopoulos, 
Grammaticos and Ramani (1993). It is given as Laurent series 

X = ±- + 6is + ..., Y = x2s + ..., Z = x3s + ..., (8) 
s 
1 

PX = + ..., PY=P2+-, PZ-P3 + - , 
s 

where s = r - r0, and the arbitrary constants are b\, x2, x-$, p2, pz, r0. 
However it was found later that this is not the only general solution of the 

Mixmaster model. Another solution found by Latifi et al. (1994), by perturbing the 
well known Taub solution (Taub 1951), does not have the Painlev6 property. The 
same solution was derived by Contopoulos, Grammaticos and Ramani (1995) by 
starting with a different solution of the Mixmaster equations (6): 

X = A + CA2s + ..., Y = Z = -^ + ..., (9) 

px - - + AC + ADs + ..., pY = pz = ~ + •• 
s s 

that depends on only 4 arbitrary constants (A, C, D, r0). This solution passes the 
Painlev6 test to all orders, but it is special because Y = Z and py = pz- In order 
to find a more general solution we set 

S = Y-Z, q = pY-Pz (10) 

and find expressions for 6 and q that contain exponential singularities (Contopoulos 
et al. 1995). This general solution (depending on 6 arbitrary constants) is not of 
Painlev6 type. Therefore the Mixmaster model does not pass the Painlev6 test, 
although it has one general solution that is of Painleve type. As a conclusion the 
Mixmaster model cannot be integrable with two more integrals besides the energy. 
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On the other hand Cushman and Sniatycki (1995) noted that the Mixmaster 
model is not mixing, nor even ergodic. This conclusion is based on a simple 
equation for the quantity 

a = e-2(a+m) t ( 1 1 ) 

that can be easily derived from Eqs.(7), namely 

tl=Cl[(p2
a+p2

p+P
2)/S-E] . (12) 

An equivalent equation was first derived from the Raychaudhuri (1955) equation 
(Rugh and Jones 1990; see also Contopoulos et al. 1995). 

In Eq. (12) for E < 0 (and in particular for the Mixmaster model where E — 0), 
the second derivative CI has always the same sign as CI. As a consequence CI has only 
one minimum and tends to infinity as r goes to ±oo. This means that (a + ft + 7) 
has one maximum at a certain time T = rm and decreases monotonically, both for 
larger r and for smaller r (Fig.l). The quantity (a + $ + 7) is negative for T > rm 

and positive for T <rm. Thus the values of (a, j3,7, a, 0,7) cannot come back to 
their initial values, or close to them. Two conclusions are derived from this fact. 

(1) The Mixmaster model does not have any recurrence, therefore it is not 
mixing, nor ergodic, despite its name (Cushman and Sniatycki 1995). 

(2) The Mixmaster model (with E = 0) does not have any periodic orbits. 
However, the usual notions of ergodicity etc. apply to compact systems, while 

the Mixmaster model is not compact. As we have noticed already (Contopoulos et 
al. 1995), the Mixmaster model behaves like a chaotic scattering system. 

Christiansen et al.(1995) have found unstable periodic orbits in the case E > 0, 
but this is not the Mixmaster case, which has E — O.CornishandLevin(1997,1998) 
have found many unstable periodic orbits in a projected subset of the Mixmaster 
phase space. The study of these periodic orbits strongly suggests a fractal structure 
on this subset, and this is a signature of chaos. 

Our approach is different. We deal with the full phase space of the Mixmaster 
model and try to find the sources of chaos in it. 

3. A Numerical Example. 

The fact that CI goes to infinity both for r -> 00 and for r -> -00 implies that the 
quantity (a + f3 + 7) goes to minus infinity for r -• ±00 (Fig.l). 

This implies that at least one of the quantities (a, /?, 7) goes to minus infinity. 
But this happens in an oscillatory way, i.e. the quantities (a, /?, 7) are unbounded, 
but there is no finite time r, beyond which any of these quantities remains smaller 
than a given negative number. 

As a numerical example we take an orbit with initial conditions: o.,^,^,pa,p0,p^ 
= In 2/2,0,0,0,0,8. In this model the function (a + f3 + 7) (Fig. 1) has a maximum 
0.60 for T = rm = -0.48, i.e. very close to r = 0. 
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Fig. 1. The variation of (a + /? + 7) as a function of time, for an orbit with initial conditions 
a - In 2/2,/? = 7 = pa = vp - 0, P1 = 8. 

2000 2000 6000 OE-*-000 2E+006 4E+006 6E+006 

Fig. 2. The variations of a, /?,? in time r, (a) from r = -100 to r = 100 (b) From 
T = -6000 to T = 6000 (c) From r = 0 to r = 7a; 108. Initial conditions as in Fig.l. 

In Fig. 2a,b,c we see the variation of the quantities (a, /?, 7) in time, both in the 
positive and in the negative time direction. 

As T increases from rm the value of 7 decreases abruptly. At the same time a 
and /? undergo oscillations, first with small period (Fig. 2a) and later with larger 
and larger period (Figs. 2b, c). The value of 7 becomes minimum (7 « -460) for 
r « 3500, and then increases to a maximum close to zero at r « 8 x 105. Later on 
it decreases and increases an infinite number of times. 

If T decreases from rm , 7 undergoes some oscillations together with j3 (Fig. 
2a), while a goes first to a maximum and then decreases. For more negative r the 
value of 7 decreases considerably, while a and /3 undergo oscillations (Fig. 2b). 
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If we exclude a certain interval around r = 0 (say from r = -100 to r = 
+6000) the quantities a, /?, 7 are in general very small, so that the exponential 
members of Eqs. (5) are negligible. Then pa,pp, p7 and d, $, 7 are almost constant, 
i.e. the variations of a, f3,7 are almost linear, except when one of them becomes 
maximum near zero. In that case a rather abrupt change of the inclination of all 
three lines a, (3,7, occurs (Fig. 2c). 

Every period, in which a, $, 7 are almost constant, is called a Kasner period 
(Misner et al. 1977, Khalatnikov et al. 1985). We will prove (section 4) that for r 
beyond rm two derivatives among d, /3,7 are negative and one positive. At every 
transition from one Kasner period to the next two derivatives (e.g. d and $) change 
sign, while the third derivative remains negative. 

Similar transitions occur for r < rm. In this case two of the quantities d, $, 7 
are positive and one negative. 

In order to find the chaotic properties of the orbits we solve the variational 
equations of Eqs. (5). Namely if we consider a deviation £ with coordinates 
(Aa, A/?, A7, Apa, App, Ap7) we have the equations 

Aa = -(Apa - App - Ap7), (13) 

APa = -8[(2e4a - e2("+^) - e2^a+^)Aa - e2(a+^A(3 - e2(a+^A7] , 

and cyclic permutations of them. 
The variational equations (13) are solved, together with the equations of motion, 

and give the variation 

I £ |= [Aa2 + A/?2 + A72 + C\Ap2
a + Ap\ + Ap2)]1/2 (14) 

where C is a constant, having the dimension of time. In the present paper we take 
C = 1. Then we find the "finite time Lyapunov characteristic number" 

L, = 'J^IM (15) 
T 

whose limit for r —>• 00 is the Lyapunov characteristic number LCN. We calculate 
also the "local LCN" (or stretching number) 

In I fc+i/& I 
a,- = (16) 

AT 

at every step AT (Voglis and Contopoulos 1994, Smith and Contopoulos 1996). 
We start with two different deviations £0 at the initial time r - -15000. In 

Fig.3a,b we give the stretching number a for the cases £0 = (1,0,0,0,0,0) and 
£0 = (0,1,0,0,0,0) as functions of r. 

Between r = -15000 and r = -100 a is very close to zero. Between r = -100 
and r = +100 a undergoes large variations, especially neat r = 0, but it is positive 
most of the time (Fig.3a). Beyond r = 100 the values of a are again close to zero, 
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!¥\Pv 

100 1100 2100 3100 
T 

Fig. 3. (a)The variation of the stretching number a as a function of r for the orbit of 
Fig.l and initial variations at r — -15000: £ = (1,0,0,0,0,0) (continuous line) and 
£ = (0,1,0,0,0,0) (dots, or heavy line) from r = -100 to r - +100. (b) The same 
functions a(r) from r = 100 to r = 3100 almost coincide. 

but with small scale variations(Fig.3b). The two initial conditions give different 
curves a(r), but for large r the two curves come very close to each other. 

In Fig.4a,b,c,d we give the spectrum of a for different time intervals. When r is 
between r = -15000 and r = -1000 (Fig.4a) the spectrum of a is peaked around 
a = 0, like a delta function. Thus no chaos appears during that period. Between 
T — -1000 and r = -100 (Fig.4b) the spectrum has a small positive part for 
both initial conditions. Between r = -100 and r = +100 (Fig.4c) the spectrum 
has relatively large positive parts. The two spectra are different, but the average 
value of a is almost the same: < a >= 4 x 10-2. Therefore the "finite time LCN" 
during that period is positive. For larger positive times (between r = 100 and 
r = 15000, Fig.4d) the spectrum approaches again a delta function around a = 0. 
The average value of a for large r tends to zero. (E.g. in the time interval of Fig.4d 
it is < a >= 4 x 10-4). Thus the usual LCN is probably zero. 

We conclude that the finite time Lyapunov characteristic number is significantly 
positive only during a period around T = rm , when (a + /3 + 7) is maximum. For 
large positive and negative times the finite time LCN goes to zero. 

Thus chaos appears in the Mixmaster model when (a + /3 + 7)is close to its 
maximum, that is when a, /?, 7 are close to zero. 

4. Theoretical Explanation 

When a,/?,7 are negative with absolutely large values, the second members of 
Eqs. (1) are very close to zero. Thus a = '$ = 7 = 0, i.e. d,/3,7 are almost 

a 
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Fig. 4. Spectra of the values of a for the initial conditions of Fig.3, (a)from r = -15000 
to T - -1000, (b) from T = -1000 to r = -100, (c) from r = -100 to r = +100, (d) 
from r = +100 to r = 15000. 

constant and a, /?, 7 vary linearly in time. The zero energy constraint is written 

-4(d/3 + $i + 7a) = 0 . (17) 

For r > rm we have also 

d + /? + 7 < 0 . (18) 

Equation (17) cannot be satisfied if all three a, ft, 7 are positive, or negative. Thus 
at least one of these quantities is positive, and one negative. Let 7 > 0 and a < 0. 
Then we will prove that $ is also negative. 

In fact from Eq. (17) we derive 

7 = -d/fy(d + $) . (19) 

Thus, unless $ < 0, we must have $ > 0 and d + $ > 0. But then Eq.(18) cannot 
be satisfied. Therefore $ < 0 is the only possible solution. As a conclusion for 
T > rm two quantities among d, /3,7, are negative and one positive. 
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In a similar way we prove that for T < rm two quantities are positive and one 
negative. 

Let us consider now a case with 7 = 70 > 0, d = d0 < 0, 0 = $0 < 0 and 
«o + 7o < 0. (Fig. 2c). As 7 increases, it reaches values close to zero, while a, (3 
are negative with large absolute values. Thus from Eqs.(l) we derive (Landau and 
Lifshitzl971,§113): 

2d = 2/3 = e4^, 27 + e47 = 0 . (20) 

The last of these equations gives 

7
2 + e4V4 = 7o

2 + e4™/4 = R2/4, (21) 

where R is a constant, 70 < 0, and e4-70 is very small, hence 70 ~ R/2. 
The maximum 7 is slightly above zero 

7 = ln.fi/2 (22) 

and then 7 = 0. Later 7 is again negative and the limiting value of 7 is 

71 = -R/2 = -70 • (23) 

Thus the transition through the maximum value of 7 is approximately a reflec­
tion. At the same time pa and pp are almost zero, i.e. pa and pp remain almost 
constant. Thus we have approximately 

01 + 71 = 0o + To , «i + 71 = "0 + 7o , (24) 

where 0O < do (Fig.2c). Hence 

0i = $0 + 2-yo , di = d0 + 270 , (25) 

and 0\ < 6t\. As 71 < 0 we must have 0\ < 0 < a\. 
The interval during which 7 = 70 > 0, is a Kasner period. In the next Kasner 

period di > 0 while 0\ and 71 are negative, and we observe (Fig. 2c) that 71 < 
0i < 0. Then comes a period where (Fig.2c) 

d2 = - d i , & = & + 2di , 72 = 71 + 2dx , (26) 

As long as 7 is smaller than d and /? we have oscillations between a and /3. But 
the value of 7 increases at every Kasner period and after several Kasner periods 
it becomes positive. Then 7 becomes maximum and we say that a Kasner era is 
completed. From then on 7 undergoes oscillations with a or f3. 

The successive Kasner periods are longer as r increases. In fact from Eqs. 
(25) we derive 0o < 0i < 0 and ai = 2(d0 + 70) - do. But do + 70 < 0, 
therefore d i - | do |= 2(do + 70) < 0, i.e. both $1 and di are absolutely 
smaller than 0O and d0 respectively. Similarly from Eqs. (26) we derive 0\ < 
02 < 0 and 71 < 72 < 0, i.e. p\ and 72 are absolutely smaller than 0i and 71 
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Fig. 5. The length of the Kasner periods T as a function of the order n (dots). The vertical 
lines separate the various Kasner eras. The straight line gives the best fit (Eq.27). 

respectively. In every successive Kasner period similar inequalities show that a,$, 
7 become always smaller absolutely. Thus the corresponding Kasner periods T 
become longer. In Fig.5 we give the length of successive Kasner periods. This 
length increases exponentially according to the formula 

T = Tn = T0e
K (27) 

where T0 = 339558, K = 1.43121 and n is the order of the Kasner period (straight 
line in Fig.5). This relation implies that T is proportional to r. (It is approximately 
Tn — 3rn, where r„ is the begining of the nth period). 

In order to find the source of chaos in the Mixmaster model we solved ana­
lytically the variational equations (13) for the various Kasner periods. These give 
only linear deviations £ even when one variable among «,/3,7 is close to zero. 
Only when two, or three variables a, /?, 7 are close to zero, we have exponential 
deviations of £. The main region where such exponential deviations are observed 
is near the maximum (a + fl + 7), where all three quantities a,/3,7 are close to 
zero. In this region the values of the local LCN are different from zero (Fig. 4c), 
while further away they are very close to zero in general (Figs. 4a,d). 

One may ask whether chaos is also produced by the variation of the number 
of Kasner periods during a Kasner era (Khalatnikov et al. 1985). In fact, a small 
change of the initial conditions produces a different sequence of Kasner periods, 
that leads to an exponential deviation of £ of the form 

£ = £0^ , (28) 

where q is a constant and i is the order of the Kasner era. 
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But if ki is the number of the Kasner periods within a Kasner era, then n = 
k\ + k2 + ... + ki and the typical length of a Kasner period during the i era is 

Tt = T0e^kl+h2+-+ki) « T0e
iKk , (29) 

where k is the average number of Kasner periods within a Kasner era. 
The corresponding time r is then 

r = kT0(e
Kk + e2Kk + ... + eink) « kT0e

lKk (30) 

and we derive 

i ss Inr / nk . (31) 

Thus £ is given by the, power law in r 

f = frr' , (32) 

where 5 — q/nk, i.e. £ is not exponential in the time r. Thus this effect is not 
chaotic in the usual sense. 

Another case, where we find exponential deviations £, is when two quantities 
among a, (5,7 happen to be close to zero. Such cases are exceptional (Khalatnikov 
et al. 1995), and any local increase in £, that they introduce, is counteracted by the 
large increase of the length of the Kasner periods. 

We conclude that chaos, in the sense of exponential deviation of £ in time r, is 
introduced mainly near the maximum of(a + /5 + 7).Asa consequence, the finite 
time LCN is always positive. But, as r increases considerably, the finite time LCN 
tends to zero and the usual LCN is zero. This behaviour is very similar to a chaotic 
scattering case (Contopoulos et al. 1995). 

Of course a different way of measuring time may lead to a positive LCN. In 
fact it is well known in classical mechanics that a change of the time coordinate 
leads to a change of the LCN. This was established already by Poincar6 (1892) in 
the case of unstable periodic orbits. A recent discussion of the problem of different 
times in the Mixmaster model was made by Szydlowski (1997). 

In our paper we have used only the Belinskii-Khalatnikov time r. In this time 
our conclusions regarding the chaotic behaviour of the Mixmaster model are clear. 
Further details of this problem will be given in a future paper. 

5. Chaos in General Relativity. 

A particular problem in General Relativity where chaos is predominant, is the 
motion of photons, or of particles of nonzero rest-mass, around two fixed black 
holes (Contopoulos 1990,1991; more recent work has been done by Dettmann et 
al. 1994, Yurtsever 1995, and Cornish & Gibbons 1997). 
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Fig. 6. A thin beam of photons from infinity is split into orbits of type I (falling to Mi), II 
(falling to Mi), and III (going to infinity). 

This problem is remarkable because the corresponding classical problem of two 
fixed centers is completely integrable. The metric of the relativistic problem was 
given by Majumdar (1947) and Papapetrou (1947); 

ds2 = U~2dt2 - \J\dx2 + dy2 + dz2), (33) 

where U is the potential due to two black holes of masses Mi and M2, written in 
the form 

M2 r2 

(34) 

We assume Mi and M2 to be on the z-axis at the points ±1, while the third 
particle is at distances r\ and r2 from M\ and M2. 

A beam of photons coming from infinity (Fig.6) is separated into orbits of 
3 types: (I) Orbits escaping to Mt; (II) Orbits escaping to M2; and (III) Orbits 
escaping to infinity. 

This is a typical scattering problem. It is chaotic because between an orbit of 
type I and an orbit of type II there are orbits of type III (Fig.6), between an orbit of 
type I and an orbit of type III there are orbits of type II and so on. This separation is 
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Fig. 7. Four types of unstable periodic orbits: (a) around Mi, (b) around M2, (c) around 
both M\ and M2, and (d) figure eight orbits around both Mi and M2 . 

repeated on finer and finer scales. The orbits 1,11 and III form Cantor sets of finite 
measure (fractal sets). 

Besides these orbits there are inifinite types of unstable periodic orbits that form 
a set of measure zero. The most important of them are the satellite orbits (a) and 
(b) around Mi and M2 respectively, and the almost elliptical orbits (c) around both 
Mi and M2 (Fig. 7). 

Around each orbit of a given type (say of type II, Fig.8) there is a continuous 
set of similar orbits, limited by two asymptotic orbits to the same unstable periodic 
orbit (orbit b in Fig.8). These asymptotic orbits approach the orbit b from opposite 
directions. All continuous sets of orbits 1,11 and III, that are parts of the 3 fractal 
sets, are limited by asymptotic orbits to the orbits a, b or c respectively. 

On one side of such an asymptotic orbit all nearby orbits are of the same type 
(e.g. orbits of type II in Fig.8), while on the other side there are infinite sets of all 
3 types. Orbits close to other periodic orbits (like orbit d in Fig.7, that is of figure 
eight type) are fractal sets of all 3 types on both their sides. 

If we consider orbits starting perpendicularly to the z-axis above Mi , we find 
that all orbits starting inside the periodic orbit (a) fall into M2 , while all orbits 
outside the periodic orbit (c) go to infinity. Between the orbits (a) and (c) are the 
three fractal sets of orbits 1,11 and III. 

In the case of photons there are no stable periodic orbits. However in the case 
of particles with non-zero rest mass there may be stable periodic orbits of various 
types. E.g. such orbits appear near the maximum mass Mi of one type of orbits for 
fixed energy and fixed M2. In Fig.9 we give the characteristic of the orbits of type 
(a) for E — Vol and M\ = \. This characteristic has a maximum Mi = Mimax 
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1 i i i i l i i i i 

2 3 4 

X 
Fig. 8. A set of orbits of type II starting perpendiculary to the z-axis above Mi. The set is 
limited by two asymptotic curves to the unstable periodic orbit b. 

and according to a well-known theorem of Poincar6 at this maximum start two 
branches of orbits (a), one stable and one unstable. 

In Fig.9 we see some bifurcations of the family (a). The most important bifurca­
tion is the one of double period (2) that appears at M\ = Mij2- The double period 
family exists for M\ smaller than Mli2. It is initially stable and becomes unstable 
at Mi = M1;4, when a period-4 bifurcation is generated. In the same way there is 
a period-8 bifurcation at M\ = M\ $ etc. 

The most important remark is that the intervals between successive bifurcations 
decrease almost geometrically with the universal ratio appropriate for conservative 
systems (Bennetin et al. 1980), namely 

Afi,2 - M M Mi,4 - M1>8 
8.72 (35) 

Mi,4 - Mi>8 Mi,8 - M M 6 

The values of M\ ^ converge to a minimum value Mi>co beyond which there 
is an infinity of unstable orbits of multiplicity 2n (n = 0,1,2,...). 

Thus in general the orbits of particles of type (a) and their bifurcations are 
unstable and lead to a large degree of chaos. However there are intervals of stable 
orbits surrounded by orbits that do not escape to Mi, M2 or to infinity. The 
nonescaping orbits are in general ordered (quasiperiodic), but there are also some 
chaotic nonescaping orbits (Contopoulos 1991). 
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3.32 

1.322 1.326 

Fig. 9. Characteristics of the two families of orbits of particles of type (a) (stable and 
unstable) near the maximum Mi. From the stable family (a) bifurcate higher order periodic 
orbits. (—)stable, and (....) unstable orbits. 

We conclude that chaos in the above relativistic cases has similar characteristics 
as chaos and chaotic scattering in classical problems. Even some numerical results 
are the same, as exemplified by the appearance of the same bifurcation ratio (35) 
in relativity as in classical dynamics. 
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