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ABSTRACT 
During engineering design, different representations are used to convey information about a systems' 
components, functionality, spatial layout, and interdependencies. These varying representations may 
have an impact on the interpretation of a system and consequently the decision-making process. This 
paper presents a research study that tries to capture these different interpretations by investigating how 
designers divide a system into subsystem clusters. These subsystem clusters can be considered partitions 
of a set-in combinatorial mathematics. Given designers' subsystem clusters for three products across 
three representation modalities, three different analysis methods for finding the most likely partition 
from observed data are presented. Analysis shows that the Variation of Information analysis method 
gives the most coherent and consistent results for the search of a most likely cluster. In addition, 
differences in clustering behaviour are observed based on representation modality. These results show 
that the way an engineer or designer chooses to represent a system impacts how that system is 
interpreted, which has implications for the decision-making process during engineering design. 
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1 INTRODUCTION 

Systems thinking is critical to the engineering design process. With increasingly complex technology 

in a highly connected society, designers must be able to understand, interpret, and leverage complex 

socio-technical systems. Large scale problems such as resource scarcity and climate change demand 

engineering solutions that are innovative and sustainable. These challenges have prompted research on 

complex engineered systems and reemphasized the importance of systems thinking as a topic of 

research. Recent work has proposed system models for agricultural resource conservation (Barlow et 

al., 2021), extended system design tools to consider users and context of the design problems (Liem, 

2017), and proposed a multi-level system life cycle approach for the development of smart products 

and services (Forte, Göbel and Dickopf, 2021). Moreover, the rapid integration of physical and digital 

systems in manufacturing (Wichmann, Eisenbart and Gericke, 2019), and the emergence of cyber-

physical-social systems (Zeng et al., 2020) compels designers to manage multidisciplinary information 

at a system level. In addition to increasing design complexity, this also raises new questions for 

designing manufacturing systems (Waschull et al., 2020).  

Systems thinking is influenced by the manner used to represent an engineering system. Various 

methods for representing models of systems have been proposed and employed throughout literature. 

The Systems Modelling Language (SysML) has been proposed as a general modelling language that 

supports hardware and software elements (Friedenthal, Alan and Steiner, 2008). Early-stage 

representations focusing on functional decomposition have been a recurring topic of research (Hirtz et 

al., 2002; Erden et al., 2008; Summers, Eckert and Goel, 2017). System representations developed 

using set theory and graph-based approaches have also been used (Shai and Preiss, 1999; Buede and 

Miller, 2016). Given the many possible ways that a designer or engineer can choose to represent a 

system, it is important to understand how each representation modality impacts system understanding, 

influences communication, and interacts with existing mental models of the system. Despite these 

various representation tools, it is not well understood how modality impacts behaviour during the 

engineering design process.  

This paper builds from the prior work and presents a research study that takes strides towards 

understanding the relationship between representation modality and modeling behaviour through an 

experimental study. This study leverages a subsystem clustering task with an associated design prompt 

to explore these relationships. Analysis and results focus on an exploration of methods to determine 

the most likely clustering pattern given participants' responses to the design task. The most likely 

clustering pattern refers to a partition that best fits the observed data set. These explored methods 

provide insight into the impact of representation modality on systems thinking behaviour across 

different systems. The primary research questions addressed in this work are: 

RQ1: To what extent does representation modality affect system interpretation given a design task? 

RQ2: What methods are most effective for determining a most likely partition of a set of 

elements that represent a system? 

To address these research questions, an experimental study was designed to focus on clustering 

behaviour at the subsystem level. Three potential analysis methods for finding a most likely partition 

of the given systems are explored. 

2 BACKGROUND 

Functional decomposition in engineering design is described followed by an overview of mathematical 

concepts foundational to the analysis presented in this paper. The research presented in this paper 

builds from prior work (Murphy et al., 2022; Patel et al., 2022). 

2.1 Functional decomposition 

Functional decomposition is a common strategy in engineering design to represent a system or a 

product in terms of function instead of form (Otto and Wood, 2003; Pahl et al., 2007; Dieter and 

Schmidt, 2009). A kind of functional decomposition called functional modeling is taught in 

engineering design classrooms to systematically represent engineering systems. Functional modeling 

research has focused on how to best teach students the technique (Nagel et al., 2015), formalization of 

language used to describe functionality (Stone and Wood, 1999; Hirtz et al., 2002), and its use for 
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analogy-based design (Qian and Gero, 1996). The authors of this paper have also contributed to this 

body of work by applying functional modeling to research studies on mental models (Murphy et al., 

2019) and how individual differences impact modeling behaviour (Patel and Summers, 2021). 

Functional models serve as one of the primary modalities for system representation implemented in 

the research study presented in this paper. The functional models in this work follow a traditional 

EMS (energy-material-signal) flow convention with functions described as verb-noun pairs. Abbott 

and Lough report on a study that connects physical system components to functional modeling through 

an educational tool (Abbott and Lough, 2007). The connection between physical components and 

functional decomposition is also present in this study as the chosen representation modalities. 

2.2 Partitions of a set 

Partitions of a set refer to a collection of subsets where each element appears within those subsets 

exactly once (Halmos, 1998). The subsets that comprise a partition of a set are often referred to as 

blocks, parts, or cells of the partition. In this paper, we will refer these subsets as clusters. Given a set 

of 5 elements, Figure 1 shows all the possible partitions of the set that can be generated. Note that 

clusters with only a single element are without shading. 

 

Figure 1: This shows the 52 possible partitions of a set with 5 elements (Piesk, 2011). 

Participants in this study were similarly tasked with creating a set partition by indicating which 

elements from a system representation should be clustered together. In the design task, participants 

were instructed that an element could not belong to multiple clusters and each element had to be 

within a cluster even if the cluster only had a single element. The methodology section provides 

details on the design task and the study context. 

2.2.1 Bell number 

The Bell Number counts all possible unique partitions of a set with exactly 𝑛-elements (Kai, 1997). 

The Bell Numbers, typically denoted as 𝐵𝑛, form a sequence of integers (i.e. 1, 1, 2, 5, 15, 52, 203, 

877, …). There are many mathematical applications for Bell Numbers such as the total rhyme schemes 

given 𝑛-lines of poetry or the distinct ways numbers can be factored into distinct primes (Gardner, 

1978). A common procedural method for calculating the Bell Numbers is through the creation of a 

Bell Triangle (Gardner, 1978). Alternatively, a generating function 𝐵(𝑥) can be used that encodes the 

Bell Numbers as an infinite sequence of coefficients of a power series as shown in equation (1).  

𝐵(𝑥) = ∑
𝐵𝑛

𝑛!
𝑥𝑛 = 𝑒𝑒

𝑥−1∞
𝑛=0  (1) 

For the representations presented in this study, the hair dryer, mixer, and toilet representations have 

Bell Numbers of 21147, 678570, and 4140 respectively. These Bell Numbers correspond to the total 

possible unique ways that participants could have completed the design task given the number of 

system elements in the representation. This list of all possible unique partitions will be generally 

referred to as a Bell List throughout this paper.  

2.3 Variation of information 

Several methods are available for comparing two partitions of a set. For instance, partitions may be 

cast as ordered pairs, which enables the use of pairwise distance measures such as cosine distance, 

Minkowski distance, or Hamming distance. Alternatively, partitions can be represented as text strings 
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which can be compared using Levenshtein distance (Wagner and Fischer, 1974). Similarly, 

transforming the partitions into bipartite graphs can enable the use of graph theory-based approaches 

for comparing two partitions (Sanfeliu and Fu, 1983; Stauffer et al., 2017). Set partitions discussed in 

this paper correspond to how participants understand a system with respect to their identification of 

subsystems. As such, the number of clusters and inclusion of elements in clusters are key aspects of 

interpretation. Using ordinal distance measures or comparing edit distance between strings may not be 

appropriate. While transformation to bipartite graphs preserves the clustering, it requires an additional 

layer of manipulation.  

Alternatively, an information theory-based approach, using Variation of Information, has been 

proposed to compare partitions or clusters of sets (Meilă, 2007; Rossi, 2011). Variation of 

Information, or shared information distance, describes a method to determine the theoretical distance 

between two different partitions. This has been used to compare subspace clustering (Patrikainen and 

Meila, 2006) and to compare clustering methods for grouping design behaviours (Rahman et al., 

2018). This mitigates the need to transform set partitions into other representations and allows for 

direct comparison of information content in the partitions. 

3 METHODOLOGY 

For additional details and discussion about the study design, please refer to prior work on this topic 

(Murphy et al., 2022; Patel et al., 2022). The specific methods explored to find a most likely partition 

that represents the observed data set are described in Section 4 for organizational clarity. 

3.1 Study context 

This study was conducted at a university in northern Germany that offers a broad variety of 

undergraduate and graduate degree programs. The university emphasizes interdisciplinary collaboration 

throughout its programs. Participants for this study were students enrolled in an introductory engineering 

design course that lasts about 14 weeks. This course focuses on engineering skills such as free-hand 

sketching, engineering graphics, and descriptive geometry. The students come from degree programs 

such as mechanical engineering, industrial engineering, biomedical engineering, mechatronics, and some 

teaching degrees. Data collection occurred during the first week of the 14-week fall 2022 semester. 

Of the students enrolled in this course, 72 students voluntarily participated in the research study. Of 

these 72 students, 61 identified as male and 11 identified as female. 68 of the 72 students reported that 

German is their native language. The study materials for data collection were translated from English 

into German by members of the research team fluent in both languages. 41 reported as being 1st year 

students, 14 as 2nd year students, 6 as 3rd year students, and 10 as being 4th year or more. Participants 

in the study beyond their 2nd year are likely transfer students or those who have changed degree 

programs, but this data was not collected. 

3.2 Study design & procedure 

In this study, three systems were selected for data collection. A hair dryer, a food mixer, and a 

standard toilet were chosen for a few reasons. First, these three systems are common household 

products such that most participants likely have some experience with them. Basic familiarity ensured 

that participants would have at least a rough mental model of the product and its functionality. Second, 

the three products relate to prior work. Specifically, the hair dryer has been used to measure mental 

model completeness as it relates to functional decomposition (Murphy et al., 2019, 2020). The toilet 

was also used in this prior work, but as an example for how to complete the mental model task itself. 

The toilet was chosen because it shared little functional similarity to the other chosen products of that 

work (a clothes dryer and a vacuum cleaner) (Murphy, 2021). The research team has extensive 

experience studying the engineering design process through human subject studies, which informed 

the selection of the three products (hair dryer, mixer, toilet) presented in this paper. 

Each of the three products was given to participants through three different representation modalities. 

Namely, a component graph, a function graph, and a function structure. The component graph shows 

an arrangement of internal components as images in locations where you might expect to see them if 

you were looking at a section-view of the product. The function graph replaces these components with 

functions (verb-noun pairs) in the same spatial locations as the component graph. These first two 

representations share spatial information but differ in the vocabulary used to describe elements. The 
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third representation is referred to as a function structure. This representation preserves the functions 

from the function graph but rearranges them to form a more typical spatial layout expected from 

conventional functional modelling practices. In this study, the function structures were intentionally 

biased to have a left-to-right flow (with inputs at the left and outputs at the right) for consistency. 

Across all three representations, flow information (represented in the standard energy-material-signal 

notation) was preserved.  

All three products were shown in the three representations resulting in a total of nine possible 

configurations (product-representation pairs). Each participant in the study received a packet with 

instructions for how to complete the assignment, examples for how to complete the clustering tasks, and 

three of the nine configurations. In other words, participants saw each of the products and each of the 

representations once. The three constructed packets were distributed to the participants randomly. For a 

complete description of the design task and prompt, see (Murphy et al., 2022; Patel et al., 2022).This 

paper reports on results from this research study with a total sample size of n = 72. Since the participants 

were divided into three groups randomly, sample sizes for each product-representation pair range from 

21 to 27. The range of product-representation pairs sample sizes comes from participant packets that had 

to be removed from the data set because of errors in task completion or incomplete data. 

4 ANALYSIS & RESULTS 

Analysis of this data focuses on a search for a most likely partition for each product-representation 

pair to investigate if representation modality impacts systems thinking. This section discusses the three 

analysis methods used to determine a most likely partition. Each analysis method is described 

followed by the results of the analysis method with some interpretation. Limitations of each method 

are described. In-depth interpretation of these results is reserved for the discussion section. 

To support analysis of partitions and clusters, a Cluster List and a Bell List was generated for each of 

the three products. As previously mentioned, the Bell List contains all possible partitions for a given 

set. Since the number of elements varied between products (between 8 and 11 elements), separate Bell 

Lists were generated. Similarly, a list of all possible subsets (clusters) was generated for each product. 

These Cluster Lists can be generated by recursive applications of n-choose-k over the list of elements. 

The number of all possible clusters for any given set follows (2𝑛 − 1), where 𝑛 is the number of 

elements in the set. The number of elements, number of possible clusters, and the Bell Number for 

each product are presented in Table 1.  

Table 1: Information about each product for data analysis 

 Hair Dryer Mixer  Toilet 

# of Elements 9 11 8 

Possible Clusters 511 2047 255 

Bell Number 21147 678570 4140 

 

For each product-representation pair, the Cluster List and Bell List were populated with the 

frequencies of each observed cluster and observed partition, respectively. A Bell Frequency Array and 

Cluster Frequency Array were then generated for each representation across all three products for a 

total of nine arrays for each.  

4.1 Element cluster frequency 

The first approach used to determine the most likely partition is based on the frequency of observed 

clusters. For each element in the set, the Cluster Frequency Array is filtered to include only the 

clusters that contain the given element. The filtered array is then queried for the maximum value, 

which is kept for creating the most likely partition. The process is then repeated for all elements in the 

set. Clusters with maximum frequency for each element were then used to generate a partition of the 

set. This process was repeated for each product-representation pair. In Figure 2 (left) below, the result 

of the analysis for the hair dryer component graph using the element cluster frequency method is 

shown.  
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Figure 2. Result for the hair dryer component graph (left) and the mixer function graph 
(right) from the element cluster frequency analysis. 

Initially, this method appears to give a coherent result. For the hair dryer component graph show in 

Figure 2 (left), each element of this partition is within exactly one cluster as expected and the clusters 

include elements that are spatially adjacent to each other (see (Patel et al., 2022)). In other cases, 

partitions generated using this method contained elements that belonged to multiple clusters. The 

resulting partition for the mixer function graph is shown in Figure 2 (right). This analysis method is 

unable to separate the clusters in a manner where they are distinct and non-overlapping. This occurs 

because an individual element is observed in multiple clusters where those clusters' frequencies are 

highest (i.e. C is most commonly with D {CD}, D is most commonly with C {CD}, and E is most 

commonly with D and E {CDE}). Inconsistencies can also occur when an individual element is in 

multiple clusters with equal frequency (i.e. A is found with B {AB} and C {AC} with equal frequency). 

While this analysis method does represent the observed data when considering each element's cluster 

frequency individually, it does not yield a most likely model that matches the design task itself (non-

overlapping clusters). These inconsistencies were observed in 7 of 9 possible representation modalities 

across the three systems. Given this outcome, other analysis methods were explored.  

4.2 Observed partition probability 

The second approach evaluated the likelihood of observing any given partition in the Bell List given 

the observed clusters in participants' data. As shown in equation (2), a joint probability of all the 

clusters was computed to determine the partition probability.  

𝑃(𝑋) = ∏ 𝑃(𝑥𝑖)
𝑁
𝑖=1  (2) 

In equation (2), 𝑋 represents a partition with clusters 𝑥1, 𝑥2…𝑥𝑁, and the probability of each cluster is 

obtained from the Cluster Frequency Array. This is similar to the first approach where the frequency 

of clusters observed is used to construct a partition. However, in this case, the focus is on the whole 

partitions rather than the individual elements. This approach yields a probability for each possible 

partition rather than focusing on the observed cluster frequencies. The partition with the maximum 

probability is selected as the most likely partition for the set. Table 2 shows the most likely partitions 

obtained for each product-representation pair.  

Table 2: Most likely observed partitioning by probability 

 Hair Dryer Mixer Toilet 

Component Graph {abegi}{cdfh} {abc}{dehi}{fgjk} {ad}{bcfg}{eh} 

Function Graph {abei}{cdfh}{g} {ab}{cdefg}{hijk} {abcdfgh}{e} 

Function Structure {abei}{cdfh}{g} {abh}{cdefg}{ijk} {acf}{bdg}{eh} 

 

The observed partition probability analysis method yielded most likely partitions without any 

overlapping clusters. The results of this analysis clearly show differences in clustering behaviour 

based on representation modality. For example, comparing most likely partitions for the hair dryer 

component graph {abegi}{cdfh} with the function graph {abei}{cdfh}{g}, element "g" had a higher 
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probability of being included with "a", "b", "e", and "i" {abegi} for the component graph and a higher 

probability of being clustered alone for the function graph {g}. The only two representation 

comparisons that yielded the same partitioning was the hair dryer's function graph and function 

structure {abei}{cdfh}{g}. All other comparisons showed differences.  

While promising, the results of this analysis method still held some issues worthy of skepticism. The set 

of observed participant partitions had a wider variety than expected (a larger sample from the complete 

Bell List of possible partitions). This caused the frequencies of unique observed partitions to be quite 

low, therefore leading to very small partition probabilities. The method also favors partitions with fewer 

clusters, which is not desirable. Notably, the toilet's component graph yielded that highest partition 

probability at 5.62E-04. For the most complex system (the mixer), probabilities were at least an order of 

magnitude smaller. Given these small probabilities, a third analysis method was implemented.  

4.3 Observed variation of information 

The third approach relies on information distance to determine the most likely partition. Each partition 

in the Bell List is compared to partitions generated by the participants. The variation of information 

metric is used to determine a distance between partitions (Meilă, 2007) as shown in equation (3).  

𝑉𝐼(𝑋; 𝑌) = −∑ 𝑟𝑖𝑗[log(𝑟𝑖𝑗/𝑝𝑖) + log(𝑟𝑖𝑗/𝑞𝑗)]𝑖𝑗  (3) 

In equation (3), 𝑝 and 𝑞 refer to the length subsets in partitions 𝑋 and 𝑌, respectively. The length of 

intersection between sets corresponding to 𝑝 and 𝑞 is represented by 𝑟. Finally, 𝑝, 𝑞, and 𝑟 are 

normalized by the number of elements in the set. For each product-representation pair, an 𝑚 × 𝑛 

matrix of distances is generated, where 𝑚 is the Bell Number for the product and 𝑛 is the number of 

participant responses for that product-representation pair. A row-wise mean of the matrix gives the 

average distance from observed partitions to each partition in the Bell List. The partition 

corresponding to the minimum distance is then selected as the most likely partition. Table 3 shows the 

partitions from the Bell List with the least average variation of information when compared to the 

observed set of participant partitions. 

Table 3: Set partitions with the smallest variation of information 

 Hair Dryer Mixer Toilet 

Component Graph {abei}{cd}{fg}{h} {ab}{c}{deh}{fgjk}{i} {af}{bdg}{c}{eh} 

Function Graph {ai}{b}{cd}{eg}{fh} {ab}{cde}{fg}{h}{ijk} {a}{bcf}{d}{eh}{g} 

Function Structure {ae}{b}{cdfh}{g}{i} {ab}{cd}{eh}{fgjk}{i} {a}{bc}{d}{eh}{f}{g} 

 

Similar to the observed partition probability method, the most likely partitions do not have 

overlapping clusters. The variation of information method also shows differences between 

representation modalities for each of the three systems. For example, the component graph and 

function graph for the hair dryer yielded Bell List partitions with the least informational differences of 

{abei}{cd}{fg}{h} and {ai}{b}{cd}{eg}{fh}, respectively. The resulting partitions from this analysis 

show differences based on representation modality for each of the three systems measured. Table 4 

shows the average information distance for each of the product-representation pairs. They are coded 

such that green indicates the smallest distance and red indicates the largest distance. 

Table 4: Normalized information distance for most common set partitions  

 Hair Dryer Mixer Toilet 

Component Graph 0.290 0.255 0.240 

Function Graph 0.292 0.215 0.340 

Function Structure 0.264 0.258 0.320 

 

The mixer's function graph {ab}{cde}{fg}{h}{ijk} yielded the smallest information distance across 

all three systems and representation modalities. This result is somewhat surprising given that the mixer 

is considered by the research team to be the most complex of the three systems with 11 elements. 

Spatially, this result makes intuitive sense given that the clusters consist of elements located near each 

other. Figure 3 shows the resulting mixer function graph from the variation of information analysis. 
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Figure 3. Result for the mixer function graph from the variation of information analysis. 

Compared to Figure 2 (right) showing the mixer's function graph from element cluster frequency 

analysis, the partition shown in Figure 3 shows notable differences using the variation of information 

method. Notice that the nested clusters in Figure 2 (right) have been resolved in Figure 3 to give a 

coherent partition of the set. While it might seem that the nested clusters have simply been 

incorporated into their encompassing cluster, this is not the case for other representations. For 

example, the toilet function structure showed overlapping clusters of {af} and {ad} using the element 

cluster frequency analysis. Using the variation of information method, these have been resolved into 

{a}{d}{f}. In this case, the variation of information method yields a non-overlapping most likely 

partition that is coherent and accounts for variability in the set of observed participant partitions. 

5 DISCUSSION 

The results of this work have explored the strengths and weaknesses of three different methods for 

finding a most likely partition for a subsystem clustering task in an engineering design context. The 

Element Cluster Frequency method found likely cluster configurations from the set of observed 

clusters but was unable to parse cases of overlap. The Observed Partition Probability method resolved 

this issue by focusing on observed partitions instead of observed clusters. However, the frequencies of 

unique observed partitions were unexpectedly low, therefore leading to small probabilities and some 

skepticism. Lastly, the Variation of Information method considered informational distance of the 

observed set of partitions against the entire Bell List. This strategy allowed for the potential discovery 

of partitions that best match the observed partition set without assuming that the most likely partition 

had to be within the set of observed participant partitions. 

All three analysis methods showed differences in clustering behaviour based on representation modality, 

which extends the authors' prior work (Murphy et al., 2022; Patel et al., 2022) and partially addresses the 

first research question. A deeper analysis that investigates specific factors that lead to differences in 

clustering behavior is left to future work. This has implications for how designers and engineers choose 

to represent systems, especially during troubleshooting, when dealing with highly complex systems or in 

high-risk scenarios. In response to the second research question, the Variation of Information method is 

the most consistent and representative of the observed data. The method gives a most likely partition that 

does not have overlapping clusters and is not assumed to be within the set of observed partitions. In 

future work, this could be used to converge on a most likely partition for more complex systems and 

serves as a foundation to assess other factors that may influence systems thinking. 

This work is subject to a few limitations. First, the search for a most likely cluster inherently assumes 

that a most likely cluster exists. Of course, this may not be the case. Additional analysis and larger 

sample sizes are needed to investigate whether a most likely cluster theoretically exists. Second, the 

representations chosen are a small subset of possible representations that might be used to model a 

system, namely a component graph and functional decompositions. Different designers will create 

differing functional models for the same product and will also differ in how they spatially arrange the 

flows and functions. The research presented in this paper suggests that designers should be deliberate 

when deciding what modality is most appropriate for a given system and context because it impacts 
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system interpretation, specifically at the subsystem level as shown in the results of this research. Third, 

engineering components are not necessarily forced into exclusive subsystem clusters outside of the 

context of this study. This restriction was implemented to highlight the impacts of representation 

modality. The results would likely be different if an element was allowed to belong to multiple clusters.  

6 CONCLUSIONS 

The research study presented in this paper has shown differences in modeling behaviour dependent on 

representation modality through three different analysis methods. The Variation of Information analysis 

method yielded the most consistent and coherent results during the search for a most likely partition of 

system elements given designer-generated data. Moving forward, this method will be used for further 

analysis to investigate which aspects of the representation most strongly relate to differences in observed 

clustering behavior. In addition, the results of this study are consistent with the authors' prior work that 

suggested representation modality, spatial arrangement, and subsystem connectivity impact system 

interpretation. Future work is underway that explores what factors may influence the observed 

differences in clustering behavior (e.g., spatial arrangement). These results make a significant stride 

towards understanding how these different factors influence systems thinking.  

For complex systems in a hyper-connected world, different modeling behaviours could have a huge 

impact on how designers interpret, troubleshoot, describe, and understand engineering systems, which is 

particularly important when dealing with high-stakes engineering scenarios. This work contributes to a 

larger research endeavour that aims to understand the different aspects of systems thinking and how 

related factors influence the engineering design process. Exciting future work is planned that compares 

engineers and designers from different backgrounds, explores how individual differences impact 

subsystem interpretation, and how systems thinking behaviour relates to mental models of systems. 
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