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Abstract

The problem of withdrawing water through a line sink from a region containing
an homogeneous fluid beneath a free surface is considered. Assuming steady, ir-
rotational flow of an ideal fluid, solutions with low Froude number containing a
stagnation point on the free surface above the sink are sought using a series substi-
tution method. The solutions are shown to exist for a value of the Froude number
up to a critical value of about 1.4. No solutions of this type are found for Froude
numbers greater than this value.

1. Introduction

This paper considers the steady irrotational withdrawal of a homogeneous
incompressible and inviscid fluid through a line sink beneath a free surface.
In a fluid of infinite depth, the flow is determined by a single parameter, the
Froude number, defined as F = m/(gH3)1^2, where m is the strength of
the sink, H is the depth of the sink beneath the undisturbed level of the free
surface and g is the acceleration caused by gravity.

Solutions have been found previously for the case in which the Froude
number is large, and the free surface is drawn down into a cusp shape directly
above the sink (see Fig. 1), for many differing geometries. In the case of a
fluid of infinite depth, these solutions were found to exist only at a single
value of the Froude number ([2], [5], [12]), while in the case of a fluid of
finite depth, they were found to exist over a range of values of Froude number
between some lower bound (usually unity), and infinity ([3], [6], [7], [9], [13]).
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FIGURE 1. Definition sketch for the problem under consideration. The two possible free
surface shapes are shown, a cusp shape and a stagnation point above the sink. These are a
comparison of the actual solutions at F = 1.4 (stagnation point) and F = 3.56 (cusped
shape). The sink is situated at y = -1.0 on the scale of this diagram.

For the geometry examined in this paper, a Froude number of 3.56 produced
the only cusp-like solution [12].

At low values of Froude number, approximate solutions have been com-
puted which have a stagnation point on the free surface above the sink (see
Figure 1). Peregrine [11] computed solutions as a perturbation about the
undisturbed level of the free surface for small values of the Froude number.
This method developed inconsistencies as F was increased, and in fact the
series was found to be divergent, indicating the solutions were only asymp-
totically valid. Vanden-Broeck, Schwartz and Tuck [14] attempted to sum a
divergent series to obtain solutions, but they also encountered difficulties as
the value of the Froude number was increased, with a singularity appearing
on the free surface.

Tuck and Vanden-Broeck [12] mention briefly that they attempted to com-
pute solutions with a stagnation point using their series method, but that small
waves of apparently numerical origin appeared on the computed free surface
as F was increased. Their series method was very successful in computing
the cusp-like solutions, however, and variations upon it were used success-
fully on different geometries by other researchers [5], [13].

These results for flows with a stagnation point suggest that there may be
some upper bound upon the existence of these solutions as the Froude number
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is increased. In the analogous three-dimensional axisymmetric flow into a
point sink, Forbes and Hocking [4] obtained a limiting solution with a Froude
number approximately equal to 6.4, in which a secondary stagnation point
formed on the free surface a small distance from the primary stagnation
point. No solutions were obtained for larger values of the Froude number.

It is possible to show [12] that the only solutions which can exist to this
problem are those with a cusp and those with a stagnation point on the free
surface above the sink. In the analogous problem of the flow of two layers of
different density, the interface is drawn down directly into the sink, entering
at some finite angle (Imberger [8], Wood and Lai [15]), at Froude numbers
above a certain critical value.

In the case of a fluid of finite depth, Mekias and Vanden-Broeck [10], have
found stagnation-point solutions for Froude numbers greater than a value of
about 1.2.

In this paper, the series substitution method of Tuck and Vanden-Broeck
[12] is used to compute solutions with a stagnation point on the free sur-
face above the sink in a fluid of infinite depth. The difficulty of spurious
small waves on the surface is reduced if enough coefficients in the series are
computed, and the results reveal that the waves are a sign of the imminent
breakdown of the numerical scheme when more coefficients are used.

Section 2 of this note describes the method of Tuck and Vanden-Broeck,
and the results of the numerical method and some discussion are given in
Section 3.

2. Series substitution method

The series-solution method of Tuck and Vanden-Broeck is described in
[12], but for completeness we repeat it below.

We seek a complex potential f(z) — <p(x, y) + iy/(x, y) for the steady
irrotational flow of an inviscid incompressible fluid of infinite depth, situated
beneath a free surface. A line sink of strength m is situated a distance H
beneath the free surface. The above assumptions lead to a requirement that
the potential satisfies Laplace's equation,

V2<f>(x,y) = 0, (1)

within the flow domain or equivalently that / (z ) be analytic. The condition
that the fluid can not cross its own surface leads to the kinematic boundary
condition on the free surface, y - rj(x),

iA-i = C (2)
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and the condition that the pressure be constant on the free surface, obtained
from the Bernoulli equation, is

S?W + (^ + $ / 2 = C, (3)

where C is an arbitrary constant.
If we set the value of the constant in (3) to be zero, the elevation of the

free surface will be zero at the stagnation point. At large distances from the
sink, the flow will slow to zero, and the free surface will tend toward the
stagnation level. The choice of this constant sets the origin of the coordinate
system to be at the stagnation level, directly above the sink, and the sink to
be situated at y = -H.

Denning a length scale m2^/(Sn2g)1^ , and a velocity scale (mg/n)l/3,
(3) becomes

j + (<!>?+ 4>'}) = o, (4)
where the dashes denote nondimensional variables. Using these variables,
the forms of (1) and (2) are unchanged. Henceforth we shall omit the dashes
from the nondimensional variables. This choice of scales means that the
Froude number is given by

F = (8 ; r>o) 1 / 2 . (5)

where b0 is the nondimensional depth of the sink. We define a new complex
variable t so that

ef = 4t/(t+\)2, (6)

and represent z — x + iy as a series in powers of t of the form

for some real coefficients b. to be determined. The equivalent domains for
the / , z, and t planes are shown in Figure 2. The flow is symmetric about
the line x = 0 .

The choices for (6) and (7) automatically satisfy the flow equations (1) and
(2) if the bj are real, and (4) will later be used to obtain the unknown values
of bj, j = 0,1,2... . Thus as t —> 0 , z —> -ibQ and / —• ln(z + ib0),

and represents a sink of strength In located at z = -ib0. As t —> - 1 ,
/ —• 2 In z , which is correct since the compression of the flow beneath the

free surface makes the flow look like that of a line sink of strength An at the
origin when viewed from the far field.

The real axis of the /-plane is pure imaginary in the z-plane, and hence
corresponds to a vertical line passing through the sink. The right half of the
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FIGURE 2. Mapped planes used in the problem formulation;
(a) the complex velocity potential /-plane,
(b) the lower half f-plane, and (c) the physical z-plane.

flow domain in the z-plane maps to the lower half of the unit circle in the
/-plane, and the free surface thus corresponds to the boundary of the circle,
i.e. t = e~' , 0 < 6 < n. The stream function y/ is equal to zero on the
free surface.

The magnitude of the velocity on the free surface is given by
w

y | / ( ) | ,
which can be written as |/(0l/ |z '(0l on t = e~w , 0 < 6 < n, and hence
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(4) becomes

' " ' 2 ^ - 0 , (8)
t- 1
r + l

2 dz
dt

on t = e 'e , 0 < 8 < n . Substituting for dz/dt and writing in terms of 6
we obtain, following Tuck and Vanden-Broeck [12],

P(8;bj) = 0, 0<9<n, (9)

where

P(6;bJ)=Y(9) + A2
4
e
Si«2°2d ,

and

;=0

b+U-\) cos je + jcos(j- 1)6],

j=o

and the problem reduces to that of finding the real values of b which satisfy
the condition that P(d; bj) = 0 .

To avoid numerical difficulties at 6 = 0 and 6 - n, we investigate the
limits as these values are approached. The condition that P(6; b}) - 0 at
0 = n is satisfied if

(-l)J[2j- 1)6, = 0. (10)
7=0

To obtain a stagnation point at 0 = 0, the condition

f>, = 0, (11)

which is equivalent to z = 0 at £ = 1, must be satisfied.
The combination of (9), (10) and (11) gives the required conditions for

the problem, and it remains to find the 6, . This can be done by truncating
the infinite series to Af terms, bx,b2,b2, ... ,bN. The Froude number is
specified by the value of b0 and hence b0 has a known value. Requiring
(10) and (11) to hold and (a) to hold at 6 = jn/(N- 1), for j=l,2...N-
2, gives Â  nonlinear algebraic equations in ./V unknowns, and solution of
this system is equivalent to satisfying the condition of constant pressure on
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the free surface (4). Starting with guessed values for the bj, a Newtonian
iteration scheme can be used to solve the nonlinear systems.

3. Results

Tuck and Vanden-Broeck [12], in search of solutions with a stagnation
point, found "the presence of short waves, which steepen as F increases,
and these solutions seem to be confined to F2 < 4 ".

Using the series method, solutions without such waves were easily obtained
for values of 0 < F < 1 by computing solutions for small N and then suc-
cessively doubling N. In all cases, a set of coefficients which had given con-
vergence at TV = 120, immediately gave convergence at N = 240,480, . . . .
This means that with 120 coefficients the solution had converged at least to
machine accuracy (14 figures in this case.) For larger values of the Froude
number, solutions were obtained by successively incrementing F and using
results at the previous Froude number as a starting guess. In this manner, so-
lutions up to and including F — 1.4 were obtained. Solutions with F < 1.3
were highly converged. For values of F between 1.3 and 1.4, no spurious
numerical effects were obvious, either in the behaviour of the coefficients or
the results, but the solutions were not so well converged. Near the top of this
range, with N = 240, numerical waves of the kind described by Tuck and
Vanden-Broeck [ 12] began to appear, and these increased in amplitude until
the failure of the numerical scheme at around F = 1.5 . Solutions at larger
Froude numbers were not obtainable.

The results described above have been confirmed using an integral-equation
formulation similar to that described in Forbes and Hocking [4]. The solu-
tions obtained using this alternative formulation, with 240 discrete points
approximating the integral, were found to exist for 0 < F < 1.4, and once
again waves began to appear near the top of this range of the Froude number,
foreshadowing the breakdown of the solution procedure.

Figure 3 shows the free surface computed for the cases in which F = 0.5 ,
F — 1.0 and F — 1.42, the last being the largest at which the solutions were
successfully calculated without any numerical waves present. In all cases the
sink is situated at y — - 1 .0 .

The trough situated at x ~ 1.0 deepens as the Froude number increases,
but there is nothing in the shape of the free surface which indicates physi-
cally why the breakdown should occur, such as a secondary stagnation point,
as found in Forbes and Hocking [4], or the formation of a corner at the
stagnation point, as suggested by Peregrine [11]. It is perhaps possible that
the reasonably sudden failure of the numerical method at about F = 1.42
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FIGURE 3. The shapes of the free surfaces computed with F = 0.5 , F = 1.0 and F = 1.42 ,
the largest value of the Froude number at which steady flows of this type were obtained without
numerical waves. The figure is scaled so that the sink is situated at y = - 1 . 0 .

could be due to the presence of a fold singularity in the nonlinear branch
of solutions of this problem, similar to that observed by Vanden Broeck and
Keller [13] (their Figure 4) for the solution type having a cusp at x = 0.
To test this hypothesis, we have written a modified version of the present
algorithm, in which the first Fourier coefficient bx is specified, and the
Froude number F obtained numerically as part of the solution procedure.
This modification should be capable of detecting a fold singularity if one is
present near F — 1.42, especially in view of the fact that the present spectral
method should experience no difficulty converging even to the unstable solu-
tion branch anticipated beyond the fold. However, this modified algorithm
did not detect any such fold, but likewise failed rather suddenly at a point
corresponding to about F — 1.4. We are therefore prepared to conjecture
that the nonlinear branch of solutions is ultimately limited by a singularity at
about F = 1.42; its nature and physical significance are at present unknown.

A picture is emerging of the fluid behaviour as the sink is turned on and the
Froude number increased. At low Froude numbers, flows with a stagnation
point exist, and these persist until the Froude number approaches 1.4. No
steady solutions appear to exist for 1.4 < F < 3.56, suggesting the existence
of some unsteady transition flow between the stagnation point flows and the
single cusped solution at F = 3.56 [12]. Figure 1 shows the difference in free-
surface shape for the limiting stagnation-point flows and the cusp-like flows.
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For values of F greater than 3.56, the free surface is probably drawn down
further toward the sink, meaning no solutions to the free-surface problem
are possible, since the velocity at the sink must become infinite. When there
are two layers of fluid present, however, flows in which the interface between
the layers enters the sink directly are possible, and in this case, situations in
which both fluids are drawn into the sink are probably realised.

4. Summary

The numerical results of the present paper lend strong support to the sug-
gestion that steady solutions possessing a stagnation point at the free surface
do indeed exist, in the approximate interval 0 < F < 1.4. The results ob-
tained by the Fourier-series method detailed here have been confirmed to a
high degree of accuracy using an entirely different approach based on the use
of an integral equation. For small Froude numbers, accurate results may be
produced with a small number of Fourier coefficients, but near the limiting
value F = 1.42, it has been found necessary to employ a very great number
of them in order to maintain accuracy. Some evidence for the presence of a
limiting singularity at about F — 1.42 has been described. It must, however,
be admitted that there is controversy concerning the very existence of this
type of solution, which our numerical results cannot entirely dispel. There is
thus a clear need for a formal existence proof for this type of solution, which
possesses a stagnation point at the free surface.
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