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NONEXISTENCE OF STABLE CURRENTS IN
SUBMANIPOLDS OF A PRODUCT OF TWO SPHERES

XUE-SHAN ZHANG

Dedicated to Professor Yuen-da Wang on his 68th birthday

By using techniques of the calculus of variations in geometric measure theory, we
investigate the nonexistence of stable integral currents in S"1 X Sn* and its im-
mersed submanifolds. Several vanishing theorems concerning the homology group
of these manifolds are established.

0. INTRODUCTION

For any compact Riemannian manifold M, a theorem of Federer and Fleming [2]
tells us that any non-trivial integral homology class in HP(M, Z) corresponds to a sta-
ble integral current. By establishing a second variation formula for minimal integral
currents and applying it to different situations of M, Lawson and Simons [3] inves-
tigated the nonexistence of stable integral currents in M and showed some vanishing
theorems concerning the pth singular homology group Hp(M, Z) of M with integer
coefficients. For an immersed submanifold M of the unit sphere Sn, they showed the
following theorem.

THEOREM. (Lawson and Simons [3]). Let Mm be a compact submanifold of Sn

with the second fundamental form h, and p a given integer, p € (0, m). If for any
x £ M and any orthonormal basis {ej, ea} (t = 1, . . . , p; a = p + 1, . . . , m) of TXM
the following condition is satisfied

(0.1) B(0 = 5 > \\h(ei, eQ)||2 - (h(eu ei), h(ea, ea))] < p(m - p),
«,a

tien there is no stable p-current in M and hence

HP(M, Z) = Hm-P(M, Z) = 0.

In this paper we shall extend the above theorem. We shall introduce a selfadjoint
linear operator QA on a p-subspace V of the tangent space TTM. Replacing B(() in
(0.1) by the trace of QA, we shall prove the following two theorems.
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THEOREM 1. TAere is no stable p-current in Smi x 5 m j and

Hp(S
mi xSmi,Z) = 0,

where 0 < p < mi + m-i, p ^ mi and p ^ mi .

THEOREM 2 . Let <f>: Mm —> Sni x 5n* be an isometric immersion of a compact
RSemannian manifold M in Sni x Sn* , and p a given integer, p £ (0, m). If for any
x £ M and any p-subspace V of TXM

trQA<0,

then there is no stable p-current in M and

HP(M, Z) = Hm-P(M, Z) = 0.

1. INTEGRAL CURRENTS

For later convenience, in this section we shall give a brief description of integral
currents. We refer the reader to [2, 3] for more details.

Let Mm be an m-dimensional compact Riemannian manifold with Riemannian
metric ( , ) and Levi-Civita connection V. And let W denote Hausdorff p-measure
on M. A subset 5 of M is called a p-rectifiable set if 5 is a countable union of disjoint
p-dimensional C1 submanifolds, up to sets of W-measure zero. Consider over 5 an
•Hp-measurable section (: S -» APTM with the property that for W-almost all x G 5 ,
£x is a simple vector of unit length which represents TXS. Such a pair (5, () is called
an oriented, p-rectifiable set.

The set of rectifiable p-currents is defined by

oo oo

Tlp(M) = {S = J2 "Sn; Sn = (Sn, U), M(S) = £ nHp(Sn) < oo}.
n=l n=l

It can be thought of as the group of infinite, summable chains of oriented p-rectifiable
sets.

For an oriented, p-rectifiable set S — (S, £) and a smooth p-form w £ AP(M),
define

Is
This assigns to 5 a continuous linear functional on AP(M). The boundary of S is
defined as the linear functional on Ap~1(Af) given by

(dS)(w) = S{du>).
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In the case that S and dS are both rectifiable currents, S is called an integral
p-current. The space of integral p-currents is denoted by TP(M). The direct sum
%{M) - @Tp(M) together with d: %(M) -> %(M) forms a differential chain com-

p
plex. For this complex there is the following theorem.

THEOREM. (Federer and Fleming [2]). For each p ^ 0 tAere is a natural isomor-
phism

HP(%{M)) S HP{M, Z).

And for each a G HP{X,{M)) there exists a current 5 G o of "least mass", that is,

M(S) < M(S')

for all S' G a.

Consider a current 5 € TZP(M) and a smooth vector field X £ C(TM). Let
<j>t '• M —> M be the 1-parameter group of local diffeomorphisms generated by X.
Then the rectifiable current $«• (5) is given by

Its "mass" is = f
JM
f
M

where S is the field of oriented tangent planes of S = ^ nSn, for each x 6 Sn,
n

A current 5 £ TZP(M) is said to be stable if for each vector field X there is an
e > 0 such that

M(<f>t'S) > M{S)

for \t\ < e. This implies that for each X we have

5)|«=o = °' TTM(^*5)lt=o ^ °-

The following variation formulas have been derived by Lawson and Simons [3].

d

(1.1) ^

= f(ax(s),S)d\\S\\,
t=o J

= / \-{ax{S), S)> + (axax(S), S) + \\ax(S)\\
t=o J V.
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where ax : Ap TXM —• APTXM is a linear map given by

ax(X! A ... A Xp) = ^ Xi A ... A ax(Xj) A...AXp,
j

ax(Xj) = VXjX,

and Vx,. X: Ap TXM —> APTXM is another linear map defined by

A ... A (Vx.x,-*) A ... A Xp,

To any simple p-vector ( G APTXM and X G C[TM), let ^t be the flow generated
by X , and define

Then the expression (1.1) can be denoted by

(1.2) *=»= E n

If X = V / for some / G C3(M), from [3, p.436] we have

2

(1.3) QeW= ~ , ^ , e,-),

where {ej, ea} (t = 1, . . . , p; a = p + 1, . . . , TO) is an orthonormal basis of TXM and
= ei A . . . A ep.

2. A SELFADJOINT LINEAR OPERATOR

For a p-rectifiable set 5 in M, we know that at W-almost all points x G 5 , there
exists an approximate p-space TXS C TXM, to 5. In this section we shall introduce a
selfadjoint linear operator on TXS. Its trace is equal to the trace of Q( given by (1.3).

Let <j>: Mm —• Nn be an isometric immersion of a Riemannian manifold M into
a Riemannian manifold N. The Levi-Civita connections of M and N are denoted by
V and V respectively. For any X,Y e C(TM), we have

h(X, Y),
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[5] Nonexistence of stable integral currents 329

where h is the second fundamental form of the immersion <f>. If V(N, M) is the normal
bundle of M in N, for a smooth section v € C(V(N, M)) we have

= -AVX +&jtv,

where Av is the so-called the shape operator determined by v. We know that

(2.1) (AVX, Y) = (h{X, Y), v).

For a given integer p G (0, m) let V be a p-dimensional subspace in TXM. Define
a map Bv: V —» V associated with Au by

BVX — orthogonal projection of AVX onto V,

where X £ V. If {e^} is an orthonormal basis of V, we have

(2.2) BVX =

It may be seen that Bv is a selfadjoint linear operator on V because Av is self-

adjoint linear. Let {v\} be an orthonormal basis of the normal space VX(N, M) and

A\ = AVx . Define a selfadjoint linear map QA : V —» V associated with the immersion

4> by

(2.3) QAX Y ^ l [ Y , )

where X £ V and {e;} is an orthonormal basis of V. QA is independent of the choice
of orthonormal bases of VX(N, M) and V. And its trace is

(2.4) Y,
t

E [fa "(tr Ax ~
Let {eQ} be an orthonormal basis of V1- which is the orthogonal complement of V in
TXM. Then {e,-, ea} is an orthonormal basis of TXM and

eu ea)\

trB\ = ^{Bla, e.) = £>Ae,-, e;)
2.
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Hence (2.4) becomes

(2.5) eit eQ>2 - - tiBx)tiBx

* > < *

Now assume that V>: Nn —» Rl is an isometric immersion of the Riemannian man-
ifold N in the Euclidean space R1. Let D be the Levi-Civita connection on Rl.
Associated with the isometric immersion x — ijio(f>: Mm —* Rl, the shape operator A'v
determined by v 6 C(V(Rl, M)) is given by

A'VY = -(DYuf,(2-6)

where Y £ C{TM). In particular, if v € C{V(N, M)),

(2.7) A'VY = -{DYuf = -[ h{v, T)f

'VY = {AVY)T.

= -{rAvY+V$u) =AVY,

and if veC(V(Rl, N)) ,

(2.8)

For a given vector v £ Rl, we define two vector fields vT and vx on M by

(2.9) vT(x) — orthogonal projection of v onto TXM,

v±(x) = orthogonal projection of v onto Vx(R
l, M).

To any unit, simple p-vector £ £ APTXM, we shall calculate the quadratic form Q({vT)
given by (1.3). Using (2.6), we have

(2.10)

These imply

(2.11)

T)X == (DYv - DYvT)X = -fc'(vr, Y).

vT =

where V*Ti4' is the derivative with respect to the connection of Van der Waerden-
Bortolotti ([1, p.65]). Putting (2.10) and (2.11) into (1.3), we obtain

(2.12) Q((V
T) =

]•<*
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Let (5 , £) be an oriented, p-rectifiable set. With a point x G S associate a tangent
p-space V = TXS C TXM. Choose an orthonormal basis {e;, e a } of TXM such that
{e<} is a basis of V and £ = ej A . . . A ep. Suppose that {va} is an orthonormal basis
of Vx(R

l, M) associated with the immersion ip o <f>: M —» Rl, A'a — A'Va , and QA is
the selfadjoint h'near operator on V defined by (2.3). Consider Q( as a quadratic form
defined on the set

(2.13) 6 = {vT G C(TM); v G R1, vT is defined by (2.9)}.

There is the following relation between the quadratic form Q( and the operator QA .

P R O P O S I T I O N 1 . t r Q ( = t r Q A > , where

(2.14)

PROOF: Observing that at the given point x G M, {ej, ea, ua} is an orthonormal
basis of Rl and (V*TA') ± = 0 as vT - 0 or vx = 0, from (2.12) we have

tr Qi = £ Qda) + Y, Q(M +

E ^ e < ) ea}
2 - (A'aea, ea)(A'aei,

a,t ,a

Since

and

we obtain tr Q{ = trQ"4 .
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From the above proof, expression (2.14) can also be written as

(2.15) tr QA> = £ [2(A^i, ea)
2 - (A'aea, ea)(A'oei, e,->].

At a point x G M, we take an orthonormal basis {i/\, r}a} of Vx{Rl, M) so that
{v\} and {na} are bases of VX(N, M) and Vx(R

l, N) respectively. From (2.7), (2.8)
and (2.15) we obtain

(2.16) tr QA' = trQA + 1(V),

where trQA is given by (2.5) and

(2.17) A\V) = J2 [2(2.*, ea)
2 - (Aaea, ea)(Aaei, e,-)J.

Note that A(V)^trQA.

THEOREM. Let <f>: Mm —» Nn be an isometric immersion of a compact Riemann-
ian manifold M in a submanifold N of R , and p a given integer, p G (0, rn). Suppose
that for any x G M and any p-subspace V of TXM,

(2.18) trQA <-~A{V).

Then there is no stable p-current in M and

HP(M, Z) = Hm-P{M, Z) - 0.

PROOF: Let 0 be the set given by (2.13). If vT G 0, vT is the gradient S7f of the
function f(x) = (v, x) on M. To each S G HP(M) associate a quadratic form Qs on
0 as follows. For X G 0 let 4>t be the flow generated by X and set

S) |t=o •

From (1.2) we have

But from (1.3), Proposition 1 and (2.16), (2.18) implies tr Q(n < 0 for any n . Therefore
t r Q s < 0. This implies that there is no stable p-current in M. By using Federer-
Fleming's theorem, we have

H,(Mt Z) = Hm-P(M, Z) = 0. Q

If Nn in the above theorem is a totally umbilical submanifold immersed in R1,
Nn is of constant curvature c ^ 0. In this case A(V) given by (2.17) becomes

A(V) = -p(m-P)c.

Hence we obtain
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COROLLARY 1 . Let Mm be a compact submanifold immersed in a totally um-

bilical submanifold Nn of R1. II for any x € M and any p-subspace V of TXM,

tr QA <p{m-p)c,

where c is the sectional curvature of N, then there is no stable p-current in M and

HP(M, Z) = Hm-P{M, Z) = 0.

REMARK 1. In the case Nn = Sn we have c = 1, and Corollary 1 becomes Lawson
and Simons' theorem. And when Nn = Rn, Corollary 1 is due to Xin [4, Theorem 1].

3. MAIN RESULTS

Let mi + m2 — rn and

Mm = 5 m i x 5 m j = {(xi, x2) G JT+2; xx e Rm*+1 and ||xA|| = 1, A = 1, 2}.

Then Mm is a submanifold of Rm+2. At x = (xi, x2) e Mm we take an orthonormal
basis {ux} of Vx(R

m+2, M) as foUows

v\ = (*ii 0), v2 = (0, x2).

It may be seen that the shape operators A\ can be denoted by the matrices

o

= - [ o o j '
where I\ is the m\ x m\ identity matrix for each A = 1, 2. Hence for any X 6 TXM
we have A\X = —X\, where X\ is the orthogonal projection of X onto TxxS

m>-.
At x £ M, we take an orthonormal basis {e,-, eQ} of TXM so that {e,} is an

orthonormal basis of the p-subspace V. Denoting the orthogonal projection of e,-
(respectively eQ) onto TxxS

mx by ea (respectively eax), we have

(Axa, ea) = -(e,A, ea\),

trAx = Y

tr BX = Y^iBxeu ej = £ (A A e i ) a) = - ^ \\eix\\
2 .

i i >

Substituting these into (2.5) we obtain

(3.1)
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Since e< = en + en and e o = ea\ + eQ2. we have

(en, e a l ) + (ei2, ea2) = 0.

So (3.1) becomes

(3.2) trQA = £ [4(ea, eQ,)2 + ||ea||2 +

- 2 ||eil ||
2 ||eal ||

2] -p (m-p) .

LEMMA . For each pair of fixed indices i, a, let

(3.3) fia = 4 ( e a , eQ l )
2 + ||e«||" + | |eQl | |

2 - 2 | | e a | | 2 | | e a l | |
2 .

Then fia < 1 and equality holds if and only if e< e TXl 5
m i and ea £ TXJ 5

m 2 , or

ea £ T ^ S " 1 ' and e,- G T I 2 5 m ' .

PROOF: Let e'(s = 1 , 2 , . . . , mi) (respectively e^) be the components of e,i (re-
spectively eQ l ) with respect to an orthonormal basis of TXlS

mi . Then (3.3) becomes

(3-4) /«=4fe)

where

(3.5) 0

In order to seek the maximum of fia under the condition (3.5), partially differentiating
(3.4) with respect to each variable and equating to zero, we obtain

These equations can be expressed by

(3.6) u

(3.7) v
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where u = 2 £ (e^)2 - 1, v = 2 £ (cj)2 - 1, w = £ e'e'a. Prom (3.6) we obtain
» M *

(3.8) ±{l+v)u = *u,2,

(3.9) um = 2(Jf"+ u)tu.

Similarly, from (3.7) we have

(3.10) i(l+u)i; = W,

(3.11) t;w = 2(1 + v)w.

(3.8) and (3.10) give u = v. If w ^ 0, from (3.9) we have u = 2(1 + u). So u = - 2
and thus $Z(ea)2 = ~ l / 2 ; this is impossible. Therefore u; must be zero. And from

t

(3.8) we have (1 + v)u - 0, that is,
(i) 1 + v = 0; this gives e* = 0, and e^ = 0 from u = v; or

(ii) u = v = to = 0; this implies £ K ) 2 = E K ) ' = 1/2 and £ e j e « = 0.

From (3.4),

(*) (i) implies fia = 0, and (ii) implies /,-a = 1/2.

Besides, if X^(e;) = 1> ^ a ^ isi lleii[| = I i then e<2 = 0 and thus

^ e ' e ^ = (en, eai> = - (c i 2 , eQ2) = 0.

From (3.4) we have

equality holds if and only if E ( e £ ) 2 = 0. Combining (*), we see that under the

condition (3.5), fia ^ 1. Clearly equality holds if and only if e{ 6 TZl S
mi and

ea £ TXJS
m>, or ea € T , ^ 1 " ' and e; £ r i 3 5 m 3 . D

From this lemma, (3.2) gives

It is easy to check that equality holds if and only if {e,} C TZl S
mi and {ea} C TX2 S

m>,
or {eQ} C TXlS

mi and {e,} C TZ7S
m*. These imply the p-subspace V = TxlS

mi and
V1- = TX2S

m* , or V = TX7S
m> and V x = TxlS

mi . Hence we have
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PROPOSITION 2 . For the isometric immersion Smi x Sm* -+ Rm+2

(m = mi +m2), tiQA ^ 0. Furthermore, it pg{mi, m2}, tr<5^ < 0.

PROOF OF THEOREM 1: In the Theorem of Section 2 we take Mm = Smi x Sm*
and Nn = Rm+2; then ~A(V) = 0 from (2.17). Combining Proposition 2 and the
Theorem in Section 2, we obtain Theorem 1. D

P R O O F OF THEOREM 2: Let {a, ea} be an orthonormal basis of TXM so that
{d} is a basis of the p-subspace V. Note that the shape operators of 5" 1 x 5"2 —>

Rni+n2+2 a r e -ja (ffl = i , 2), ~AaX = -Xa where X e TXM and Xa is the orthogonal
projection of X onto TXaS

na. So (Aaei, ea) — -{eia, eaa), (Aaei, e,-> = - | |e,o | | 2 , and
{Aaea, ea) = — | |e a o | | . Thus (2.17) becomes

A(V) = J^ [2«eil, eQl)
2 + (eaj ea2)

2) - (||ealf HeaH* + ||ea2||
2 ||ei2

i} a

So from the Lemma we have A(V) = 53 fia — p('^i — p) ^ 0 . Combining this with the

Theorem in Section 2 we obtain Theorem 2. D

COROLLARY 2 . Let Mm be a compact submanifold isometrically immersed in
5n» x S"2 . If for any point x £ M and any p-subspace V of TxM(0 < p < m) the
selfadjoint linear operator QA on V is negative definite, then there is no stable p-
current in M.

REMARK 2. Theorems and corollaries in this paper are true if one replaces the integers
by any finitely generated abelian coefficient group because the Federer-Fleming theorem
remains true in the latter case. Besides, one can easily generalise these theorems and
corollaries to arbitrary varifolds on M from [3, p.436, Remark 4].
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