NONEXISTENCE OF STABLE CURRENTS IN SUBMANIFOLDS OF A PRODUCT OF TWO SPHERES

Xue-shan Zhang

Dedicated to Professor Yuen-da Wang on his 68th birthday
By using techniques of the calculus of variations in geometric measure theory, we investigate the nonexistence of stable integral currents in $S^{n_{1}} \times S^{n_{2}}$ and its immersed submanifolds. Several vanishing theorems concerning the homology group of these manifolds are established.

0. Introduction

For any compact Riemannian manifold M, a theorem of Federer and Fleming [2] tells us that any non-trivial integral homology class in $H_{p}(M, Z)$ corresponds to a stable integral current. By establishing a second variation formula for minimal integral currents and applying it to different situations of M, Lawson and Simons [3] investigated the nonexistence of stable integral currents in M and showed some vanishing theorems concerning the p th singular homology group $H_{p}(M, Z)$ of M with integer coefficients. For an immersed submanifold M of the unit sphere S^{n}, they showed the following theorem.

Theorem. (Lawson and Simons [3]). Let M^{m} be a compact submanifold of S^{n} with the second fundamental form h, and p a given integer, $p \in(0, m)$. If for any $x \in M$ and any orthonormal basis $\left\{e_{i}, e_{\alpha}\right\}(i=1, \ldots, p ; \alpha=p+1, \ldots, m)$ of $T_{x} M$ the following condition is satisfied

$$
\begin{equation*}
B(\xi)=\sum_{i, \alpha}\left[2\left\|h\left(e_{i}, e_{\alpha}\right)\right\|^{2}-\left\langle h\left(e_{i}, e_{i}\right), h\left(e_{\alpha}, e_{\alpha}\right)\right\rangle\right]<p(m-p) \tag{0.1}
\end{equation*}
$$

then there is no stable p-current in M and hence

$$
H_{p}(M, Z)=H_{m-p}(M, Z)=0
$$

In this paper we shall extend the above theorem. We shall introduce a selfadjoint linear operator Q^{A} on a p-subspace V of the tangent space $T_{x} M$. Replacing $B(\xi)$ in (0.1) by the trace of Q^{A}, we shall prove the following two theorems.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

Theorem 1. There is no stable p-current in $S^{m_{1}} \times S^{m_{2}}$ and

$$
H_{p}\left(S^{m_{1}} \times S^{m_{2}}, Z\right)=0
$$

where $0<p<m_{1}+m_{2}, p \neq m_{1}$ and $p \neq m_{2}$.
Theorem 2. Let $\phi: M^{m} \rightarrow S^{n_{1}} \times S^{n_{2}}$ be an isometric immersion of a compact Riemannian manifold M in $S^{n_{1}} \times S^{n_{2}}$, and p a given integer, $p \in(0, m)$. If for any $x \in M$ and any p-subspace V of $T_{x} M$

$$
\operatorname{tr} Q^{A}<0
$$

then there is no stable p-current in M and

$$
H_{p}(M, Z)=H_{m-p}(M, Z)=0
$$

1. Integral currents

For later convenience, in this section we shall give a brief description of integral currents. We refer the reader to $[2,3]$ for more details.

Let M^{m} be an m-dimensional compact Riemannian manifold with Riemannian metric (,) and Levi-Civita connection ∇. And let \mathcal{H}^{p} denote Hausdorff p-measure on M. A subset S of M is called a p-rectifiable set if S is a countable union of disjoint p-dimensional C^{1} submanifolds, up to sets of \mathcal{H}^{p}-measure zero. Consider over S an \mathcal{H}^{p}-measurable section $\xi: S \rightarrow \wedge^{p} T M$ with the property that for \mathcal{H}^{p}-almost all $x \in S$, ξ_{x} is a simple vector of unit length which represents $T_{x} S$. Such a pair (S, ξ) is called an oriented, p-rectifiable set.

The set of rectifiable p-currents is defined by

$$
\mathcal{R}_{p}(M)=\left\{\mathcal{S}=\sum_{n=1}^{\infty} n \mathcal{S}_{n} ; \mathcal{S}_{n}=\left(S_{n}, \xi_{n}\right), M(\mathcal{S})=\sum_{n=1}^{\infty} n \mathcal{H}^{p}\left(S_{n}\right)<\infty\right\}
$$

It can be thought of as the group of infinite, summable chains of oriented p-rectifiable sets.

For an oriented, p-rectifiable set $S=(S, \xi)$ and a smooth p-form $\omega \in \wedge^{p}(M)$, define

$$
\mathcal{S}(\omega)=\int_{S} \omega\left(\xi_{x}\right) d \mathcal{S}^{p}(x)
$$

This assigns to \mathcal{S} a continuous linear functional on $\wedge^{P}(M)$. The boundary of \mathcal{S} is defined as the linear functional on $\wedge^{p-1}(M)$ given by

$$
(\partial S)(\omega)=\mathcal{S}(d \omega)
$$

In the case that \mathcal{S} and $\partial \mathcal{S}$ are both rectifiable currents, \mathcal{S} is called an integral p-current. The space of integral p-currents is denoted by $\mathcal{T}_{p}(M)$. The direct sum $\mathcal{T}_{*}(M)=\underset{p}{\bigoplus} \mathcal{T}_{p}(M)$ together with $\partial: \mathcal{T}_{*}(M) \rightarrow \mathcal{T}_{*}(M)$ forms a differential chain complex. For this complex there is the following theorem.

Theorem. (Federer and Fleming [2]). For each $p \geqslant 0$ there is a natural isomorphism

$$
H_{p}\left(\mathcal{T}_{*}(M)\right) \cong H_{p}(M, Z)
$$

And for each $\alpha \in H_{p}\left(\mathcal{T}_{*}(M)\right.$ there exists a current $\mathcal{S} \in \alpha$ of "least mass", that is,

$$
M(\mathcal{S}) \leqslant M\left(\mathcal{S}^{\prime}\right)
$$

for all $\mathcal{S}^{\prime} \in \alpha$.
Consider a current $\mathcal{S} \in \mathcal{R}_{p}(M)$ and a smooth vector field $X \in C(T M)$. Let $\phi_{t}: M \rightarrow M$ be the 1-parameter group of local diffeomorphisms generated by X. Then the rectifiable current $\phi_{t^{*}}(\mathcal{S})$ is given by

$$
\phi_{t^{*}}(\mathcal{S})(\omega)=\mathcal{S}\left(\phi_{t}^{*} \omega\right)
$$

Its "mass" is

$$
M\left(\phi_{t^{*}} \mathcal{S}\right)=\int_{M}\left\|\phi_{t^{*}} \overrightarrow{\mathcal{S}}\right\| d\|\mathcal{S}\|
$$

where $\overrightarrow{\mathcal{S}}$ is the field of oriented tangent planes of $\mathcal{S}=\sum_{n} n \mathcal{S}_{n}$, for each $x \in S_{n}$, $\vec{S}_{x}=\xi_{n}(x)$.

A current $\mathcal{S} \in \mathcal{R}_{p}(M)$ is said to be stable if for each vector field X there is an $\varepsilon>0$ such that

$$
M\left(\phi_{t^{*}} \mathcal{S}\right) \geqslant M(\mathcal{S})
$$

for $|t|<\varepsilon$. This implies that for each X we have

$$
\left.\frac{d}{d t} M\left(\phi_{t^{*}} \mathcal{S}\right)\right|_{t=0}=0,\left.\quad \frac{d^{2}}{d t^{2}} M\left(\phi_{t^{*}} \mathcal{S}\right)\right|_{t=0} \geqslant 0
$$

The following variation formulas have been derived by Lawson and Simons [3].

$$
\begin{align*}
\left.\frac{d}{d t} M\left(\phi_{t^{*}} \mathcal{S}\right)\right|_{t=0}= & \int\left\langle a^{X}(\overrightarrow{\mathcal{S}}), \overrightarrow{\mathcal{S}}\right\rangle d\|\mathcal{S}\| \\
\left.\frac{d^{2}}{d t^{2}} M\left(\phi_{t^{*}} \mathcal{S}\right)\right|_{t=0}= & \int\left\{-\left\langle a^{X}(\overrightarrow{\mathcal{S}}), \overrightarrow{\mathcal{S}}\right\rangle^{2}+\left\langle a^{X} a^{X}(\overrightarrow{\mathcal{S}}), \overrightarrow{\mathcal{S}}\right\rangle+\left\|a^{X}(\overrightarrow{\mathcal{S}})\right\|^{2}\right. \tag{1.1}\\
& \left.+\left\langle\nabla_{x, \vec{s}} X, \overrightarrow{\mathcal{S}}\right\rangle\right\} d\|\mathcal{S}\|
\end{align*}
$$

where $a^{X}: \wedge^{p} T_{x} M \rightarrow \wedge^{p} T_{x} M$ is a linear map given by

$$
\begin{gathered}
a^{X}\left(X_{1} \wedge \ldots \wedge X_{p}\right)=\sum_{j} X_{1} \wedge \ldots \wedge a^{x}\left(X_{j}\right) \wedge \ldots \wedge X_{p} \\
a^{x}\left(X_{j}\right)=\nabla_{X_{j}} X
\end{gathered}
$$

and $\nabla_{X, .} X: \wedge^{p} T_{x} M \rightarrow \wedge^{p} T_{x} M$ is another linear map defined by

$$
\begin{aligned}
\nabla_{X, x_{1} \wedge \ldots \wedge x_{p}} X & =\sum_{j} X_{1} \wedge \ldots \wedge\left(\nabla_{X, x_{j}} X\right) \wedge \ldots \wedge X_{p} \\
\nabla_{X, X_{j}} X & =\nabla_{X} \nabla_{X_{j}} X-\nabla_{\nabla_{X} x_{j}} X .
\end{aligned}
$$

To any simple p-vector $\xi \in \wedge^{p} T_{x} M$ and $X \in C(T M)$, let ϕ_{t} be the flow generated by X, and define

$$
Q_{\xi}(X)=\left.\frac{d^{2}}{d t^{2}}\left\|\phi_{t^{*}} \xi\right\|\right|_{t=0}
$$

Then the expression (1.1) can be denoted by

$$
\begin{equation*}
\left.\frac{d^{2}}{d t^{2}} M\left(\phi_{t^{*}} \mathcal{S}\right)\right|_{t=0}=\sum_{n} n \int_{S_{n}} Q_{\varepsilon_{n}}(X) d \mathcal{H}^{p}(x) \tag{1.2}
\end{equation*}
$$

If $X=\nabla f$ for some $f \in C^{3}(M)$, from [3, p.436] we have

$$
\begin{equation*}
Q_{\xi}(X)=\left[\sum_{j}\left\langle a^{X}\left(e_{j}\right), e_{j}\right\rangle\right]^{2}+2 \sum_{j, \alpha}\left\langle a^{X}\left(e_{j}\right), e_{\alpha}\right\rangle^{2}+\sum_{j}\left\langle\nabla_{X, e_{j}} X, e_{j}\right\rangle \tag{1.3}
\end{equation*}
$$

where $\left\{e_{i}, e_{\alpha}\right\}(i=1, \ldots, p ; \alpha=p+1, \ldots, m)$ is an orthonormal basis of $T_{x} M$ and $\xi=e_{1} \wedge \ldots \wedge e_{p}$.

2. A selfadjoint linear operator

For a p-rectifiable set S in M, we know that at \mathcal{H}^{p}-almost all points $x \in S$, there exists an approximate p-space $T_{x} S \subset T_{x} M$, to S. In this section we shall introduce a selfadjoint linear operator on $T_{z} S$. Its trace is equal to the trace of Q_{ξ} given by (1.3).

Let $\phi: M^{m} \rightarrow N^{n}$ be an isometric immersion of a Riemannian manifold M into a Riemannian manifold N. The Levi-Civita connections of M and N are denoted by ∇ and $\bar{\nabla}$ respectively. For any $X, Y \in C(T M)$, we have

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y)
$$

where h is the second fundamental form of the immersion ϕ. If $V(N, M)$ is the normal bundle of M in N, for a smooth section $\nu \in C(V(N, M))$ we have

$$
\bar{\nabla}_{X} \nu=-A_{\nu} X+\ddot{\nabla}_{X}^{1} \nu
$$

where A_{ν} is the so-called the shape operator determined by ν. We know that

$$
\begin{equation*}
\left\langle A_{\nu} X, Y\right\rangle=\langle h(X, Y), \nu\rangle \tag{2.1}
\end{equation*}
$$

For a given integer $p \in(0, m)$ let V be a p-dimensional subspace in $T_{x} M$. Define a map $B_{\nu}: V \rightarrow V$ associated with A_{ν} by

$$
B_{\nu} X=\text { orthogonal projection of } A_{\nu} X \text { onto } V
$$

where $X \in V$. If $\left\{e_{i}\right\}$ is an orthonormal basis of V, we have

$$
\begin{equation*}
B_{\nu} X=\sum_{i}\left\langle A_{\nu} X, e_{i}\right\rangle e_{i} \tag{2.2}
\end{equation*}
$$

It may be seen that B_{ν} is a selfadjoint linear operator on V because A_{ν} is selfadjoint linear. Let $\left\{\nu_{\lambda}\right\}$ be an orthonormal basis of the normal space $V_{x}(N, M)$ and $A_{\lambda}=A_{\nu_{\lambda}}$. Define a selfadjoint linear map $Q^{A}: V \rightarrow V$ associated with the immersion ϕ by

$$
\begin{equation*}
Q^{A} X=\sum_{\lambda}\left[2\left(\sum_{i}\left(A_{\lambda}^{2} X, e_{i}\right) e_{i}-B_{\lambda}^{2} X\right)-\left(\operatorname{tr} A_{\lambda}-\operatorname{tr} B_{\lambda}\right) B_{\lambda} X\right] \tag{2.3}
\end{equation*}
$$

where $X \in V$ and $\left\{e_{i}\right\}$ is an orthonormal basis of $V . Q^{A}$ is independent of the choice of orthonormal bases of $V_{x}(N, M)$ and V. And its trace is

$$
\begin{align*}
\operatorname{tr} Q^{A} & =\sum_{i}\left\langle Q^{A} e_{i}, e_{i}\right\rangle \tag{2.4}\\
& =\sum_{\lambda}\left[2\left(\sum_{i}\left\langle A_{\lambda}^{2} e_{i}, e_{i}\right\rangle-\operatorname{tr} B_{\lambda}^{2}\right)-\left(\operatorname{tr} A_{\lambda}-\operatorname{tr} B_{\lambda}\right) \operatorname{tr} B_{\lambda}\right]
\end{align*}
$$

Let $\left\{e_{\alpha}\right\}$ be an orthonormal basis of V^{\perp} which is the orthogonal complement of V in $T_{x} M$. Then $\left\{e_{i}, e_{\alpha}\right\}$ is an orthonormal basis of $T_{x} M$ and

$$
\begin{aligned}
\sum_{i}\left\langle A_{\lambda}^{2} e_{i}, e_{i}\right\rangle & =\sum_{i, j}\left\langle A_{\lambda} e_{i}, e_{j}\right\rangle^{2}+\sum_{i, \alpha}\left\langle A_{\lambda} e_{i}, e_{\alpha}\right\rangle^{2} \\
\operatorname{tr} B_{\lambda}^{2} & =\sum_{i}\left\langle B_{\lambda}^{2} e_{i}, e_{i}\right\rangle=\sum_{i, j}\left\langle A_{\lambda} e_{i}, e_{j}\right\rangle^{2}
\end{aligned}
$$

Hence (2.4) becomes

$$
\begin{equation*}
\operatorname{tr} Q^{A}=\sum_{\lambda}\left[2 \sum_{i, \alpha}\left\langle A_{\lambda} e_{i}, e_{\alpha}\right\rangle^{2}-\left(\operatorname{tr} A_{\lambda}-\operatorname{tr} B_{\lambda}\right) \operatorname{tr} B_{\lambda}\right] \tag{2.5}
\end{equation*}
$$

Now assume that $\psi: N^{n} \rightarrow R^{l}$ is an isometric immersion of the Riemannian manifold N in the Euclidean space R^{l}. Let D be the Levi-Civita connection on R^{l}. Associated with the isometric immersion $x=\psi \circ \phi: M^{m} \rightarrow R^{l}$, the shape operator A_{ν}^{\prime} determined by $\nu \in C\left(V\left(R^{l}, M\right)\right)$ is given by

$$
\begin{equation*}
A_{\nu}^{\prime} Y=-\left(D_{Y} \nu\right)^{T} \tag{2.6}
\end{equation*}
$$

where $Y \in C(T M)$. In particular, if $\nu \in C(V(N, M))$,

$$
\begin{align*}
A_{\nu}^{\prime} Y & =-\left(D_{Y} \nu\right)^{T}=-\left[\bar{\nabla}_{Y} \nu+\bar{h}(\nu, T)\right]^{T} \tag{2.7}\\
& =-\left(-A_{\nu} Y+\nabla \frac{1}{Y} \nu\right)^{T}=A_{\nu} Y
\end{align*}
$$

and if $\nu \in C\left(V\left(R^{l}, N\right)\right)$,

$$
\begin{equation*}
A_{\nu}^{\prime} Y=\left(\bar{A}_{\nu} Y\right)^{T} \tag{2.8}
\end{equation*}
$$

For a given vector $v \in R^{l}$, we define two vector fields v^{T} and v^{\perp} on M by

$$
\begin{align*}
& v^{T}(x)=\text { orthogonal projection of } v \text { onto } T_{x} M \tag{2.9}\\
& v^{\perp}(x)=\text { orthogonal projection of } v \text { onto } V_{x}\left(R^{l}, M\right) .
\end{align*}
$$

To any unit, simple p-vector $\xi \in \wedge^{P} T_{x} M$, we shall calculate the quadratic form $Q_{\xi}\left(v^{T}\right)$ given by (1.3). Using (2.6), we have

$$
\begin{align*}
a^{v^{T}}(Y) & =\nabla_{Y} v^{T}=\left(D_{Y} v-D_{Y} v^{\perp}\right)^{T}=A_{v \perp}^{\prime} Y \tag{2.10}\\
\nabla \frac{1}{Y} v^{\perp} & =\left(D_{Y} v-D_{Y} v^{T}\right)^{\perp}=-h^{\prime}\left(v^{T}, Y\right)
\end{align*}
$$

These imply

$$
\begin{equation*}
\nabla_{v^{T}, Y} v^{T}=\left(\nabla_{v^{T}}^{*} A^{\prime}\right)_{v \perp} Y-A_{h^{\prime}\left(v^{T}, v^{T}\right)} Y \tag{2.11}
\end{equation*}
$$

where $\nabla_{v^{T} T}^{*} A^{\prime}$ is the derivative with respect to the connection of Van der WaerdenBortolotti ([1, p.65]). Putting (2.10) and (2.11) into (1.3), we obtain

$$
\begin{align*}
Q_{\xi}\left(V^{T}\right)= & {\left[\sum_{j}\left\langle A_{v \perp}^{\prime} e_{j}, e_{j}\right\rangle\right]^{2}+2 \sum_{j, \alpha}\left\langle A_{v \perp}^{\prime} e_{j}, e_{\alpha}\right\rangle^{2} } \tag{2.12}\\
& +\sum_{j}\left\langle\left(\nabla_{v}^{*} T A^{\prime}\right)_{v \perp} e_{j}, e_{j}\right\rangle-\sum_{j}\left\langle A_{h^{\prime}\left(v^{T}, v^{T}\right)}^{\prime} e_{j}, e_{j}\right\rangle
\end{align*}
$$

Let (S, ξ) be an oriented, p-rectifiable set. With a point $x \in S$ associate a tangent p-space $V=T_{x} S \subset T_{x} M$. Choose an orthonormal basis $\left\{e_{i}, e_{\alpha}\right\}$ of $T_{x} M$ such that $\left\{e_{i}\right\}$ is a basis of V and $\xi=e_{1} \wedge \ldots \wedge e_{p}$. Suppose that $\left\{\nu_{\sigma}\right\}$ is an orthonormal basis of $V_{x}\left(R^{l}, M\right)$ associated with the immersion $\psi \circ \phi: M \rightarrow R^{l}, A_{\sigma}^{\prime}=A_{\nu_{\sigma}}^{\prime}$, and $Q^{A^{\prime}}$ is the selfadjoint linear operator on V defined by (2.3). Consider Q_{ξ} as a quadratic form defined on the set

$$
\begin{equation*}
\theta=\left\{v^{T} \in C(T M) ; v \in R^{l}, v^{T} \text { is defined by (2.9) }\right\} \tag{2.13}
\end{equation*}
$$

There is the following relation between the quadratic form Q_{ξ} and the operator $Q^{A^{\prime}}$.
Proposition 1. $\operatorname{tr} Q_{\xi}=\operatorname{tr} Q^{A^{\prime}}$, where

$$
\begin{equation*}
\operatorname{tr} Q^{A^{\prime}}=\sum_{\sigma}\left[2 \sum_{i, \alpha}\left\langle A_{\sigma}^{\prime} e_{i}, e_{\alpha}\right\rangle^{2}-\left(\operatorname{tr} A_{\sigma}^{\prime}-\operatorname{tr} B_{\sigma}^{\prime}\right) \operatorname{tr} B_{\sigma}^{\prime}\right] \tag{2.14}
\end{equation*}
$$

Proof: Observing that at the given point $x \in M,\left\{e_{i}, e_{\alpha}, \nu_{\sigma}\right\}$ is an orthonormal basis of R^{l} and $\left(\nabla_{v^{T}}^{*} A^{\prime}\right)_{v^{\perp}}=0$ as $v^{T}=0$ or $v^{\perp}=0$, from (2.12) we have

$$
\begin{aligned}
\operatorname{tr} Q_{\xi}= & \sum_{i} Q_{\xi}\left(e_{i}\right)+\sum_{\alpha} Q_{\xi}\left(e_{\alpha}\right)+\sum_{\sigma} Q_{\xi}\left(\nu_{\sigma}\right) \\
= & -\sum_{i, j}\left\langle A_{h^{\prime}\left(e_{i}, e_{i}\right)^{\prime}}^{\prime}, e_{j}\right\rangle-\sum_{\alpha, j}\left\langle A_{h^{\prime}\left(e_{\alpha}, e_{\alpha}\right)}^{\prime} e_{j}, e_{j}\right) \\
& +\sum_{\sigma}\left\{\left[\sum_{j}\left\langle A_{\sigma}^{\prime} e_{j}, e_{j}\right)\right]^{2}+2 \sum_{j, \alpha}\left\langle A_{\sigma}^{\prime} e_{j}, e_{\alpha}\right\rangle^{2}\right\} \\
= & -\sum_{\sigma}\left[\sum_{i, j}\left\langle A_{\sigma}^{\prime} e_{i}, e_{i}\right\rangle\left\langle A_{\sigma}^{\prime} e_{j}, e_{j}\right\rangle+\sum_{\alpha, i}\left\langle A_{\sigma}^{\prime} e_{\alpha}, e_{\alpha}\right\rangle\left\langle A_{\sigma}^{\prime} e_{i}, e_{i}\right\rangle\right] \\
& +\sum_{\sigma}\left\{\left[\sum_{j}\left\langle A_{\sigma}^{\prime} e_{j}, e_{j}\right\rangle\right]^{2}+2 \sum_{j, \alpha}\left\langle A_{\sigma}^{\prime} e_{j}, e_{\alpha}\right\rangle^{2}\right\} \\
= & \sum_{\sigma, i, \alpha}\left[2\left\langle A_{\sigma}^{\prime} e_{i}, e_{\alpha}\right\rangle^{2}-\left\langle A_{\sigma}^{\prime} e_{\alpha}, e_{\alpha}\right\rangle\left\langle A_{\sigma}^{\prime} e_{i}, e_{i}\right\rangle\right] .
\end{aligned}
$$

Since
and

$$
\operatorname{tr} A_{\sigma}^{\prime}=\sum_{i}\left\langle A_{\sigma}^{\prime} e_{i}, e_{i}\right\rangle+\sum_{\alpha}\left\langle A_{\sigma}^{\prime} e_{\alpha}, e_{\alpha}\right\rangle
$$

$$
\operatorname{tr} B_{\sigma}^{\prime}=\sum_{i}\left\langle A_{\sigma}^{\prime} e_{i}, e_{i}\right\rangle
$$

we obtain $\operatorname{tr} Q_{\xi}=\operatorname{tr} Q^{A^{\prime}}$.

From the above proof, expression (2.14) can also be written as

$$
\begin{equation*}
\operatorname{tr} Q^{A^{\prime}}=\sum_{\sigma, i, \alpha}\left[2\left\langle A_{\sigma}^{\prime} e_{i}, e_{\alpha}\right\rangle^{2}-\left\langle A_{\sigma}^{\prime} e_{\alpha}, e_{\alpha}\right\rangle\left\langle A_{\sigma}^{\prime} e_{i}, e_{i}\right\rangle\right] \tag{2.15}
\end{equation*}
$$

At a point $x \in M$, we take an orthonormal basis $\left\{\nu_{\lambda}, \eta_{a}\right\}$ of $V_{x}\left(R^{l}, M\right)$ so that $\left\{\nu_{\lambda}\right\}$ and $\left\{\eta_{a}\right\}$ are bases of $V_{x}(N, M)$ and $V_{x}\left(R^{l}, N\right)$ respectively. From (2.7), (2.8) and (2.15) we obtain

$$
\begin{equation*}
\operatorname{tr} Q^{A^{\prime}}=\operatorname{tr} Q^{A}+\bar{A}(V) \tag{2.16}
\end{equation*}
$$

where $\operatorname{tr} Q^{A}$ is given by (2.5) and

$$
\begin{equation*}
\bar{A}(V)=\sum_{\alpha, i, \alpha}\left[2\left\langle\bar{A}_{\alpha} e_{i}, e_{\alpha}\right\rangle^{2}-\left\langle\bar{A}_{\alpha} e_{\alpha}, e_{\alpha}\right\rangle\left\langle\bar{A}_{\alpha} e_{i}, e_{i}\right\rangle\right] \tag{2.17}
\end{equation*}
$$

Note that $\bar{A}(V) \neq \operatorname{tr} Q^{\bar{A}}$.
ThEOREM. Let $\phi: M^{m} \rightarrow N^{n}$ be an isometric immersion of a compact Riemannian manifold M in a submanifold N of R^{l}, and p a given integer, $p \in(0, m)$. Suppose that for any $x \in M$ and any p-subspace V of $T_{x} M$,

$$
\begin{equation*}
\operatorname{tr} Q^{A}<-\bar{A}(V) \tag{2.18}
\end{equation*}
$$

Then there is no stable p-current in M and

$$
H_{p}(M, Z)=H_{m-p}(M, Z)=0
$$

Proof: Let θ be the set given by (2.13). If $v^{T} \in \theta, v^{T}$ is the gradient ∇f of the function $f(x)=\langle v, x\rangle$ on M. To each $\mathcal{S} \in \mathcal{R}_{p}(M)$ associate a quadratic form Q_{s} on θ as follows. For $X \in \theta$ let ϕ_{t} be the flow generated by X and set

$$
Q_{S}(X)=\left.\frac{d^{2}}{d t^{2}} M\left(\phi_{t^{*}} \mathcal{S}\right)\right|_{t=0}
$$

From (1.2) we have

$$
\operatorname{tr} Q_{S}=\sum_{n} n \int_{S_{n}} \operatorname{tr} Q_{\epsilon_{n}} d \mathcal{H}^{p}(x)
$$

But from (1.3), Proposition 1 and (2.16), (2.18) implies $\operatorname{tr} Q_{\xi_{n}}<0$ for any n. Therefore $\operatorname{tr} Q_{s}<0$. This implies that there is no stable p-current in M. By using FedererFleming's theorem, we have

$$
H_{p}(M, Z)=H_{m-p}(M, Z)=0
$$

If N^{n} in the above theorem is a totally umbilical submanifold immersed in R^{l}, N^{n} is of constant curvature $c \geqslant 0$. In this case $\bar{A}(V)$ given by (2.17) becomes

$$
\bar{A}(V)=-p(m-p) c .
$$

Hence we obtain

Corollary 1. Let M^{m} be a compact submanifold immersed in a totally umbilical submanifold N^{n} of R^{l}. If for any $x \in M$ and any p-subspace V of $T_{x} M$,

$$
\operatorname{tr} Q^{A}<p(m-p) c
$$

where c is the sectional curvature of N, then there is no stable p-current in M and

$$
H_{p}(M, Z)=H_{m-p}(M, Z)=0
$$

Remark 1. In the case $N^{n}=S^{n}$ we have $c=1$, and Corollary 1 becomes Lawson and Simons' theorem. And when $N^{n}=R^{n}$, Corollary 1 is due to Xin [4, Theorem 1].

3. Main results

Let $m_{1}+m_{2}=m$ and

$$
M^{m}=S^{m_{1}} \times S^{m_{2}}=\left\{\left(x_{1}, x_{2}\right) \in R^{m+2} ; x_{\lambda} \in R^{m_{\lambda}+1} \text { and }\left\|x_{\lambda}\right\|=1, \lambda=1,2\right\}
$$

Then M^{m} is a submanifold of R^{m+2}. At $x=\left(x_{1}, x_{2}\right) \in M^{m}$ we take an orthonormal basis $\left\{\nu_{\lambda}\right\}$ of $V_{x}\left(R^{m+2}, M\right)$ as follows

$$
\nu_{1}=\left(x_{1}, 0\right), \quad \nu_{2}=\left(0, x_{2}\right)
$$

It may be seen that the shape operators A_{λ} can be denoted by the matrices

$$
A_{1}=-\left(\begin{array}{cc}
I_{1} & 0 \\
0 & 0
\end{array}\right), \quad A_{2}=-\left(\begin{array}{cc}
0 & 0 \\
0 & I_{2}
\end{array}\right)
$$

where I_{λ} is the $m_{\lambda} \times m_{\lambda}$ identity matrix for each $\lambda=1,2$. Hence for any $X \in T_{x} M$ we have $A_{\lambda} X=-X_{\lambda}$, where X_{λ} is the orthogonal projection of X onto $T_{x_{\lambda}} S^{m_{\lambda}}$.

At $x \in M$, we take an orthonormal basis $\left\{e_{i}, e_{\alpha}\right\}$ of $T_{x} M$ so that $\left\{e_{i}\right\}$ is an orthonormal basis of the p-subspace V. Denoting the orthogonal projection of e_{i} (respectively e_{α}) onto $T_{x_{\lambda}} S^{m_{\lambda}}$ by $e_{i \lambda}$ (respectively $e_{\alpha \lambda}$), we have

$$
\begin{gathered}
\left\langle A_{\lambda} e_{i}, e_{\alpha}\right\rangle=-\left\langle e_{i \lambda}, e_{\alpha \lambda}\right\rangle \\
\operatorname{tr} A_{\lambda}=\sum_{i}\left\langle A_{\lambda} e_{i}, e_{i}\right\rangle+\sum_{\alpha}\left\langle A_{\lambda} e_{\alpha}, e_{\alpha}\right\rangle=-\sum_{i}\left\|e_{i \lambda}\right\|^{2}-\sum_{\alpha}\left\|e_{\alpha \lambda}\right\|^{2} \\
\operatorname{tr} B_{\lambda}=\sum_{i}\left\langle B_{\lambda} e_{i}, e_{i}\right\rangle=\sum_{i}\left\langle A_{\lambda} e_{i}, e_{i}\right\rangle=-\sum_{i}\left\|e_{i \lambda}\right\|^{2}
\end{gathered}
$$

Substituting these into (2.5) we obtain

$$
\begin{align*}
\operatorname{tr} Q^{A}= & \sum_{i, \alpha}\left[2\left(\left\langle e_{i 1}, e_{\alpha 1}\right\rangle^{2}+\left\langle e_{i 2}, e_{\alpha 2}\right\rangle^{2}\right)\right. \tag{3.1}\\
& \left.-\left(\left\|e_{\alpha 1}\right\|^{2}\left\|e_{i 1}\right\|^{2}+\left\|e_{\alpha 2}\right\|^{2}\left\|e_{i 2}\right\|^{2}\right)\right]
\end{align*}
$$

Since $e_{i}=e_{i 1}+e_{i 2}$ and $e_{\alpha}=e_{\alpha 1}+e_{\alpha 2}$, we have

$$
\begin{gathered}
\left\|e_{i 1}\right\|^{2}+\left\|e_{i 2}\right\|^{2}=1, \quad\left\|e_{\alpha 1}\right\|^{2}+\left\|e_{\alpha 2}\right\|^{2}=1 \\
\left\langle e_{i 1}, e_{\alpha 1}\right\rangle+\left\langle e_{i 2}, e_{\alpha 2}\right\rangle=0
\end{gathered}
$$

So (3.1) becomes

$$
\begin{align*}
\operatorname{tr} Q^{A}= & \sum_{i, \alpha}\left[4\left\langle e_{i 1}, e_{\alpha 1}\right\rangle^{2}+\left\|e_{i 1}\right\|^{2}+\left\|e_{\alpha 1}\right\|^{2}\right. \tag{3.2}\\
& \left.-2\left\|e_{i 1}\right\|^{2}\left\|e_{\alpha 1}\right\|^{2}\right]-p(m-p)
\end{align*}
$$

Lemma. For each pair of fixed indices i, α, let

$$
\begin{equation*}
f_{i \alpha}=4\left\langle e_{i 1}, e_{\alpha 1}\right\rangle^{2}+\left\|e_{i 1}\right\|^{2}+\left\|e_{\alpha 1}\right\|^{2}-2\left\|e_{i 1}\right\|^{2}\left\|e_{\alpha 1}\right\|^{2} \tag{3.3}
\end{equation*}
$$

Then $f_{i \alpha} \leqslant 1$ and equality holds if and only if $e_{i} \in T_{x_{1}} S^{m_{1}}$ and $e_{\alpha} \in T_{x_{2}} S^{m_{2}}$, or $e_{\alpha} \in T_{x_{1}} S^{m_{1}}$ and $e_{i} \in T_{x_{2}} S^{m_{2}}$.

Proof: Let $e_{i}^{s}\left(s=1,2, \ldots, m_{1}\right)$ (respectively e_{α}^{*}) be the components of $e_{i 1}$ (respectively $e_{\alpha_{1}}$) with respect to an orthonormal basis of $T_{x_{1}} S^{m_{1}}$. Then (3.3) becomes

$$
\begin{align*}
f_{i \alpha}= & 4\left(\sum_{s} e_{i}^{s} e_{\alpha}^{s}\right)^{2}+\sum_{s}\left(e_{i}^{s}\right)^{2} \tag{3.4}\\
& +\sum_{s}\left(e_{\alpha}^{s}\right)^{2}-2 \sum_{s, t}\left(e_{i}^{s}\right)^{2}\left(e_{\alpha}^{t}\right)^{2}
\end{align*}
$$

where

$$
\begin{equation*}
0 \leqslant \sum\left(e_{i}^{f}\right)^{2} \leqslant 1, \quad 0 \leqslant \sum\left(e_{\alpha}^{s}\right)^{2} \leqslant 1 . \tag{3.5}
\end{equation*}
$$

In order to seek the maximum of $f_{i \alpha}$ under the condition (3.5), partially differentiating (3.4) with respect to each variable and equating to zero, we obtain

$$
\begin{aligned}
& 4\left(\sum_{t} e_{i}^{t} e_{\alpha}^{t}\right) e_{\alpha}^{t}+e_{i}^{t}-2 \sum_{t}\left(e_{\alpha}^{t}\right)^{2} e_{i}^{t}=0 \\
& 4\left(\sum_{t} e_{i}^{t} e_{\alpha}^{t}\right) e_{i}^{t}+e_{\alpha}^{s}-2 \sum_{t}\left(e_{i}^{t}\right)^{2} e_{\alpha}^{t}=0
\end{aligned}
$$

These equations can be expressed by

$$
\begin{align*}
u e_{i}^{s} & =4 w e_{\alpha}^{a}, \tag{3.6}\\
v e_{\alpha}^{\prime} & =4 w e_{i}^{\prime}, \tag{3.7}
\end{align*}
$$

where $u=2 \sum_{s}\left(e_{\alpha}^{f}\right)^{2}-1, v=2 \sum_{s}\left(e_{i}^{f}\right)^{2}-1, w=\sum_{s} e_{i}^{f} e_{\alpha}^{f}$. From (3.6) we obtain

$$
\begin{align*}
& \frac{1}{2}(1+v) u=4 w^{2} \tag{3.8}\\
& u w=2(\eta+u) w \tag{3.9}
\end{align*}
$$

Similarly, from (3.7) we have

$$
\begin{align*}
& \frac{1}{2}(1+u) v=4 w^{2} \tag{3.10}\\
& v w=2(1+v) w \tag{3.11}
\end{align*}
$$

(3.8) and (3.10) give $u=v$. If $w \neq 0$, from (3.9) we have $u=2(1+u)$. So $u=-2$ and thus $\sum_{s}\left(e_{\alpha}^{*}\right)^{2}=-1 / 2$; this is impossible. Therefore w must be zero. And from (3.8) we have $(1+v) u=0$, that is,
(i) $1+v=0$; this gives $e_{i}^{*}=0$, and $e_{\alpha}^{z}=0$ from $u=v$; or
(ii) $u=v=w=0$; this implies $\sum_{d}\left(e_{i}^{a}\right)^{2}=\sum_{s}\left(e_{\alpha}^{d}\right)^{2}=1 / 2$ and $\sum_{s} e_{i}^{z} e_{\alpha}^{s}=0$. From (3.4),
(*)
(i) implies $f_{i \alpha}=0$, and (ii) implies $f_{i \alpha}=1 / 2$.

Besides, if $\sum_{s}\left(e_{i}^{i}\right)^{2}=1$, that is, $\left\|e_{i 1}\right\|^{2}=1$, then $e_{i 2}=0$ and thus

$$
\sum_{s} e_{i}^{f} e_{\alpha}^{d}=\left\langle e_{i 1}, e_{\alpha 1}\right\rangle=-\left\langle e_{i 2}, e_{\alpha 2}\right\rangle=0
$$

From (3.4) we have

$$
f_{i \alpha}=1-\sum_{z}\left(e_{\alpha}^{*}\right)^{2} \leqslant 1
$$

equality holds if and only if $\sum_{s}\left(e_{\alpha}^{*}\right)^{2}=0$. Combining $\left({ }^{*}\right)$, we see that under the condition (3.5), $f_{i \alpha} \leqslant 1$. Clearly equality holds if and only if $e_{i} \in T_{x_{1}} S^{m_{1}}$ and $e_{\alpha} \in T_{x_{2}} S^{m_{2}}$, or $e_{\alpha} \in T_{x_{1}} S^{m_{1}}$ and $e_{i} \in T_{x_{2}} S^{m_{2}}$.

From this lemma, (3.2) gives

$$
\operatorname{tr} Q^{A}=\sum_{i, \alpha} f_{i \alpha}-p(m-p) \leqslant 0
$$

It is easy to check that equality holds if and only if $\left\{e_{i}\right\} \subset T_{x_{1}} S^{m_{1}}$ and $\left\{e_{\alpha}\right\} \subset T_{x_{2}} S^{m_{2}}$, or $\left\{e_{\alpha}\right\} \subset T_{x_{1}} S^{m_{1}}$ and $\left\{e_{i}\right\} \subset T_{x_{2}} S^{m_{2}}$. These imply the p-subspace $V=T_{x_{1}} S^{m_{1}}$ and $V^{\perp}=T_{x_{2}} S^{m_{2}}$, or $V=T_{x_{2}} S^{m_{2}}$ and $V^{\perp}=T_{x_{1}} S^{m_{1}}$. Hence we have

PROPOSITION 2. For the isometric immersion $S^{m_{1}} \times S^{m_{2}} \rightarrow R^{m+2}$ ($m=m_{1}+m_{2}$), $\operatorname{tr} Q^{A} \leqslant 0$. Furthermore, if $p \bar{\in}\left\{m_{1}, m_{2}\right\}, \operatorname{tr} Q^{A}<0$.

Proof of Theorem 1: In the Theorem of Section 2 we take $M^{m}=S^{m_{1}} \times S^{m_{2}}$ and $N^{n}=R^{m+2}$; then $\bar{A}(V)=0$ from (2.17). Combining Proposition 2 and the Theorem in Section 2, we obtain Theorem 1.

Proof of Theorem 2: Let $\left\{e_{i}, e_{\alpha}\right\}$ be an orthonormal basis of $T_{x} M$ so that $\left\{e_{i}\right\}$ is a basis of the p-subspace V. Note that the shape operators of $S^{n_{1}} \times S^{n_{2}} \rightarrow$ $R^{n_{1}+n_{2}+2}$ are $\bar{A}_{a}(a=1,2), \bar{A}_{a} X=-X_{a}$ where $X \in T_{x} M$ and X_{a} is the orthogonal projection of X onto $T_{x_{a}} S^{n_{a}}$. So $\left\langle\bar{A}_{a} e_{i}, e_{\alpha}\right\rangle=-\left\langle e_{i a}, e_{\alpha a}\right\rangle,\left\langle\bar{A}_{a} e_{i}, e_{i}\right\rangle=-\left\|e_{i a}\right\|^{2}$, and $\left\langle\bar{A}_{a} e_{\alpha}, e_{\alpha}\right\rangle=-\left\|e_{\alpha a}\right\|^{2}$. Thus (2.17) becomes

$$
\bar{A}(V)=\sum_{i, \alpha}\left[2\left(\left\langle e_{i 1}, e_{\alpha 1}\right\rangle^{2}+\left\langle e_{i 2}, e_{\alpha 2}\right\rangle^{2}\right)-\left(\left\|e_{\alpha 1}\right\|^{2}\left\|e_{i 1}\right\|^{2}+\left\|e_{\alpha 2}\right\|^{2}\left\|e_{i 2}\right\|^{2}\right)\right]
$$

So from the Lemma we have $\bar{A}(V)=\sum_{i, \alpha} f_{i \alpha}-p(m-p) \leqslant 0$. Combining this with the Theorem in Section 2 we obtain Theorem 2.

Corollary 2. Let M^{m} be a compact submanifold isometrically immersed in $S^{n_{1}} \times S^{n_{2}}$. If for any point $x \in M$ and any p-subspace V of $T_{x} M(0<p<m)$ the selfadjoint linear operator Q^{A} on V is negative definite, then there is no stable p current in M.

REMARK 2. Theorems and corollaries in this paper are true if one replaces the integers by any finitely generated abelian coefficient group because the Federer-Fleming theorem remains true in the latter case. Besides, one can easily generalise these theorems and corollaries to arbitrary varifolds on M from [3, p.436, Remark 4].

References

[1] B.-Y. Chen, Geometry of submanifolds (Dekker, New York, 1973).
[2] H. Federer and W. Fleming, 'Normal and integral currents', Ann. of Math. 72 (1960), 458-520.
[3] H.B. Lawson and J. Simons, 'On stable currents and their application to global problems in real and complex geometry', Ann. of Math. 98 (1973), 427-450.
[4] Y.-L. Xin, 'An application of integral currents to the vanishing theorems', Sci. Sinica Ser. A 27 (1984), 233-241.

[^1]
[^0]: Received 6 November 1990

[^1]: Department of Mathematics
 Xian Institute of Metallurgy and
 Construction Engineering
 Xian 710055
 Peoples Republic of China

