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NONEXISTENCE OF STABLE CURRENTS IN
SUBMANIFOLDS OF A PRODUCT OF TWO SPHERES

XUE-SHAN ZHANG
Dedicated to Professor Yuen-da Wang on his 68th birthday

By using techniques of the calculus of variations in geometric measure theory, we
investigate the nonexistence of stable integral currents in $™* X S™? and its im-
mersed submanifolds. Several vanishing theorems concerning the homology group
of these manifolds are established.

0. INTRODUCTION

For any compact Riemannian manifold M, a theorem of Federer and Fleming (2]
tells us that any non-trivial integral homology class in Hy(M, Z) corresponds to a sta-
ble integral current. By establishing a second variation formula for minimal integral
currents and applying it to different situations of M, Lawson and Simons [3] inves-
tigated the nonexistence of stable integral currents in M and showed some vanishing
theorems concerning the pth singular homology group Hp(M, Z) of M with integer
coeflicients. For an immersed submanifold M of the unit sphere S™, they showed the
following theorem.

THEOREM. (Lawson and Simons [3]). Let M™ be a compact submanifold of S™
with the second fundamental form h, and p a given integer, p € (0, m). If for any
z € M and any orthonormal basis {e;,eq} (1 =1,...,pa=p+1,...,m) of TM
the following condition is satisfied

(0.1) B(£) = D _[2I(es, ea)ll” — (h(e, €:), h(ea, €a))] < p(m — p),

then there is no stable p-current in M and hence
H,(M,Z)=Hpn_p(M, Z)=0.

In this paper we shall extend the above theorem. We shall introduce a selfadjoint
linear operator @4 on a p-subspace V of the tangent space T. M. Replacing B(¢) in
(0.1) by the trace of @4, we shall prove the following two theorems.
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THEOREM 1. There is no stable p-current in $™ x $™2 and
H,(5™ x §™,Z) =0,

where 0 < p<m; +m3, p£m; and p# m,.

THEOREM 2. Let ¢: M™ — S™ x S™2 be an isometric immersion of a compact
Riemannian manifold M in §™ x $™, and p a given integer, p € (0, m). If for any
z € M and any p-subspace V of T, M

trQ4 <0,
then there is no stable p-current in M and

Hy(M, Z) = Hp_,(M, Z) = 0.

1. INTEGRAL CURRENTS

For later convenience, in this section we shall give a brief description of integral
currents. We refer the reader to [2, 3] for more details.

Let M™ be an m-dimensional compact Riemannian manifold with Riemannian
metric {, } and Levi-Civita connection V. And let H? denote Hausdorff p-measure
on M. A subset S of M is called a p-rectifiable set if S is a countable union of disjoint
p-dimensional C?! submanifolds, up to sets of HP-measure zero. Consider over § an
HP-measurable section {: § — APTM with the property that for HP-almost all z € S,
¢. is a simple vector of unit length which represents T,.S. Such a pair (S, ¢) is called
an oriented, p-rectifiable set.

The set of rectifiable p-currents is defined by

Rp(M) ={S =Y nSn; Sn = (5n, &n), M(S) = Y nHP(8a) < o0}

It can be thought of as the group of infinite, summable chains of oriented p-rectifiable
sets.

For an oriented, p-rectifiable set § = (S, §) and a smooth p-form w € AP(M),
define

S(w) = /s w(€:)dS?(z).

This assigns to S a continuous linear functional on AP(M). The boundary of S is
defined as the linear functional on AP~1(M) given by

(85)(w) = S(dw).
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In the case that S and 8S are both rectifiable currents, S is called an integral
p-current. The space of integral p-currents is denoted by T,(M). The direct sum
T.(M) = @ T,(M) together with 9: T,(M) — T,(M) forms a differential chain com-

P
plex. For this complex there is the following theorem.

THEOREM. (Federer and Fleming [2]). For each p > 0 there is a natural isomor-
phism
H,(T.(M)) = Hy(M, Z).

And for each a € H,(T,(M)) there exists a current S € a of “least mass”, that is,
M(S) < M(S')

for all ' € a.

Consider a current S € Rp,(M) and a smooth vector field X € C(TM). Let
¢:: M — M be the l-parameter group of local diffeomorphisms generated by X.
Then the rectifiable current ¢+(S) is given by

¢ (S)(w) = S(p;w).
Its “mass” is

M($e:S) = /M lée SIS,

where :S: is the field of oriented tangent planes of § = )  nSn, for each ¢ € §,,

So = ta(2).
A current § € R,(M) is said to be stable if for each vector field X there is an
€ > 0 such that
M($e+S) 2 M(5)

for |t| < €. This implies that for each X we have

d d?
EM((IS"S)'::O =0, FM(‘ﬁ"S)lt:o 2 0.

The following variation formulas have been derived by Lawson and Simons [3].
= [ @), Siansi,

- / {_(aX(E), 8) + (aXa¥(8), 8) + [|a* (S)I?

d
EM("S"S)

(1.1) %M(@.S)

t=0

t=0

(7, X )} alsi,
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where aX: AP T,M — APT,M is a linear map given by
(X1 A...AXp) = E.Xl Ao A (XA ... A X,
a.x(;(,-) =Vx;X,
and Vx,_ X: APT.M — APT.M is another linear map defined by

VX.XIA...AX,X = ZX; A...A (Vx,ij) A A Xp,
j
Vx,x; X =VxVx, X - Vy, x,;X.
To any simple p-vector £ € APT, M and X € C(TM), let ¢; be the flow generated
by X, and define
d?
Qe(X) = 23 1¢eéll |uco -
Then the expression (1.1) can be denoted by

(1.2) :;%M(tﬁt's) le=0= z n/; Qen (X)dHP ().

If X = Vf for some f € C3(M), from (3, p.436] we have

(13)  QeX) = [Z(«z"(e,-), e,->] +230(0%(63), €l + 2 (Ve X, ¢5),

7

where {e;, eq} (t=1,...,pja=p+1,...,m) is an orthonormal basis of T, M and
E=eN...Ngp.

2. A SELFADJOINT LINEAR OPERATOR

For a p-rectifiable set S in M, we know that at HP-almost all points z € S, there
exists an approximate p-space T, S C T:M, to S. In this section we shall introduce a
selfadjoint linear operator on T:S. Its trace is equal to the trace of Q¢ given by (1.3).

Let ¢: M™ — N™ be an isometric immersion of a Riemannian manifold M into

a Riemannian manifold N. The Levi-Civita connections of M and N are denoted by
V and V respectively. For any X, Y € C(T M), we have

—V—xY =VxY + h(X, Y),
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where h is the second fundamental form of the immersion ¢. If V(NN, M) is the normal
bundle of M in N, for a smooth section v € C(V(N, M)) we have

6)(!/ =—-A4,X +IV:,L(V,
where A, is the so-called the shape operator determined by v. We know that
(2.1) (A, X,Y) = (h(X,Y), v).

For a given integer p € (0, m) let V be a p-dimensional subspacein T, M. Define
a map B,: V — V associated with A, by

B,X = orthogonal projection of 4, X onto V,

where X € V. If {e;} is an orthonormal basis of V, we have

(2.2) B.X =) (AX, e;)e;.

It may be seen that B, is a selfadjoint linear operator on V because A, is self-
adjoint linear. Let {vy} be an orthonormal basis of the normal space V (N, M) and
Ax = A,, . Define a selfadjoint linear map Q4:V — V associated with the immersion

¢ by

(2.3) QAX = Z [2 (Z(Af\X, e;)e.- - BiX) - (trAA —tr BA)B)‘X ,
A

11

where X € V and {e;} is an orthonormal basis of V. Q4 is independent of the choice
of orthonormal bases of V;(N, M) and V. And its trace is

(2.4) rQ4 = (Q%;, e:)

= E [2 (Z(Aie,-, e;) — trBi) —(tr Ax —tr By)tr B, |.
A 3

Let {ea} be an orthonormal basis of V* which is the orthogonal complement of V in
T:M . Then {e;, eq} is an orthonormal basis of T, M and

Z(Azxei: ei) = Z(Alei) ej)2 + Z(Akeis ea)27

i, i, a

tr B = E(Bie.', e.') = Z(Axe;, ej)z.

i i 5
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Hence (2.4) becomes
(2.5) tr Q4 = E 2Z(A,\e.-, ea)? — (tr Ay — tr By)tr By
A i,

Now assume that 1: N® — R! is an isometric immersion of the Riemannian man-
ifold N in the Euclidean space R'. Let D be the Levi-Civita connection on R'.
Associated with the isometric immersion £ = 9o ¢: M™ — R, the shape operator A/,
determined by v € C(V (R’, M)) is given by

(2.6) ALY = —(Dyv)T,
where Y € C(T'M). In particular, if v € C(V(N, M)),
(2.7) A'Y = —(Dyv)T = ~[Vyv + &(v, T))T
= —(-AY+ Vi) = A,
and if v € C(V(R!, N)),
(2.8) ALY = (4,Y)".
For a given vector v € R, we define two vector fields T and v+ on M by

(2.9) vT(z) = orthogonal projection of v onto T, M,
vJ‘(z) = orthogonal projection of v onto V; (Rl, M)

To any unit, simple p-vector { € APT_. M, we shall calculate the quadratic form Q; (vT)
given by (1.3). Using (2.6), we have

(2.10) o’ (Y) = VyoT = (Dyv — Dyvt)T = 4!, Y,
Vvl = (Dyv — DyoT) " = —1'(u7, Y).

These imply

(2.11) Vr,y v = (Vird') .Y - Api(o,57) Y5

where V7 A' is the derivative with respect to the connection of Van der Waerden-
Bortolotti ([1, p.65]). Putting (2.10) and (2.11) into (1.3), we obtain

2
(2.12) Qe(VT) = [D(Apies e5)| +2) (4Lue5, ea)?
Ha

+ Z((V:TA,).,J-eJ" ej) — Z(ALI(,T',T)eJ" €;)-
j J
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Let (S, £) be an oriented, p-rectifiable set. With a point ¢ € S associate a tangent
p-space V = T.§ C T, M. Choose an orthonormal basis {e;, ex} of T M such that
{e:} is a basisof V and £ =e; A... Ae,. Suppose that {v,} is an orthonormal basis
of V, (R', M) associated with the immersion ¥ o ¢: M — R', A/ = A, , and QAI is
the selfadjoint linear operator on V defined by (2.3). Consider Q¢ as a quadratic form
defined on the set

(2.13) 0 = {vT € C(TM);v € R, vT is defined by (2.9)}.

There is the following relation between the quadratic form @, and the operator QA'.

PROPOSITION 1. trQ, =trQ4 , where
(2.14) trQAI = Z [2 Z(A:,e.-, eq)? — (tr A, —tr BL)tr B, |.
o L,
PRrROOF: Observing that at the given point z € M, {e;, eq, o} is an orthonormal
basis of R! and (V:TA’)"J_ =0 as vT =0 or v! =0, from (2.12) we have
trQe =D Qeles) + 3 Qelea) + 3 Qelvo)
i a o

= - E(A'h’(e.',:,')ej’ e?) - Z(Alh'(ea,ca)ej’ eJ)

5 a, j
2
+3 { [Z(A;,e,-, e,-)] +2) (ALej, ea)z}
o j o

=_ 203 [;(A;e.-, e:)(ALej, ej) + c,12;(14;,.3.,, ea) (AL e, e-)]

2
+;{[Z(Aéej: e:‘)] +2§(A28j, ea)’}

i

= Z [2(A:7ei’ ea)z - (A:yea’ ea)(A;ei, ei)]-

Since
tr Al = Z(A:,e,-, e:) + Z(A:,ea, )
and : «
trB., = Z(Az,e.-, ei)
we obtain tr Q¢ = trQA' . 0
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From the above proof, expression (2.14) can also be written as

(2’15) tr QAl = Z [2(‘4:75{, ea)z - (Af,ea, ea)(Afrei; ei)]'

At a point z € M, we take an orthonormal basis {va, 74} of Vz(R', M) so that
{va} and {n.} are bases of V,(N, M) and V,(R', N) respectively. From (2.7), (2.8)
and (2.15) we obtain

(2.16) tr Q4 =trQ4 + A(V),
where tr Q4 is given by (2.5) and
(2.17) AVy= Y [2(Aaes, ea)® — (Aata, ea)(Aaei, €)].

Note that A(V) # tr Q4.
THEOREM. Let ¢: M™ — N™ be an isometric immersion of a compact Riemann-

ian manifold M in a submanifold N of R, and p a given integer, p € (0, m). Suppose
that for any * € M and any p-subspace V of T, M,

(2.18) tr Q4 < —A(V).
Then there is no stable p-current in M and
H,(M,Z)=Hn_»(M, Z)=0.
PROOF: Let 8 be the set given by (2.13). If o7 € 8, vT is the gradient Vf of the

function f(z) = (v, z) on M. To each § € R,(M) associate a quadratic form Qs on
8 as follows. For X € 8 let ¢; be the flow generated by X and set

Qs(X) = 5 M(40-8) limo -
From (1.2) we have

trQs = En/s tr Q¢ dHP ().

But from (1.3), Proposition 1 and (2.16), (2.18) implies tr Q¢, < 0 for any n. Therefore
tr@s < 0. This implies that there is no stable p-current in M. By using Federer-
Fleming’s theorem, we have

H,(M, Z) = Hm_p(M, Z) = 0. 0

If N™ in the above theorem is a totally umbilical submanifold immersed in R,
N™ is of constant curvature ¢ > 0. In this case A(V) given by (2.17) becomes

A(V) = —p(m - p)c.

Hence we obtain
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COROLLARY 1. Let M™ be a compact submanifold immersed in a totally um-
bilical submanifold N™ of R'. If for any z € M and any p-subspace V of Ty M,
trQ* < p(m ~ p)e,
where ¢ is the sectional curvature of N, then there is no stable p-current in M and
Hy(M,Z)=Hpn—p(M, Z)=0.

REMARK 1. In the case N® = 8™ we have ¢ = 1, and Corollary 1 becomes Lawson
and Simons’ theorem. And when N™ = R™, Corollary 1 is due to Xin {4, Theorem 1].

3. MAIN RESULTS

Let mi; +my =m and
M™ = 85™ x §™ = {(z1, 22) € R™*?;zy € R™ ! and ||z5|| =1, A =1, 2}

Then M™ is a submanifold of R™*2. At z = (z;, 22) € M™ we take an orthonormal
basis {vra} of V;(R™*2, M) as follows

v = (21, 0), v, = (0, z2).

It may be seen that the shape operators A, can be denoted by the matrices

I, 0 0 O
= - A = - N
4 (0 0)’ 2 (0 I,)

where I is the m) x m, identity matrix for each A =1, 2. Hence for any X € T:M
we have Ay X = —X,, where X is the orthogonal projection of X onto T, S™>.

At z € M, we take an orthonormal basis {e;, ea} of ToM so that {e;} is an
orthonormal basis of the p-subspace V. Denoting the orthogonal projection of e;
(respectively eq ) onto Tz, S™ by e; (respectively eqa), we have

(Axei, ea) = —(eir, €ar),

tr 4, = Z(Axe;, e;) + Z(A,\ea, ea) = —Z ||ei,\||2 - Z ||€ozA||2 )

i

trBy =Y (Baei, &) = Z(Axei, &) = — Z lleal|? .

i 3

Substituting these into (2.5) we obtain

(31) tr QA = Z [2((3;’1, eal)z + (ei2’ 302)2)

i, &

2 2 2
~(leaal® el + Hecal® )
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Since e; = e;; + ;2 and e, = €41 + €q2, We have
leall® + llezl* =1,  llearll + lleazl® =1,
(€i1, €a1) + (€42, €az) = 0.

So (3.1) becomes

(3:2) trt=>" [4(851, ea)? + llea ||’ + |lear [I?

L,
=2 lea|* lea *] = p(m — 5).
LEMMA . For each pair of fixed indices i, a, let
(3-3) fia = 4{eq, ea1)® + lleal” + llearll” — 2 flear* lleanll? -

Then fi;a < 1 and equality holds if and only if e; € T;,S™ and e, € T:,5™*, or
eq € T2, 5™ and e; € T,,5™2.

PROOF: Let el(s =1, 2,..., m;) (respectively e’ ) be the components of e;; (re-
spectively eq, ) with respect to an orthonormal basis of Tz, 8™ . Then (3.3) becomes

(3.4) fia = 4(2 e:e;) +) ()’

L

+ 3 (en) =23 (e (e,
where
(3.5) 0< Y (e’<1, 0<Y (ef)’ <1,

In order to seek the maximum of f;, under the condition (3.5), partially differentiating

(3.4) with respect to each variable and equating to zero, we obtain

4(2 efe:,) el +ef— 22 (ef,)zef =0,

t t

4(2 eﬁefl) el +el — 22 (ef)ze; = 0.
t

t

These equations can be expressed by

(3.6) ue! =4we’,

3.7 vel =4we],
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where u =23(e2)’ =1, v =2 (e!)’ = 1, w = Y efe’,. From (3.6) we obtain

(3.8) %(1 + v)u = dw?,
(3.9) uw = 2(¥ + u)w.

Similarly, from (3.7) we have

(3.10) %(1 +u)v = 4w?,

(3.11) vw = 2(1 + v)w.

(3.8) and (3.10) give v = v. If w # 0, from (3.9) we have u = 2(1 +u). So v = -2

and thus Y (e:x)2 = —1/2; this is impossible. Therefore w must be zero. And from
s

(3.8) we have (1 + v)u =0, that is,

(i) 14 v =0; this gives e! =0, and e, =0 from u =v; or
(i) = v = w = 0; this implies E(e:)z = Z:(e;)2 =1/2 and ) efe’ =0.

From (3.4),
(%) (i) implies f;o =0, and (ii) implies f;, = 1/2.

Besides, if z:(eg)2 =1, that is, ||eq ||2 =1, then e;; =0 and thus

Ze,’e; = (€1, €a1) = —(€i2, €a2) = 0.

From (3.4) we have
fia=1-Y (et)* <1,

equality holds if and only if z:(e",)2 = 0. Combining (*), we see that under the

condition (3.5), fio < 1. Clearly equality holds if and only if e; € T;,S™ and
ea € Tz,5™%, 0r eq € T;, S™ and e; € T, 5™3. 0

From this lemma, (3.2) gives
t1Q* =Y fia — p(m — p) < 0.

It is easy to check that equality holds if and only if {e;} C T>, S™! and {e,} C T-,S5™,
or {ea} C Tz, S™ and {e;} C T;,5™?. These imply the p-subspace V =T, S™ and
vi= T:,8™,0or V=T.,5 and vi= T, 5™ . Hence we have
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PROPOSITION 2. For the isometric immersion S§™ x S™2 — Rm™+2
(m = my +m;), tr @4 < 0. Furthermore, if p€{m,, m,}, trQ4 < 0.

PROOF OF THEOREM 1: In the Theorem of Section 2 we take M™ = §™1 x §™2
and N™ = R™*2%; then A(V) = 0 from (2.17). Combining Proposition 2 and the
Theorem in Section 2, we obtain Theorem 1. 0

PROOF OF THEOREM 2: Let {e;, e,} be an orthonormal basis of T.M so that
{e:} is a basis of the p-subspace V. Note that the shape operators of S™ x §™2 —
R™M+*m3+2 are 4, (a=1, 2), AgX = —X, where X € T, M and X, is the orthogonal
projection of X onto T, 8™ . So (Ae;, ea) = —(€ia, €aa), (Zue,-, ey = — ”e,-,,”z, and
(Asea, €a) = — ||ema||2 . Thus (2.17) becomes

AV) =Y [2((enr, ea)? + (ei2, €a2)?) = (lleat|® el + lleaal® leizll*) ] -

So from the Lemma we have A(V) = Z fia — p(m — p) < 0. Combining this with the

Theorem in Section 2 we obtain Theorem 2. 0

COROLLARY 2. Let M™ be a compact submanifold isometrically immersed in
S™ x S™2, If for any point ¢ € M and any p-subspace V of T,M(0 < p < m) the
selfadjoint linear operator Q4 on V is negative definite, then there is no stable p-

current in M .

REMARK 2. Theorems and corollaries in this paper are true if one replaces the integers
by any finitely generated abelian coefficient group because the Federer-Fleming theorem
remains true in the latter case. Besides, one can easily generalise these theorems and
corollaries to arbitrary varifolds on M from (3, p.436, Remark 4].
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