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THE FOLIAGE DENSITY EQUATION REVISITED
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Abstract

The foliage density equation is the means by which the foliage density g in a leaf canopy,
as a function of the angle of inclination of the leaves, is to be estimated from discrete data
gathered using photometric methods or point quadrats. It is an integral equation relating
/ , a function of angle estimated from measurements, to the unknown function g. The
explicit formula for g is known and depends upon / and its first three derivatives; the
operator / •-» g is unbounded, and the problem is ill posed.

In this paper we give the form of g when / is a trigonometric polynomial, extending
earlier results due to J. R. Philip. This provides a means of estimating g without directly
estimating the derivatives of / from numerical data. To assess the reliability of the
method we discuss the convergence of Fourier series representations of / and g.

1. Introduction

Lately there has been renewed interest in the foliage density equation; this is a
Fredholm equation of the first kind on the interval [0, j-rr],

f(fi)= j ^ 2 K{a,fi)g{a)da (0 </8 < **) (l)

with the rather complicated kernel function K given in (5) below. The equation
relates two functions / and g, / being deemed known and g unknown. The
function / , called the contact frequency function, is estimated from numerical data
obtained from a specified spatial region of the canopy of leaves of a plant (for
example, using point quadrats); the function g, called the foliage density function,
describes the foliage density distribution: g(a)da is the contribution to foliage
density due to foliage inclined at angles between a and a + da to the horizontal.
The form of K is due to J. Warren Wilson and J. E. Reeve [8], the integral
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equation to J. R. Philip [7]. The author gave an explicit solution to (1) in J. B.
Miller [5] in 1964. However, since this expresses g as an integral involving / and
its first three derivatives (namely g(a) = $ / (a ) in (7) below), its application
presents the problem of estimating / , / ' , / " and / ' " from the numerical data for
/ , with all the likelihood of error latent in that process.

It was separately shown in Miller [6] that the average foliage density

( (2)
o

could be calculated directly from / without estimating the derivatives, since

(3)

More recently R. S. Anderssen, D. R. Jackett and D. L. B. Jupp in [1], [2], and [3]
have considered more general functionals than (2) on the foliage density function,
expressing them as functionals on the contact frequency function using (7), (8)
below, and thereby making them accessible to computation.

In this paper we make a further contribution to the problem of estimating the
form of g from / . In brief, it is shown that if / is a trigonometric polynomial of
an appropriate type, then g is also, and the relation between their coefficients is
found. Thus if we have an estimate of / from numerical data, and fit a
trigonometric polynomial to these data, then we can calculate a trigonometric
polynomial approximation to g. This extends partial results of Philip in [7]. No
estimating of third derivatives from the data is required. However, the underlying
problem is ill-posed, because £ is unbounded. The error in using the trigonomet-
ric polynomial to estimate g cannot be found directly; instead, we obtain a result
(Theorem 3) which gives a rate of convergence of the Fourier series of / sufficient
to ensure the convergence of the transformed Fourier series to g.

The analysis of the action of § on trigonometric polynomials and series thus
provides some insight into the extent of the ill-position, which has not been
analysed in detail previously. An alternative response to the ill-position is that of
Anderson, Jackett and Jupp, who advocate the use of functionals on g rather
than estimates of g. Their results also have their origin in the unbounded operator
$ . They also discuss in detail the practical importance of the foliage density
equation and its solution.

In the course of the paper we obtain formulae for the elements of the matrix A
which transforms the sequence of Fourier coefficients of / to that of g (Theorem
1); these may be of practical assistance to workers in the field, if they are used
with due circumspection.

Caveat. While there exist rigorous proofs for most assertions in the paper, there
are two points where it has been necessary to seek the aid of a computer to
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[ 3 ] The foliage density equation revisited 389

resolve matters of algebra; the conclusions here cannot be said to be proved, but
merely circumstantial. See equations (29), (30), and (47).

2. The integral equation and operators ®, £

The integral equation (1), to be solved for g, determines an integral operator,
which we denote by ®. Thus the foliage density equation and the operator ® are
defined as follows:

/ ( /0 = («**)(/*) = f/2 K(a,P)g(a)da (0 < j8 < |») (4)
•'o

where the kernel K is given by

{cos a sin /? (if a < /?),

cosasmjB/l+ £( tan0(a , /8) -0(a , j8) ) \ (if a > 0) , ( 5 )

d(a,fi) = cos-x(tan/?/tana) ( f o r a > 0 ) . (6)

The solution of this equation likewise determines an operator, which we write as

= -tanasec3a T / 2 (tan2^ - tan2a)"1/2

•'a

^ s 3 ) 8 } ^ ( 0 < a < H - ( 7 )

Thus in suitable circumstances we have

/ = R g , g = $ / . (8)

More precisely, there are the following results from Miller [5].* We shall work
where possible in Lx[0, \ir] (briefly, L1); the following discussion concerns
arbitrary functions, not having regard to their phytological interpretations.

1°. If g G L1 and / is defined by / = ®g, then / is differentiable on [0, \TT],
and

* g(«)cos«/tan2a - tan2/? • da,

( 0 < ^ < i 7 r ) , (9)
and

/'(0) =/'(!») = 0; (10)

fIn that paper it was only asserted that /'(0 + 0) = f'(\n - 0) = 0; but the stronger assertion (10)
can be verified without great difficulty.
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moreover /"(/?) exists for almost all /? in [0, \tr\, f" is measurable, and

f cos3/?(/(/*)+/"(/*))= r/2(tan2«"tan2)3r1/2cosag(«)^. (11)

Thus ® certainly maps into I}. Since K is bounded on the square [0, \ir]2, ^ is a
bounded linear operator on L1.

2°. @ is one-one on L1.
3°. If / is any twice-differentiable function on [0, \TT] such that / " is absolutely

continuous and

then § / e L1 and

Thus if / has the stated properties then the function g = $ / is the unique
solution in L1 of the equation Sg = / .

These results show that the contact frequency function / must be assumed to
be sufficiently smooth to possess a third derivative in I}, and must moreover
satisfy (10). Not every such function / can arise as a contact frequency function,
since there is the further condition g(a) > 0 for 0 < a < \m to be satisfied. We
do not examine that condition in this paper.

While ® is bounded, its inverse $ is not, and this fact is the main source of
difficulty in the analysis.

In view of the above results, we introduce the following function spaces:

X= { / e C 1 [ 0 , H : / ' ( 0 ) = / ' ( i w ) = 0, /"existsa.e.

on [0, \m\ and is measurable},

Y — {/ e X: f" is absolutely continuous on [0, \TT\ }.

Then

YcX, ft: L1 -> X, ^-.Y^L1

and

®£ = 8y. the identity on Y. (12)

On a suitable subspace Z of L1 we also have § ® = ^ z. It can be shown that

4°. §®g = g if, for example, g satisfies the conditions
(i) g' exists and is continuous on (0, |w),

(ii) g(a) = o(sec3a) as a -» \m,
(iii) /0"/2|g(a)|cos2aJa < oo, /0"/2|g'(«)|cos3ada < oo.
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So far as formalities are concerned, this and the ensuing analysis are simplified
by changing from variables a, /? to variables x, y by putting

tan2a = x, tan2y9 = j> (13)

and introducing functions

p(y) = - | s i n ^ ( 0 ) (0 < fl < ^,0<y< oo), (14)

<l(x) = g(a)/(2tanasec3a) (0 < a < |TT,0 < x < oo). (15)

Then the equation g = § / asserts that q is the l^th derivative of (2/ir)p; more
precisely,

(16)
" * X

(Miller [5], §3).

3. The action of $ on trigonometric polynomials

Suppose now that / is a trigonometric polynomial of the form

/()3) = Fo + Fx cos 2/8 + F2cos40 + • • • +FNcos2N/i. (17)

We show that then g = § / is a trigonometric polynomial of the form

g(a) = Gosina + G1sin3a + G2sin5a + • • • +GNsin(2N + l )a ; (18)

and we obtain formulae for the coefficients Gk in terms of the coefficients Fj. The
result is formulated as Theorem 1, below.

Note that / in (17) does belong to Y, since (10) holds. Indeed, the only
trigonometric sine or cosine terms whose derivatives vanish at 0 and \m are those
of the form cos 2k$, so (17) is the appropriate form to adopt for / , and moreover
is completely general.

The passage by § from (17) to (18) is not direct; the peculiar form of the
operator § makes it better able to handle even powers of sines, than cosines of
multiple angles. So as a preliminary to calculating § (cos 2/:(•))( a), we first
express cos2kfi as a polynomial in sin2/} and then calculate §(sin2-')(a). For the
first step there is the following formula:

* ^-"t+y-i'
cos2kp= 1 + k V ( - 1 ) — . , „

y-i J \ 2J~

= 0 , l ,2 , . . . ) . (19)
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Proof. Equate real parts in de Moivre's identity for (cos/? + /sin/?)2*; this
gives

y-0 /=0 v

For the terms 0 < _/( < k), the inside sum

= coefficient of 0 in (1 + t^2)2k{\ - ty
(k-J+1)

= coefficient of t> in (1 + tx/2)k+J~\\ - t
l/2y(k-J+1)

'k+j-1

+ y - i

This proof is due to G. A. Watterson. Next, we have

LEMMA 1. Forj = 0,1,2, 3 , . . . , and 0 < a < {-n,
J ( i \ ( I _i_ 1 A/-»/̂ c 2/ ^

(20)

y - l)sino -iF^-j,!; i ; cos2a).
In particular,

a) = 2sina, $(sin2)(a) = 2sina(-l + 4cos2a). (21)

Proof. The direct route is probably also the shortest. Take f(.P) — sin27/? in
(7); change to variables x, y as in (13); after some calculation we obtain, when

j j } dy,

where

Aj = 2j{2j - l)(2j - 2), Bj = 67(2y - 1),

q = (2j + l)2j(2j - 1), £> = 3(2j + l)(2y - 1).
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[71 The foliage density equation revisited 393

For the integrals here, there is the formula (Erdelyi et al. [4], p. 201, (8))

n(y-x)-1/2y°(l+yy*dy
JX

- a;
r(r-o)

(22)

valid when T — a > \ and x > 0. Using this on each of the four terms and
combining the results, we end up, after more heavy algebra, with the equation
(20). Separate verifications show that (20) holds also when j = 0 and 1, giving
(21).

The terms sinacos2/a in (20) can be expressed as trigonometric polynomials of
the required type by the formula

sin«cos2 /a= ^ l 2 / +

(23)

So finally we have, using (19), (20) and (23):

g(a) = ( § / ) ( « )

N
(a)E Fkcos2kp

= E Fkll+k£ (-iV
\

N N

= E *•*" E

J

k

J' ( 1V+V/ + "H ""2/
a

A = 0 A = l 7

N k 727 - I / fc- + 1 - 1

(24)
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394 John Boris Miller [8]

By judicious rearrangement of the summations we can express this in the form of
a sum with respect to m, from 0 to N, that is, in the form (18), and so obtain a
formula for the coefficients Gm in terms of the Fk. The result is (after a trivial
change of notation)

Gj= I.\jkFk (j = 0,l,...,N) (25)
k-j

where

Xo* = 2 for k = 0 ,1 ,2 , . . . , / / (26)

and

(27)

for _/ = 1, 2 , . . . , N and j ^ k 4 N. Put AyA. = 0 for A: < 7.
Write r = k — j , and Sr(y) for the generalized hypergeometric function

(evaluated at 1) which appears here, so that

l)\(j + r)(2j + r - l)\

(28)

Sr(j) is the sum of a finite series. Although the parameters in it do not reduce the
3F2 to any of the standard types for which there is a known representation as a
rational fraction of gamma functions, nevertheless such a representation seems to
exist. Using a Burroughs B6700, B. J. Milne has obtained the following formulae,
valid at least for r = 0, 1, ...,12 and all j > I. There are separate forms for
r = 2s + 1 and r = 2s, s integral, > 1:

S2,+iU) =
I2 • 32 • 52 • • • (2s - 1)2(2* + 1)

(29)

S
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The quadratic factor in (30) has real linear factors if and only if s = 0 or 1.1 have
not been able to prove (29) or (30) for arbitrary s, but it is reasonable to assume
that they are true generally, and we proceed on that assumption. Substituting in
(28) and simplifying, we obtain formulae for XJk, namely

1)^(> + 2, + l)(2j
J

+
+^ir (3D

(s\) (2s - 1)

(j + 2s)(j + s)\2(2f +(4s + 1)7 + 4s2 - l)
(j + s)-(2j + 2s + l)l

for s = 0,1, 2, To sum up, we have

THEOREM 1. Let f be the trigonometric polynomial (17). Then g, defined to be $ /
as in (7), is equal to the trigonometric polynomial (18); the coefficients Gj are given
in terms of the coefficients Fk by

Gj=T.\JkFk 0 = 0 ,1 ,2 , . . . , TV),
k-j

where the Xjk are given by (26) and (27), and more simply by (31) and (32). In
particular,

Go = 2 L ^ = 2/(0). (33)

Some remarks are in order.
1°. The numbers \jk do not depend upon N. Even if the terms of the sequence

Fo, Fv..., do not depend upon N, nevertheless the numbers Go, Gv... depend
upon N.

2°. The top left-hand corner of the infinite matrix A = (Ayyt) is shown in
Table 1. The diagonal elements

Jj~~ (2j - 2)! 0 - 1 , 2 , . . . ) (34)

are negative, all elements for j < k are positive. From (31) and (32) we deduce
that

Urn Xyr = 2(2y + 1), (35)
r—ao
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whereas from (34)

XJJ ~ -27T1/2/3/2 as 7 - ^ 0 0 . (36)

Table 2 shows the form of A in the vicinity of a diagonal element: -JH denotes
Xjj, for a fixed j . All the elements shown are thus of order j 3 / 2 or j 1 / 2 as 7 -> oo.

TABLE 2

2 7 - 3 2j-3 (2j - 3) (2j - 3)(j + 2)(2j2 + j + 5)

2(7 + 1 ) / 4 0 + 1)M 2 ( 2 7 - 1 ) / 8(2> - 1)7(7 + 1)(27 + 1) M

2 y - 3 1 , 7 + 2
2/ t (27 + 1 ) 0 + 1)^
2 7 + 2

27=1" TFT"
-2)

3°. If the leading terms in (25) dominate, we can write it as

r. • 2 „ , 7 + 2 „ 2Q + 3)

so formally,

\ J J I

4°. J. R. Philip [7] established results equivalent to the equation g = § / when
/ , g are as in (17), (18), for the cases N = 0, 1, 2, 3. Our results cover the case of
general N, and express g as an ordinary trigonometric polynomial (Philip was
content to express g as a sum of the form EJLO^: sin a cos 2 7a for these low values
of TV).

4. / and g as Fourier series

Suppose now that / is taken to be the sum of a Fourier series

00

f(P) = E Fkcos2kp (0<J8<^TT) (39)
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398 John Boris Miller [ 121

rather than a trigonometric polynomial; can g be represented by a series
g(a) = I.JL0GjSia(2j + l)a for suitably defined coefficients G} (recall that in §3
the numbers Gj depend upon a chosen N)l

First we make an a priori definition of the coefficients Gp different from their
meanings in §3; namely,

G/.= £ V v (40)
k-j

Their existence is ensured by

THEOREM 2. Let (Fk) be any sequence of reals for which Y.kFk converges; then
for each j = 0 , 1 , . . . , the series (40) converges. If T.kk

5/2\Fk\ converges then
T,J\GJ\ converges, and so

£ Gj sin(2j + 1)« (41)
7=0

converges uniformly to a continuous function.

Proof. Let </>„ = ££_0 Fk. An Abel transformation gives
M M-\

L \kFk = -KJA-I + Z (*M - \,k+i)4>k + \M*M- («)
k-j k=y

Using (31), (32) we can show that X k — Xj k+l = O(k~2) for fixed j as k -* 00;
it follows that (40) converges when the sequence (</>„) does.

From the definition of Gj we have

ZW^ t\Fk\-t\\jk\. (43)
j-0 k-0 7=0

An asymptotic formula for the sequence of numbers

Dk:= I IVI (44)
7-0

can be guessed with the help of a computer, as follows. If k is even, k = 2t
(t = 1,2, . . .) , we get after some heavy algebra from (31), (32):

(f)

2 ( 1 6 / 2 - 1) , , / 3 n . 3 3

24t+1(2t + l)(4f - l)(2f)!2

+ (4/)!
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[13] The foliage density equation revisited 399

For k odd, k = It + 1 (t = 0,1,2,...), we get instead

2(4/ + 1)(4/ + 3) ( 3 5 3 _

{ 2«+\2t + !)(/ + 1)(2Q!2
 ( 4 6 )

B. J. Mihie has shown using a B7800 that in each of (45) and (46) the first term is
2t2 as t -» oo; the second term is therefore dominant in each case (as Table

1 suggests), and we find

D \\]k\ ~ 4nl/2kV2 ask^oo. (47)
7 = 0

Thus if Y.k ks/2\Fk\ converges, (43) shows that Ey-|Gy| converges.
It remains to establish sufficient conditions under which the sum (41) is

(£/)(«)•

THEOREM 3. Let (Fk)k<BN be any sequence such that the series Y.kk
5/2\Fk\

converges. Let f be the L1 function defined by

f(P) = t Fkcos2kP (0<j8«i*), (48)

and write

Gj=t\kFk (y = 0,1,...). (49)
k-j

Then for the function g defined by

g(a)= £ G,sin(2y+l)a (50)
7 = 0

we have / = ®g. / / moreover T.kk
1/2\Fk\ converges then g = § / , and g is the

foliage density function corresponding to f.

To prove this we need further notation. With Gj and g defined as stated, write
now GN j for the sum (25) (previously denoted by Gj) and write

/*(/*)= E Fkcos2kP, (51)
A-0

N N

§N(") = E GjSin(2j + l)o, gN(a) = £ GNJsin(2j + l)a

7-0 7=0

for these partial sums. Theorem 1 says that

8s = «/w, /w = &8N- (52)
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Let || • || denote the L1 norm. The following lemmas use the assumptions in the
theorem.

LEMMA 2. Forj = 0,1,2,..., N and k = N + I, N + 2,... we have

N + 2

The set of numbers Xjk here is the set of elements of the matrix A making up a
top righthand submatrix with XN N+1 as the lower lefthand corner element. The
inequality in (53) can be read for low values of N from Table 1. A laborious
comparison of values of Xjk for fixed j or for fixed k using (31) and (32) leads
eventually to the result (53). We omit the details.

LEMMA 3. limA,^00(gAr(a) - gN(a)) = 0 uniformly for a e [0, \w].

Proof.

\gN{a)-gN{a)\* E|G,-GWJ
7 = 0

N oo

\Fk\
l

by Lemma 2. The sum here is o(N~5/2), so (36) gives the result.

Proof of the theorem, continued. We have \\gN - gN\\ -» 0 by Lemma 3, and
\\8N ~ g\\ ~* 0 by Theorem 2, so \\gN - g\\ -* 0. Since K is a bounded operator,

II/ ~ ®g\\ = lim||/AT - Kg|| = lim||@gN - Kg|| < || K|| • lim||gN - g|| = 0 ,

so /(/?) = Kg(y3) almost everywhere, in fact everywhere since both functions are
continuous.

Now suppose that Hkk
1/2\Fk\ converges. This ensures that g is differentiable

and g'(«) = £"=o(2./ + 1)6 cos(27 + l)a, the series converging uniformly on
[0, \ir\. This is sufficient to ensure that the conditions (i)-(iii) of §2,4° are
satisfied, so from / = Kg we deduce § / = £Kg = g.
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5. Conclusion

The estimation of the foliage density function g from the experimentally
estimated contact frequency function / can be done if / can be approximated to
sufficient accuracy by a trigonometric polynomial (17). The calculated form of g,
namely (18) where the G/s are given by (25), should be reliable provided the
sequence of coefficients (Fk) is rapidly decreasing, say

Fk = O(Ar(9/2+E))

for some positive £. However, because § is an unbounded operator there exists
no simple inequality between the L1 norms of g - gN (or g - gN) and f - fN

enabling the rate of convergence of the former to be deduced from that of the
latter.
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