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Abstract

We prove that a nonreal algebraic number θ with modulus greater than 1 is a complex Pisot number if and
only if there is a nonzero complex number λ such that the sequence of fractional parts ({<(λθn)})n∈N has
a finite number of limit points. Also, we characterise those complex Pisot numbers θ for which there is a
convergent sequence of the form ({<(λθn)})n∈N for some λ ∈ C∗. These results are generalisations of the
corresponding real ones, due to Pisot, Vijayaraghavan and Dubickas.
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1. Introduction

A Pisot number is a real algebraic integer greater than 1 whose other conjugates are of
modulus less than 1, and a complex Pisot number is a nonreal algebraic integer with
modulus greater than 1 whose other conjugates, except its complex conjugate, are of
modulus less than 1 [2].

As usual we denote, respectively, by {·}, ‖ · ‖, S and Sc the fractional part function,
the usual distance of a real number to Z, the set of Pisot numbers and the set of
complex Pisot numbers. Throughout, when we speak about conjugates, the minimal
polynomial, say Mθ, the trace and the degree of an algebraic number θ, without
mentioning the basic field, this is meant over Q.

It seems that the first two papers that discuss complex Pisot numbers explicitly
are due to Kelly [15], generalising Salem’s result [17] that S is closed, to show that
S ∪ Sc is also closed, and to Chamfy [8], proving that ‘the smallest’ element of Sc

has modulus
√
θ0 = 1.15 . . . , where θ0 is the smallest Pisot number [2]. In fact, the

generalisation of Dufresnoy and Pisot’s algorithm [12], proved in [8], has been used
by Garth [14] to classify small elements of Sc and to deduce that there is no limit
point in the set of complex Pisot numbers with modulus less than 1.17. Recall also
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that the related work of Cantor [7], concerning certain k-tuples of algebraic integers,
contains a generalisation of Dufresnoy and Pisot’s characterisation of the limit points
of S [11], and the paper of Samet [18] is essentially concerned with complex Pisot
numbers as limit points of complex Salem numbers. A complex Salem number is
a nonreal algebraic integer with modulus greater than 1 whose other conjugates,
except its complex conjugate, are of modulus at most 1, and having a conjugate with
modulus 1. Recently, Bertin and the author [3] have shown that the family of complex
Pisot numbers generating a nonreal number field is a complex Meyer set.

Another of Pisot’s results about the distribution modulo one of powers of real
numbers asserts that if the set, say L = L(θ, λ), of limit points of the sequence
({λθn})n∈N, where λ is a nonzero real number and θ is a real algebraic number greater
than 1, has a finite number of limit points, then θ ∈ S and λ ∈ Q(θ) [16]. A weaker
theorem, due to Vijayaraghavan [20], yields also that a real algebraic number θ > 1
is a Pisot number when limn→∞ ‖λθ

n‖ = 0 for some λ ∈ R∗. More details about these
last two results may be found in [23]. Considering the inverse problem, Dubickas [10]
obtained many results about the sets L(θ, λ) when θ ∈ S and λ ∈ Q(θ). The first one
implies immediately that L(θ, λ) is a finite subset of Q. Also, [10, Theorem 4] shows
that, for any θ ∈ S, there is λ ∈ R∗ such that Card(L(θ, λ)) = 1 if and only if |Mθ(1)| ≥ 2
or θ is a strong Pisot number. A Pisot number θ, with degree d, is said to be strong if
d = 1, or if d ≥ 2 and θ has a real positive conjugate which is greater than the absolute
values of the d − 2 remaining conjugates of θ [4].

In the present paper, we are concerned with a generalisation of the above-mentioned
results of Pisot, Vijayaraghavan and Dubickas to the complex case. By analogy with
the real case, we denote by L(θ, λ) the set of limit points of the sequence ({<(λθn)})n∈N,
where θ is a nonreal (complex) algebraic number and λ is a nonzero complex number.
The first assertion in Theorem 1, below, is a characterisation of the elements of the set
{(θ, λ) | θ ∈ Sc, λ ∈ Q(θ) and λ , 0} among all pairs having a first coordinate which is a
nonreal algebraic number with modulus greater than 1 and a nonzero complex second
coordinate.

Theorem 1.1. Let θ be a nonreal algebraic number with modulus greater than 1 and
let λ be a nonzero complex number. Then the following equivalences hold.

(i) The set L(θ, λ) is finite⇔ θ ∈ Sc and λ ∈ Q(θ).
(ii) limn→∞ ‖<(λθn)‖ = 0 ⇔ θ ∈ Sc and λ = 2β/θN M′θ(θ) for some β ∈ Z[θ] and

N ∈ N ∪ {0}.

Here, the notation M′θ(θ) means the usual derivative of the polynomial Mθ, evaluated
at θ. The following result may be viewed as a nonreal version of the above-mentioned
result of Dubickas.

Theorem 1.2. Let θ be a nonreal algebraic number of modulus greater than 1. Then
there is a nonzero complex number λ such that L(θ, λ) is a singleton if and only if θ is
a complex Pisot number satisfying one of the following conditions:

(i) θ is quadratic;
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(ii) the degree of θ is at least 3 and θ has a real positive conjugate which is greater
than the absolute values of the d − 3 remaining conjugates of θ belonging to the
unit disc;

(iii) Mθ(1) ≥ 2;
(iv) the degree of θ is at least 4 and θ has two real conjugates with the same modulus

which is greater than the absolute values of the d − 4 remaining conjugates of θ.

It is worth noting that a related well-known characterisation of Pisot and Salem
numbers (see for instance [6, Theorem 3.9]) asserts that a real algebraic number θ > 1
is a Pisot number or a Salem number if and only for any ε > 0 there is λ ∈ R∗ such that
‖λθn‖ < ε for all n ∈ N. A Salem number is a real algebraic integer greater than 1 whose
other conjugates are of modulus at most 1, and having a conjugate with modulus 1. By
the same arguments as in the proof of Theorem 1.1, we easily obtain the following
analogous result.

Theorem 1.3. Let θ be a nonreal algebraic number of modulus greater than 1. Then
θ is a complex Pisot number or a complex Salem number if and only if for any ε > 0
there is a nonzero complex number λ such that ‖<(λθn)‖ < ε for all n ∈ N.

It is easy to see that the degree of a complex Salem number θ is at least 6, the
conjugates of θ, other than θ, θ, 1/θ and 1/θ, have modulus 1 and the sequence
({<(θn)})n∈N is dense modulo one. To make clear the proof of the theorems, we prefer
to describe, in the next section, the set L(θ, λ), where θ ∈ Sc, λ ∈ Q(θ) and λ , 0.
This allows us, in particular, to show the inverse implications in Theorem 1.1(i) and
in Theorem 1.2. Theorem 1.3, and the remaining parts of the Theorems 1.1 and 1.2,
are proved in Section 3. We shall use algebraic tools from [21, 23], instead of Fatou’s
lemma and the residue theorem (usually used in the real case; see for instance the proof
of [2, Theorem 5.4.1] or the proof of [6, Lemma 2.2]), to show the direct implications
in Theorems 1.1 and 1.3. All computations are done using PARI [1].

From now on, suppose that θ is a nonreal algebraic number with modulus greater
than 1, σ1, σ2, . . . , σd are the distinct embeddings of Q(θ) into C, θ1 := σ1(θ) = θ,
θ2 := σ2(θ) = θ, . . . , θd := σd(θ) and |θ1| = |θ2| > 1 ≥ |θ3| ≥ |θ4| ≥ · · · ≥ |θd | when θ
is a complex Pisot number or a complex Salem number. We denote the minimal
polynomial of θ by Mθ(x) := ad xd + ad−1xd−1 + · · · + a0 ∈ Z[x].

2. On certain sets L(θ, λ)

Here we assume that θ ∈ Sc, λ ∈ Q(θ) and λ , 0. To describe the corresponding set
L(θ, λ), we shall follow the same scheme as in [10], with minor modifications.

Let B = B(θ, λ), ∈ N and N ∈ N be such that

tn := Trace(Bλθn) ∈ Z

for all n ∈ N ∩ [N,∞). Since adθ
d + ad−1θ

d−1 + · · · + a0 = 0, we also have adBλθn+d +

ad−1Bλθn+d−1 + · · · + a0Bλθn = 0 and so

adtn+d + ad−1tn+d−1 + · · · + a0tn = 0 for all n ≥ N.
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Thus, T := (tn)n≥N is a linear recurrence sequence with companion polynomial Mθ.
Moreover, as Trace(Bλθn) =

∑d
j=1 σ j(Bλθn), we see that

{<(2λθn)} =
tn
B
− [<(2λθn)] −

d∑
j=3

θn
jσ j(λ), (2.1)

where [·] is the integer part function. Since the sequence (tn (mod B))n≥N is eventually
periodic (see for instance [9] or [22]), there are two rational integers p ≥ 1 and q ≥ 0
such that tn+p ≡ tn (mod B) for all n ≥ max(N, q). Setting b1 . . . bp for the period of
(tn (mod B))n≥N , we deduce that the set R := {r1, . . . , rs} of distinct terms of the
sequence (tn (mod B))n≥N , occurring infinitely often, satisfies R = {b1, . . . , bp} ⊆

{0, 1, . . . , B − 1} and, using (2.1), we easily obtain the following assertion.

Proposition 2.1. With the notation above,

L(θ, 2λ) ⊆ {r1/B, . . . , rs/B, 1} ⊆ {0, 1/B, . . . , (B − 1)/B, 1}.

Moreover, if 0 < R, then L(θ, 2λ) = {r1/B, . . . , rs/B} ⊆ {1/B, . . . , (B − 1)/B}.

Consider, for example, the polynomial Mθ(x) = x3 + x2 − 1. Then Mθ is the
reciprocal polynomial of the minimal polynomial of the smallest Pisot number, and
θ satisfies condition (ii) of Theorem 1.2. Thus, by Proposition 2.2 below, L(θ, 2) = {1}.
If we set, for instance, λ := 1/2 and B := 2, then the sequence (tn (mod 2))n≥0 is purely
periodic with period 1110100, R = {0, 1} and L(θ, 1) ⊆ {0, 1/2, 1} and so L(θ, 1) =

{1/2, 1}, since the conjugate of θ with modulus less than 1, namely 1/θ0, is positive. A
similar computation gives L(θ, 2/3) = {1/3, 2/3, 1}, L(θ, 1/2) = {1/4, 1/2, 3/4, 1} and
L(θ, 2/5) = {1/5, 2/5, 3/5, 4/5, 1}. To obtain more information about the cardinality
of the sets L(θ, λ), we may prove, similarly as in [25], a correspondence between the
elements λ of the field Q(θ) and the linear recurrence sequences with rational integer
terms and companion polynomial Mθ, but this is far from our main objective. The
result below describes some sequences of the form ({<(λθn)})n∈N, having only one
limit point.

Proposition 2.2. Suppose that the complex Pisot number θ satisfies condition (i)
(respectively (ii), (iii), (iv)) in Theorem 1.2. Then L(θ, 2) = {0} (respectively L(θ, 2) =

{1}, L(θ, 2/(1 − θ)M′θ(θ)) = {1/Mθ(1)}, L(θ, 2 + 2θ) = {1}).

Proof. When d = 2, it is clear that {<(2θn)} = 0 for n ≥ 1, so L(θ, 2) = {0}. If d ≥ 3,
θ3 > |θ4|, λ := 1 and B(θ, 1) := 1, then the relation (2.1) yields

{<(2θn)} + θn
3

(
1 +

d∑
j=4

(θ j/θ3)n
)

= sn ∈ Z

for all n ≥ 1. Hence, sn = 1 for n sufficiently large and so limn→∞{<(2θn)} = 1.
Similarly, if d ≥ 3, θ3 ∈ R, θ4 ∈ R, |θ3| = |θ4| > |θ5|, λ := 1 + θ and B(θ, 1 + θ) := 1,

then θ4 = −θ3 and
∑d

j=3 θ
n
jσ j(λ) has the same sign as 2θn

3 = (1 + θ3 + 1 + θ4)θn
3
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(respectively as 2θn+1
3 = (1 + θ3 − 1 − θ4)θn

3) when n is a sufficiently large even
(respectively large odd) rational integer. So, by (2.1), {<(2λθn)} +

∑d
j=3 θ

n
jσ j(λ) = 1.

Thus, limn→∞{<(2λθn)} = 1 and L(θ, 2 + 2θ) = {1}.
Finally, suppose that Mθ(1) ≥ 2, and set λ := 1/(1 − θ)M′θ(θ) and B := cMθ(1) for

some c ∈ N in a way that makes tn ∈ Z for all n ∈ N (for instance, choose c so that
c/(1 − θ)M′(θ) ∈ Z[θ]). Then an easy calculation shows that tn = c for all n ≤ d (see also
[21, Lemma 4]) and so tn ≡ c (mod B) for all n ∈ N, since (tn)n∈N is a linear recurrence
sequence with companion polynomial Mθ. It follows that p = s = 1, R = {c} and the
second assertion in Proposition 2.1 gives immediately L(θ, 2λ) = {c/B} = {1/Mθ(1)}. �

3. Proofs of the theorems

Proof of Theorem 1.1. (i) Suppose that the sequence ({<(λθn)})n∈N has a finite
number of limit points, say l1, . . . , lr, and let ε be a positive real number satisfying
the inequality ε < 1/

∑
0≤ j≤d |a j| and another relation, stated later in (3.6).

Similarly to the proof of [6, Theorem 2.5], Kronecker’s approximation theorem
shows there is a b ∈ N satisfying ‖bl j‖ < ε/2 for all j ∈ {1, . . . , r}, and so there exists
N1 ∈ N such that ‖<(bλθn)‖ < ε for all n ≥ N1. From now on, assume that n ≥ N1.
Writing

<(bλθn) = kn + εn, (3.1)

where kn ∈ Z and |εn| < ε, we have, from the equations bλθn ∑
0≤ j≤d a jθ

j = 0
and bλθn ∑

0≤ j≤d a jθ j = 0, that
∑

0≤ j≤d a j<(bλθn+ j) = 0 and
∑

0≤ j≤d a jkn+ j =

−
∑

0≤ j≤d a jεn+ j, and so |
∑

0≤ j≤d a jkn+ j| ≤ ε
∑

0≤ j≤d |a j| < 1. Hence,

a0kn+ j + a1kn+1 + · · · + adkn+d = 0,
a0εn+ j + a1εn+1 + · · · + adεn+d = 0

and consequently there are complex numbers ζ1, ζ2, . . . , ζd such that

εn = ζ1θ
n
1 + ζ2θ

n
2 + · · · + ζdθ

n
d. (3.2)

By considering the dual base {γk := (
∑d

j=1+k a jθ
j−1−k)/ad M′θ(θ) | k ∈ {0, . . . , d − 1}} of

the base {1, θ, . . . , θd−1} of Q(θ), which satisfies the matrix equation

[σ j(γl−1)]1≤ j≤d
1≤l≤d

[θ j−1
l ]1≤ j≤d

1≤l≤d
= Id, (3.3)

where Id is the identity matrix, and j and l denote, respectively, the row and column
numbers (for more details, see [23, Lemma 1]), we have the following relation,
deduced from (3.2),

[θ j−1
l ]1≤ j≤d

1≤l≤d


ζ1θ

n
1
...

ζdθ
n
d

 =


εn
...

εn+d−1


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and then ζ jθ
n
j = σ j(γ0)εn + σ j(γ1)εn+1 + · · · + σ j(γd−1)εn+d−1 for all j ∈ {1, . . . , d}, and

|ζ j| ≤ εd(max( j,l)∈{1,...,d}2 |σ j(γl−1)|)/|θ j|
n. Also, we may also suppose, without loss of

generality, that the first t conjugates of θ have modulus greater than 1 and the remaining
ones belong to the closed unit disc. Then the last inequality gives immediately that
ζ1 = ζ2 = · · · = ζt = 0. Furthermore, we have, by (3.1),

(b/2)λθn + (b/2)λθn − ζ3θ
n
3 − · · · − ζdθ

n
d = kn,

[θ j−1
l ]1≤ j≤d

1≤l≤d



bλθn/2
bλθn/2
−ζ3θ

n
3

...
−ζdθ

n
d


=



kn

kn+1
kn+2
...

kn+d−1


and, using (3.3),

λ =
2(γ0kn + γ1kn+1 + · · · + γd−1kn+d−1)

bθn ∈ Q(θ) (3.4)

and ζ j = −(σ j(γ0)kn + σ j(γ1)kn+1 + · · · + σ j(γd−1)kn+d−1)/θn
j = −σ j(bλ/2) for all

j ∈ {3, . . . , d}. Thus, the other conjugates of the algebraic number λ are λ2 := λ and
λ3 := −2ζ3/b, . . . , λd := −2ζd/b and so t = 2, since otherwise ζ3 = 0, implying that
λ = 0.

If a designates a nonzero rational integer that makes the numbers 2aγ0/bλ and
2aγ1/bλ, . . . , 2aγd−1/bλ algebraic integers, we see from (3.4) that aθn is an algebraic
integer for all n ≥ N1. It follows, from [23, Lemma 4], that θ is an algebraic integer
and consequently θ is a complex Pisot number or a complex Salem number.

To conclude the proof, assume, on the contrary, that θ has a conjugate, say θd, with
modulus 1, and consider, similarly to the argument in [6, Lemma 2.2], the polynomial
Q(x) := (x − θ1)(x − θ2) · · · (x − θd−1) =

∑d−1
j=0 δ jx j and the quantity q defined by

q := δd−1εn+d−1 + δd−2εn+d−2 + · · · + δ1εn−1 + δ0εn which satisfies

|q| < ε
d−1∑
j=0

|δ j| < ε2d−1|θ|2. (3.5)

From (3.2), q =
∑d−1

j=0 δ j(ζ1θ
n+ j
1 + · · · + ζd−1θ

n+ j
d−1 + ζdθ

n+ j
d ) =

∑d
k=0 ζkθ

n
k Q(θk) and so q =

ζdθ
n
dQ(θd) = ζdθ

n
d M′θ(θd), since Q(θ1) = · · · = Q(θd−1) = 0. Hence, |q| = |ζd M′d(θd)| =

b|λd M′d(θd)|/2 and it follows, by (3.5), that b|λd M′θ(θd)|/2d |θ|2 < ε. Letting

ε ≤
min1≤ j≤d |σ j(λM′θ(θ))|

2d |θ|2
, (3.6)

we immediately obtain a contradiction. Thus, θ is a complex Pisot number, and this
completes the proof of Theorem 1.1(i), since Proposition 2.1 asserts that L(θ, λ) =

L(θ, 2(λ/2)) is finite when θ ∈ Sc and λ ∈ Q(θ).
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(ii) The condition limn→∞ ‖<(λθn)‖ = 0 implies that L(θ, λ) ⊂ {0, 1}. So, from
Theorem 1.1(i), θ ∈ Sc and, if we set b = 1 in the proof of Theorem 1.1(i), then (3.4)
yields λ ∈ 2Z[θ]/θN M′θ(θ). Conversely, suppose that θ ∈ Sc and λ ∈ 2Z[θ]/(θN2 M′θ(θ))
for some N2 ∈ N. Then (λ/2)θN2 ∈ Z[θ]/M′θ(θ) and so we have, from [23, Lemma 2],
that Trace((λ/2)θN2θn) ∈ Z for all n ∈ N ∪ {0}. Thus, Trace((λ/2)θn) ∈ Z for all n ≥ N2,
and the result follows immediately, by Proposition 2.1, with B(θ, λ/2) := 1, since
L(θ, λ) = L(θ, 2(λ/2)) ⊂ {0, 1}, implying that limn→∞ ‖<(λθn)‖ = 0. �

Proof of Theorem 1.2. As signalled in the introduction, the inverse implication in
Theorem 1.2 follows from Proposition 2.2. To prove the direct implication, consider
a nonreal algebraic number θ with modulus greater than 1, and a nonzero complex
number λ′ such that the corresponding set L(θ, λ′) contains a unique element, say l.
Clearly, Theorem 1.1(i) gives θ ∈ Sc and λ := λ′/2 ∈ Q(θ) and so we have, with the
notation of Section 2, that s = 1 and l = r1/B (respectively l ∈ {0, 1}) when r1 , 0
(respectively r1 = 0).

Now assume, on the contrary, that θ does not satisfy any of the conditions (i)–(iv)
in Theorem 1.2. Then d ≥ 3, and the case r1 , 0 cannot hold, since otherwise the
equations tn (mod B) = r1, where n ≥ N, yield r1Mθ(1) ≡ 0 (mod B) and so Mθ(1) ≥ 2
(recall that (tn)n∈N is a linear recurrence sequence with companion polynomial Mθ

and Mθ(1) ≥ 1 for all θ ∈ Sc). Thus, r1 = 0 and (2.1) gives {<(2λθn)} + Rn ∈ Z,
where Rn =

∑d
j=3 θ

n
jσ j(λ). Hence, there is an N1 ∈ N such that {Re(λ′θn)} + Rn = 0

(respectively {<(λ′θn)} + Rn = 1) for all n ≥ max{N, N1} when l = 0 (respectively
l = 1).

To obtain a contradiction, we shall prove that the sequence (Rn)n∈N contains
infinitely many positive terms and infinitely many negative terms. This happens, in
particular, when |θ3| > |θ4|, as in this case θ3 is a negative real number. Recall also by
[24, Theorem 2], generalising a result of Smyth [19], that θ has at most four conjugates
with the same modulus, and so to conclude we shall consider the following three cases.

Case 1: |θ3| = |θ4| > |θ5|. Then θ3 = θ4. Setting θ3 := ρeiπt and σ3(λ) := ηeiπs, where
(t, s, ρ) ∈ [0, 1]3, η > 0 and i2 = −1, we see that the sign of Rn is that of cos(s + nt)π for
n sufficiently large. Hence, Rn will be both positive and negative for infinitely many
n when t < Q (see also the proof of [10, Theorem 2]). Now suppose that t is rational.
Then there is v ∈ N such that ζ := eiπt is a primitive vth root of unity. Because the vth
roots of unity, namely ζ, ζ2, . . . , ζv = 1, are uniformly distributed on the unit circle,
then so are the numbers eiπ(tk+s) when k runs through the set {1, . . . , v}. Thus, there is
(a, b) ∈ {1, . . . , v}2 such that<(eiπ(ta+s))<(eiπ(tb+s)) < 0, and a simple calculation shows
that Rnv+aRnv+b < 0 when n is sufficiently large, that is, Rn is both positive and negative
for infinitely many n.

Case 2: |θ3| = |θ4| = |θ5| > |θ6|. Then one of the three conjugates θ3, θ4 and θ5 of θ is
real and so, from a theorem of Ferguson [13], generalising a result of Boyd [5], there
is a P ∈ Z[x] such that Mθ(x) = P(x3). Thus, θ has three distinct conjugates, namely θ,
jθ and jθ, where j2 + j + 1 = 0, with modulus greater than 1.
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Case 3: |θ3| = |θ4| = |θ5| = |θ6|. By the above-mentioned result of Ferguson, we see
that none of the numbers θ3, θ4, θ5 and θ6 is real, since otherwise Mθ(x) = P(x4) for
some P ∈ Z[x], and so θ has more than two conjugates with modulus greater than 1.
Setting, for instance, θ3 = θ4, θ5 = θ6, θ3 := ρeiπt, σ3(λ) := ηeiπs, θ5 := ρ′eiπt′ and
σ5(λ) := η′eiπs′ , where (t, t′, s, s′, ρ, ρ′) ∈ [0, 1]6 and (η, η′) ∈ (0,∞)2, we see that the
sign of Rn is that of η cos(s + nt)π + η′ cos(s′ + nt′)π for n sufficiently large. By the
same argument as in the first case, we see that Rn is both positive and negative for
infinitely many n if the numbers t and t′ are Q-linearly dependent and, using again
Kronecker’s approximation theorem, we easily see that the quantities cos(s + nt)π and
cos(s′ + nt′) may be both positive and both negative for infinitely many n when t and
t′ are Q-linearly independent. �

Proof of Theorem 1.3. Let θ be a complex Pisot number or a complex Salem number.
Then, by the result of [3] mentioned above, there is a complex Pisot number, say α,
generating the fieldQ(θ). Let ε > 0 and let N1 ∈ N be such that

∑
3≤ j≤d |α j|

N1 < ε. Then,
for each n ∈ N, we have

∑
3≤ j≤d |α

N1
j θ

n
j | < ε and |Trace(αθn) − <(2αN1θn)| < ε and so

‖<(λθn)‖ < ε for all n ∈ N, where λ = 2αN1 .
To prove the converse, fix a positive real number ε less than

∑
0≤ j≤d |a j| and set

<(λθn) = kn + εn, where kn ∈ Z and |εn| < ε. Then, in the same way as at the beginning
of the proof of Theorem 1.1(i), we find an N ∈ N such that the sequences (kn)n≥N and
(εn)n≥N are linear recurrence sequences with companion polynomial Mθ and conclude
that θ is a complex Pisot number or a complex Salem number. �
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