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The shape, size, chemical composition and distribution of nanoparticles influence their properties and 

function - especially in catalysis applications. The relevance of such measurements depends greatly on a 

statistically significant analysis on sufficiently large numbers of particles. Therefore, an automatic, fast, 

and reliable way of characterizing these parameters is pivotal in nanoparticle research. We demonstrated 

a relative speed up of two orders of magnitude compared to the classical procedure based on full frame 

XEDS mapping. 

 

The challenges with automated analytical particle analysis have several causes. Particles embedded in a 

matrix material are hard to automatically identify and measure due to varying background contrast. 

Mapping times for compositional information increase dramatically when thousands of particles in slow 

full frame acquisition have to be mapped chemically. Last but not least, data analysis can still be 

improved for such use-cases. Trained neural networks can identify the position and shape of individual 

particles of interest automatically. This identified position and shape information can be used for a smart 

scan of only the relevant areas to speed up the analytical measurement. We developed a novel deep 

learning-driven workflow that spends most acquisition time on particle regions, discards the less 

interesting regions and provides an automated analysis of the particles. An overview of this workflow is 

illustrated in figure 1. The most important steps to enable such a workflow are following: 

 

i) the acquisition of fast overview image with a fast detector (HAADF) 

ii) identify the particles of interest (position and shapes) in composite materials via AI 

iii) visit the identified particles within this case analytical (XEDS) measurement in a second slower scan 

iv) build statistical information with an automatic analysis 

 

The critical part of the workflow is the particle detection algorithm. We applied our workflow to 

challenging conditions for AgPd particle detection in a highly complicated background typical for 

catalyst materials. An ensemble of six convolutional neural networks (CNN) is used to identify the 

positions and shapes of the individual particles in matrix materials. The individual Unet [1] CNNs have 

different configurations for number of layers, number of features, positive or negative input image as 

well as batch size. The resulting particle detection is using a simple mean value from all individual 

networks. A set of 32 manually labeled images with particles was used for the training the networks. 

Individual labeled image size was 2048x2048, the training batch size was either 256 or 512 squared 

pixels. 

 

Visiting individual particles with the XEDS measurement is enabled by an experimental software 

adaptation of the existing digital scanning device on a TalosF200 tool utilizing a custom scan pattern 

functionality. The same adaptations can be applied on Themis or Spectra type columns. The custom scan 

pattern functionality enables visiting individual pixel positions with precision higher than the original 
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reference image pixel size. There are multiple options to control the XEDS scanning like visit only 

particle centers, or visiting small geometric areas (rectangle, circle) or scan the complete particle shape. 

The workflow assumes there is no drift between steps i) and iii) and/or during iii). One should keep 

track of this condition, which can significantly influence the results. Note that step iii) can be extended 

with a drift compensation algorithm in the future. The same is true for specimen shrinkage e.g. due to 

electron overdose. 

 

We applied this adaptive scan particle workflow to characterize AgPd particles in a titaniumoxide matrix 

and determined on more than 4000 particles their size, shape distribution and chemical variation. (Figure 

2) Full mapping of the selected area in conventional XEDS mapping would have taken more than a day. 

The new method allowed to obtain the results within 23 minutes which enables statistical relevant 

analysis in a reproducible way on the nanoscale. We applied the method to other similar problems and 

will present them during the contribution. 

 

 

 

 
 

Figure 1.  Workflow diagram of our adaptive scan acquisition. A single trained CNN could not achieve 

sufficient particle detection precision. We boosted the accuracy and robustness by using a combination 

of several CNNs. The detection quality depends on the training data. This means that retraining is 

required when the application is applied to other conditions (e.g. different substrates, particle shapes, 

detectors, …). 
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Figure 2.  (a) 3k x 3k HAADF image of AgPd particles in matrix material. (b) Overlay of identified 

particles using the trained network. (c) automatic statistical analysis of shape size, morphology, and 

composition of 4000 particles within 23 minutes total workflow time. 
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